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Summary

There has been a considerable amount of interest in the immunological com-
munity about new phenotypic subsets of CD4+ T cells, particularly cells that
produce the cytokine interleukin (IL)-17 [named T helper type 17 (Th17)
cells]. While the initial discovery of Th17 cells and the pathways that con-
trolled their development was in the mouse, recent attention has shifted to the
existence of these cells and the relevant upstream cytokine signals in humans.
While it is clear that CD4+ T cells producing IL-17 exist in vivo, their relevance
to disease pathogenesis is only just being understood. In this paper, we review
the data regarding the generation of human Th17 cells in vitro and the evi-
dence that this effector population is important in human disease states.
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Introduction

A first line of defence against the continuous threat of patho-
genic microbes that invade our body is formed by innate
immunity, which responds to danger immediately with
antigen-non-specific events without inducing classical
immunological memory. In a second stage, dendritic cells
(DC) orchestrate immunity and tolerance by initiating adap-
tive antigen-specific immunity by stimulating naive T cells in
the tissue draining lymphoid organs with an antigenic
peptide complexed to a major histocompatibility molecule
(signal 1). In addition, DC decide between immunity
and tolerance by expressing various patterns of T cell
co-stimulatory or inhibitory molecules (signal 2). Finally,
dendritic cells promote protective effector T cell responses
adapted to the invading class of pathogen by expressing vari-
able sets of T cell-polarizing molecules (signal 3) [1]. Effec-
tor CD4+ T helper cells are highly heterogeneous and
comprise distinct subsets characterized by different profiles
of cytokine production (Fig. 1). CD4+ T helper type 1 (Th1)

cells develop from naive T cells upon the induction of
expression of tissue-specific transcription factor T-bet [2,3],
which mediates the production of interferon (IFN)-g which,
in turn, is instrumental in the induction of cellular immu-
nity against intracellular pathogens such as viruses, certain
types of (myco)bacteria and protozoa. Th1 responses
regulate the activation of CD8+ T cells and influx of
macrophages. CD4+ Th2 cells are generated from naive CD4+

Th cells upon induction of the transcription factor GATA3
[4], which drives the production of interleukin (IL)-4, IL-5
and IL-13. These cytokines are critical in the control of
nematode infections. Th2 responses are associated with pro-
duction of immunoglobulin (Ig)E antibodies and recruit-
ment of eosinophils. Recently, it was established that CD4+ T
cells that produce IL-17A and IL-17F preferentially could be
generated and that they seem to form a separate lineage of
Th17 cells [5,6]. These cells express retinoic acid-related
orphan receptor gamma-t (RORgt) as a key transcription
factor for their differentiation [7]. In addition to IL-17, these
cells may also produce IL-22 and IL-21 [8].
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Function of IL-17 and Th17 cells

IL-17 was first described in 1995 as a glycoprotein of
approximately 20 kDa (155 amino acids) with a close
sequence homology to murine IL-17 and with an open
reading frame of the T lymphotropic herpesvirus Saimiri
[9]. IL-17 is secreted as a 32 kDa homodimer that binds the
IL-17 receptor (IL-17R), a type I transmembrane protein
that exhibits a broad tissue distribution [10]. The analysis of
the three-dimensional crystal structure of two members of
the IL-17 family of cytokines suggests that they form cystein
knot structures as those of nerve growth factor (NGF) or
platelet-derived growth factor cytokines (PDGF) [11]. Apart
from IL-17(A), five additional IL-17 members have been
described, termed IL-17B, C, D, E (or IL-25) and F, all of
which have conserved residues in their c-terminal region and
also form homodimers. CD4+ T cells produce both IL-17A
and F [12], whereas IL-25 is produced mainly by Th2 cells
[13], and IL-17B, C and D are expressed more broadly. CD4+

T cells may produce three different dimeric forms of IL-17,
consisting of IL-17F/F, IL-17F/A or IL-17A/A [14]. In naive
murine cells IL-17F/F is produced in the highest quantity,
followed by IL-17F/A and IL-17 A/A. However, IL-17A/A is
more potent then IL-17F/F, with IL-17A/F having an inter-
mediate potency. IL-17 is an important mediator in tissue
inflammation as it has pleiotropic effects on tissue cells and
several immune cells. IL-17 mobilizes neutrophils, partly
through increasing their local survival and partly through
granulopoiesis and CXC chemokine induction. Various
chemokines and cytokines are induced by IL-17A and F,
including tumour necrosis factor (TNF)-a, IL-1b, IL-8, IL-6,
growth regulated-a (GRO-a), monocyte chemoattractant
protein (MCP)-1 and gingival crevicular fluid (GCF), as well
as intercellular adhesion molecule (ICAM)-1 by monocytes,
airway epithelial cells, keratinocytes, vein endothelial cells

and fibroblasts. TNF-a and IFN-g may enhance the expres-
sion of IL-17-induced chemokines and cytokines [12,15].

Accumulating data shows that Th17 cells are important in
host protection against various bacterial and fungal species
[16–21]. Indeed, protection against Streptococcus pneumo-
niae [22] is impaired in IL-17-deficient mice. Moreover, it
has been demonstrated by various groups that antigen-
presenting cells (APCs) primed with bacteria or bacterial
products promote Th17 cells in the human system [23,24].

IL-17-secreting cells and Th17-associated cytokines have
been implicated in a number of human autoimmune and
inflammatory diseases. There is compelling evidence that
IL-17 plays an important role in the pathogenesis of
rheumatoid arthritis. IL-17 levels were enhanced in the syno-
vium of RA patients [25]. Th17 effector functions in RA
were identified as receptor activator nuclear factor kappa-B
ligand (RANKL) expression on the surface of Th17 cell-
induced osteoclastogenesis, promoting cartilage and bone
destruction/resorption independently of TNF and IL-1 [26].
Moreover, in psoriasis, T cells obtained from psoriatic skin
lesions showed a predominantly Th17 phenotype [27].
Similar findings emerged from biopsies of lesions of Crohn’s
disease [28]. IL-17 and IL-6 were among the most highly
expressed genes in multiple sclerosis (MS) lesions [29] and
high levels of IL-17 were detected in the serum and cere-
brospinal fluid of MS patients [30]. Although the relation-
ship between IL-17 and pathogenesis of a number of diseases
is still unclear, there have been publications on the overex-
pression of Th17 pathway genes in chronic inflammatory
diseases such as systemic lupus erythomatosus [31], asthma
[32] and human tumours [33], as well as allograft rejection
[34] and infections; for example, Helicobacter pylori-
associated gastritis [35]. However, it is unclear whether IL-17
plays a direct role as a causative agent in the pathogenesis of
a number of those diseases or, rather, is implicated only as a
consequence of feedback mechanisms and amplification of
inflammatory responses. The function and regulation of
human Th17 cells in human health and disease is covered in
more detail by Crome et al. in this series [36].

Development of murine Th17 cells

Recently, it has become clear that the cytokines IL-6 and
transforming growth factor (TGF)-b can induce naive
murine T cells to develop into Th17 cells, which are charac-
terized by the expression of the transcription factor RORgt
(Fig. 2) [7,37–39]. In contrast, the signature cytokines of
Th1 and Th2 cells, IFN-g and IL-4 were demonstrated to

IFNT Bet
IL-12
IFN-α/β
ICAM-1
Delta4

IFN-γ
TNF−βTh1

-

IFN- γ

mDC
IL-17

IL-22
RORγ t

RORα IRF4Thn
Th17

IL-4

IL-22
IL-21

,

OX40L
Jagged1

IL-4
IL-5

h

GATA3

IL-4 IL-13Th2

Fig. 1. Dendritic cells (DC) promote the development of distinct T

helper cell subsets.

mDC

IL-17

IL-22
RORγT

Thn
RORγT

TGF-β
IL-6

IL-23

IL-1
TNF-α

Th17
mDC IL 22

IL-21
Thn

Th17 ICOS
IL-21

Fig. 2. Development of murine interleukin (IL)-17 producing CD4+ T

cells.

TRANSLATIONAL MINI-REVIEW SERIES ON TH17 CELLS

Mouse and human Th17 cells

149© 2009 British Society for Immunology, Clinical and Experimental Immunology, 159: 148–158



inhibit the development of Th17 cells [6]. Moreover, there is
considerable evidence of the involvement of Th17 in immu-
nopathogenesis from work on experimental mice models
such as experimental autoimmune encephalomyelitis (EAE)
[6] and collagen-induced arthritis (CIA) [40,41].

Initially, it was reported that the IL-12 family member
IL-23, a heterodimer consisting of the IL-12/23 p40 and the
unique IL-23p19 subunit, was an important factor for the
development of Th17 cells [42,43]. However, naive murine T
cells do not express the IL-23 receptor and do not differen-
tiate into Th17 cells in the presence of IL-23 in vitro. Instead,
IL-23 is essential for the maintenance and/or expansion of
murine Th17 cells. The proinflammatory cytokines IL-1b
and TNF-a have been shown to amplify the development
of Th17 cells [44,45]. IL-1 may enhance the TGF-b/IL-6-
induced IL-17 production on its own or synergistically with
IL-23. However, none of these cytokines can substitute for
TGF-b or IL-6 to promote murine Th17. More recently,
other molecules have also been shown to influence the devel-
opment of murine Th17 cells. In this respect, inducible
co-stimulatory molecule–programmed death 1 (ICOS–PD1)
interaction enhances the production of IL-17 [46]. Another
cytokine that may also be produced by Th17 cells, IL-21,
seems to act as an autocrine regulatory factor supporting
the Th17 development, but also has various other effects
throughout the immune system, such as regulation of B cell
responses [47,48].

Development of Th17 cells in human memory
versus naive CD4 T cells

Given that IL-17 is associated with the pathology of a number
of human inflammatory and autoimmune diseases, it is
essential to understand how this cytokine is controlled in

human T cells and to define the conditions under which
human naive T cells may become Th17 cells. One of the initial
studies in human T cells reported that T cell receptor (TCR)
cross-linking leads to IL-17 production [49]. Another study
indicated that IL-23 induced IL-17 expression [50]. However,
the problem with these early studies was that they did not
separate effects on memory T cells versus naive T cells. It was
only more recently that memory and naive T cells were iso-
lated to assess the various conditions necessary in each popu-
lation for promoting the production of IL-17 (Fig. 3).

Somewhat in contrast to the murine system, the optimal
conditions for the development of a robust Th17 population
secreting large amounts of IL-17 from human naive T cells
remain elusive. This may be analogous to the situation with
generating primary human Th2 cells secreting IL-4 in vitro,
and appears to be similarly donor-dependent. It is, however,
much easier to demonstrate IL-17 secretion from human
memory T cells. It was proposed that human memory
CD4+CD45RO+CD45RA- T cells up-regulated the RORC2
transcription factor (known as RORgt in mice) and IL-17 in
response to TCR occupancy. In one study human Th17 dif-
ferentiation did not occur in response to TGF-b and IL-6,
even though these cytokines promoted RORC2 expression.
In memory T cells, IL-23 up-regulated its own receptor and
promoted RORC2 and IL-17 expression [51]. Subsequent
studies then attempted to characterize the cytokines and
in vitro conditions that regulate IL-17-secreting memory T
cells. IL-17-secreting memory T cells can be identified by the
combined expression of CCR6 and CCR4 [52].Another study
identified the CD4+CD45RO+CCR7-CCR6+ effector memory
T cell population as the main IL-17-secreting T cells [53].
IL-1b, IL-23 and, to a lesser extent, IL-6 promoted production
of IL-17 with an additive effect seen when IL-1b was added
together with IL-23 or IL-6. IL-23 with IL-6 enhanced IL-17

Fig. 3. Production of interleukin (IL)-17 from

naive versus memory T cells skewed towards T

helper type 17 (Th17) conditions. Different

skewing conditions are used for different cell

types.
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production but the effect was similar to that seen with IL-23
alone. However, TGF-b inhibited IL-17 when added alone or
together with either IL-1b, IL-23 or IL-6, an effect that was
replicated in other studies [23,24,53]. The regulatory effects
of these cytokines were seen both at the protein level and at
mRNA transcription. A recent study reported that prostag-
landin E2 (PGE2), an inflammatory mediator abundant in
chronically inflamed tissues, acted directly on memory T cells
by promoting IL-17 production and simultaneously inhibit-
ing IFN-g production [54]. PGE2 stimulated the EP2 and EP4
receptors expressed on T cells, affecting the activity of tran-
scription factors and leading to an increase in RORC2 and a
decrease in T-bet mRNA.

A number of studies have attempted to understand the
mechanism underlying human Th17-mediated immunity
against bacteria through the production of IL-17 in memory
T cells. One study showed that IL-17 could be induced in
memory CD4 T cells by human dendritic cells upon sensing
of NOD2 ligand MDP, a peptidoglycan derivative expressed
by many bacterial species [24]. Other data showed that DCs
promoted IL-17 production exclusively in memory T cells
through IL-23 and IL-1b [42,43]. In addition, we have shown
previously that secretion of IL-17 by memory cells was
enhanced by T cell receptor ligation in the context of Toll-
like receptor (TLR)-activated monocytes [23]. Furthermore,
we have shown recently that monocytes from inflamed joints
of rheumatoid arthritis patients can specifically induce the
secretion of IL-17 by CD4+ T cells, indicating that these
findings have relevance to human autoimmune disease
in vivo [55].

The issue of inducing substantial and reliable IL-17 secre-
tion from human naive T cells is much more difficult than in
mice. A study by Acosta Rodriguez and colleagues demon-
strated that IL-17 could be induced from cell sorted
CD45RA+CD25–CCR7+ naive human T cells in the presence
of IL-1b and IL-6 [56]. Another study found that the differ-
entiation factors for human Th17 cells from magnetic bead-
selected CD4+CD45RA+CD45RO- naive T cells were IL-1b
and IL-23 [57]. Recently, Boniface showed that PGE2

together with IL-1b and IL-23 promoted the development of
Th17 cells [58]. Chen and colleagues showed a much lower
secretion of IL-17 from naive T cells versus memory T cells
by enzyme-linked immunosorbent assay (ELISA) [51].
These studies suggested that TGF-b might not be necessary
for the differentiation of human Th17 cells in vitro, with the
implication that the conditions required for human and
murine Th17 differentiation were different from each other.
However, as these groups used different techniques of isolat-
ing the naive T cell population, such as fluorescence activated
cell sorting (FACS), utilizing varied cell parameters, versus
magnetic affinity cell sorting (MACS) bead selection, there
was doubt as to whether the cells skewed subsequently were
properly ‘naive’, as there was a potential for a small contami-
nating effector population that might explain the apparent
disparity of these results.

The role of TGF-b in the induction of Th17 cells from
naive human T cells has been somewhat controversial. The
Th17 differentiation performed in the above studies took
place in RPMI-1640 supplemented with bovine or human
serum as the culture medium. There was a suggestion that
contaminating platelets and serum contained TGF-b, which
could mask the induction of IL-17 production. More
recently, three independent research groups tackled these
problems by using either serum-free X-vivo 15 culture
medium or umbilical cord blood, and concluded that TGF-b
was an essential requirement for the differentiation of Th17
from naive human T cells. Manel and colleagues showed that
TGF-b, IL-1b and IL-23 were important cytokines required
for human Th17 polarization in serum-free conditions. They
also indicated that TGF-b induced RORC2 expression but
paradoxically blocked its transcriptional activity, thereby
preventing IL-17 expression [59]. A cocktail of the proin-
flammatory cytokines IL-1b and IL-6, IL-21 or IL-23
counteracted that inhibition and contributed to RORC
expression, promoting IL-17 induction. It appeared that
TGF-b had a dose-dependent effect on the induction of
IL-17 in naive human T cells. TGF-b alone at 1 ng/ml, even
under the effect of RORC2 overexpression from a lentiviral
vector, did not induce IL-17. However, TGF-b at 10 ng/ml, in
synergy with IL-1b and IL-23, promoted RORC and IL-17
expression. A study carried out by Yang and colleagues
further confirmed the dose-dependent effect of TGF-b
because concentrations of TGF-b ranging from 0·1 to 10 ng/
ml, in this case with IL-21, enhanced IL-17 induction and
RORC expression, whereas 50 ng/ml TGF-b suppressed
IL-17 differentiation [60]. Volpe and colleagues also showed
that TGF-b, particularly at concentrations of 1–10 ng/ml,
regulated IL-17 production positively in a dose-dependent
manner in the presence of specific inflammatory cytokines
such as IL-1b, IL-6, IL-23 and TNF (of which the latter could
be excluded without any significant negative effect) [61].
They also indicated that although absolute IL-17 production
was higher in the absence versus the presence of serum, the
cytokine requirements remained identical in those two types
of culture mediums and concluded that exogenous TGF-b
played an important role independently of the experimental
system. These data, showing that that TGF-b could induce
the development of Th17 cells from naive CD4 T cells, sug-
gested that at a molecular level the requirements for human
and mouse Th17 differentiation were similar and that mouse
models could still be useful to clarify Th17-mediated
immune mechanisms in humans. The role of TGF-b on the
expression of IL-17 from human memory cells seems to be
different from its effect on naive cells. At doses that others
have shown necessary for IL-17 production in naive T cells,
IL-17 production from memory T cells is actually inhibited
[23,24,53]. This may have relevance to human disease
mechanisms in vivo, as it is likely that memory/effector T
cells will be the cell population responsible for the majority
of IL-17 production at inflammatory sites.
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CD161 has been identified as a novel surface marker for
human IL-17-secreting cells [62,63]. CD161 is the human
homologue of murine NK1·1, which is expressed on almost
all natural killer (NK) cells and also by a subset of T cells
called NK T cells [64,65]. One study showed that human
Th17 cells originated exclusively from a CD161+CD4+ T cell
precursor using umbilical cord blood (UCB) or single-
positive CD4+CD8+ thymocytes in the presence of IL-1b and
IL-23. Naive CD161+CD4+ T cells were found to express both
RORC2 and IL-23 receptor constitutively even before
culture, indicating that RORC2 expression did not depend
upon TGF-b that had been added exogenously or had been
present in the culture serum [62,66,67]. In agreement with
other studies, there was an inability to induce Th17 from
purified CD45RA+CD45RO- naive circulating T cells of adult
volunteers, and this was presumed to be due to the fact that
that population did not possess a CD161+ fraction. It is
unclear why CD161+ UCB or thymic naive cells can induce
Th17 differentiation, while a purified CD45RA+CD45RO-

naive population cannot. An explanation could be that Th17
cell precursors are more abundant in UCB than adult blood,
possibly from the fact that they migrate very early into
tissues, where they can differentiate into IL-17-secreting cells
later in life.

A recent paper by the same group claimed that TGF-b did
not have a direct critical role on the differentiation of human
IL-17-secreting T cells, but rather acted indirectly to favour
IL-17 induction by suppressing the expression of T-bet and
inhibiting selectively the expansion of IFN-g-secreting T cells
[67]. This would result in a greater degree of positive selection
of an already existing RORC2-expressing T cell population
and relative expansion of an IL-17 positive population
induced by IL-1b and IL-23. They suggested that the effect of
TGF-b on the development of Th17 and Th1 cells could be
due to the lower susceptibility of Th17 versus Th1 and Th2
cells to its suppressive activity, as shown by the relatively
weaker inhibitory effect of TGF-b on the proliferation of
human Th17 clones/IL-17-secreting circulating CD4+ T cells
in comparison to the strong inhibition on that of Th1 and Th2
clones and IFN-g-secreting T cells. A further study by Gerosa
and colleagues agreed with the premise that the requirement
for TGF-b by naive T cells to produce IL-17 might be due
partially to its inhibiting effect on IFN-g production [68].
Their particular study looked at naive CD4+ T cells co-
cultured with supernatants from monocyte-derived dendritic
cells that had been activated with zymosan or b-glucan. They
clarified further that although IL-1b, IL-23, IL-6 and TGF-b
were all present in the supernatants collected from their
APC system, IL-1b was the essential cytokine needed, along
with one or more of the other cytokines, to induce IL-17
production.

It has emerged recently that Th17 differentiation is
enhanced by stimulation of the aryl hydrocarbon receptor
(AhR), a ligand-dependent transcription factor that re-
sponds to a wide range of ligands [69]. Exposure of mouse

CD4+ T cells to the tryptophan metabolite and AhR ligand,
6-formylin-dolo [3,2-b] carbazole (FICZ), under Th17
polarizing conditions enhances Th17 development and exac-
erbates autoimmune pathology in EAE. The same group has
also shown that human Th17 cells express AhR and that AhR
ligands support Th17 differentiation in human CD4+ T cells
[70]. The disparities between different levels of Th17 polar-
ization found by other groups was suggested to be due to
differences in the generation of endogenous AhR ligands in
different culture media, with RPMI-1640 having less activity
than IMDM. IMDM contains 3–5 times higher amounts of
aromatic amino acids, such as tryptophan, tyrosine and phe-
nylalanine than RPMI-1640, hence giving rise to different
levels of endogenous AhR ligands in the two media. It was
shown further that human Th17 cells from bulk CD4+ T cells
from peripheral blood was improved markedly in IMDM
compared with RPMI-1640 and reduced strongly in the
presence of an AhR antagonist. A summary of the different
in vitro culture conditions used by different groups is shown
in Table 1, which indicates the large number of protocols
currently in use.

Plasticity of Th17 cells

CD4+ T cell lineages are relatively plastic, with the possibil-
ity of one committed lineage shifting to another [5,71].
Both IFN-g, the Th1 signature cytokine, and IL-4, the Th2
signature cytokine, inhibit IL-17 induction in mice and
humans [5,23]. In mice, the loss of the transcription factor
T-bet results in enhanced IL-17 induction in CD4+ T cells
[3,5,6]. We found that blocking IFN-g signalling in a
lipopolysaccharide (LPS)-activated monocyte system as well
as in an APC-free system increased the number of IL-17-
secreting memory cells, suggesting that T cell polarity was
relatively flexible in human CD4+ T cells [23]. It could be
inferred that there was a distinct possibility of a switch in
lineage commitment from previously committed effector T
cells. This hypothesis was supported by the presence of the
single positive IL-17 population (IFN-g-/IL-17+) as well as a
substantial percentage of IFN-g+/IL-17+ double-positive
cells in humans observed by a number of research groups
[23,51,52,72]. Those two cell types were found to express
both RORC2 and T-bet and the Th17 cells could be shifted
to Th1 by the addition of IL-12, which indicated that Th1
and Th17 cells shared a common pathway [72]. It will be
interesting to determine whether those two populations
represent different subsets of helper T cells derived from a
common precursor or different stages of lineage polariza-
tion. Moreover, growth factor independent-1 (Gfi-1)
induced by IL-4 promotes Th2 differentiation and at the
same time inhibits Th17 differentiation in murine models
[73,74]. It is therefore apparent that there is a degree of
flexibility between Th1, Th2 and Th17 phenotypes in vivo,
although it is uncertain whether this plasticity works effec-
tively in all directions.
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The Th17/regulatory T cell (Treg) differentiation pathways
also point towards such plasticity [71,75]. Both Th17 effector
cells and regulatory T cells play a critical role in autoimmune
inflammation, despite the fact that their mechanisms of
action are opposed to one other. Tregs, defined by high expres-
sion of forkhead box P3 (FoxP3) in murine and human
systems, are strong immunomodulators of T cell activation
that suppress proliferation and cytokine production by effec-
tor T cells [37,76,77]. The reciprocal relationship between
Th17 and Tregs is indicated by their mutual requirement for
TGF-b [37,39,78]. Murine studies showed that TGF-b
induced FoxP3 Tregs from naive T cells, but the addition of IL-6
inhibited FoxP3 development and instead promoted Th17
differentiation [37]. There are several lines of evidence to
support the reciprocal relationship between Th17 and Tregs.
This was further illustrated by the fact that IL-2, a growth
factor for Tregs, could also inhibit the induction of Th17 cells
[79]. This study demonstrated that mice lacking IL-2 signal-
ling pathway components (STAT5-/-) possessed lower levels of
Tregs and increased levels of Th17 in the peripheral repertoire.
Retinoic acid, a vitamin D metabolite, could stimulate the
generation of Treg cells by promoting TGF-b signalling and
FoxP3 promoter activity while inhibiting Th17 differentia-
tion by blocking IL-6 signalling [80]. Focusing on the human
system, the phenomenon of loss in Treg function and induc-
tion of Th17 cells has been demonstrated in the pathogenesis
of human autoimmune diseases such as multiple sclerosis
[81], rheumatoid arthritis [82], Crohn’s disease [72] and
psoriasis [83]. Beriou and colleagues showed recently that
human FoxP3 Treg cells could be induced to produce IL-17 in
an inflammatory medium, pointing towards a mechanism of
immune regulation where inflammation could drive a subset
of Tregs to adopt a Th17 phenotype that allowed for the rapid
shut-down of suppression and induction of proinflammatory
responses [84]. IL-17 production by FoxP3+/IL-17+ cells was
induced by proinflammatory cytokines (IL-1b/IL-6) and
inhibited by TGF-b. These data were confirmed by the group
led by Koenen, who demonstrated IL-17 production in Tregs

stimulated with allogenic antigen-presenting cells [85]. Both
ex vivo and in vitro, expression of FoxP3 was maintained with
IL-17 production leading to co-expression of FoxP3 and
IL-17, a finding that was also seen at the transcriptional level
[84,86].

Looking at the transcriptional mechanism of Th17 cells
and Tregs in mice, Zhou and colleagues showed recently that
TGF-b alone was sufficient to induce both RORgt and FoxP3
[86]. A low dose of TGF-b along with IL-6/IL-21 stimulated
Th17 induction; a higher dose of TGF-b inhibited IL-23R
expression with a corresponding elevation of FoxP3 expres-
sion, inducing the production of Treg cells. In fact, the study
demonstrated that as FoxP3 expression increased, it could
interact directly with RORgt, leading to inhibition of its tran-
scriptional activity. A recent study, this time in human cells,
agreed that T cells could co-express RORgt and FoxP3 [87].
Moreover, a particular FoxP3 sequence was demonstrated to

associate with RORa, another Th17-specific transcription
factor, indicating that FoxP3 suppressed Th17 development
through inhibition of both RORgt and RORa [88]. Another
study found that the Runt-related transcription factor 1
(Runx1) bound to RORgt and synergized to induce Th17
differentiation [89]. Runx1 also interacted with FoxP3 to
inhibit Th17 differentiation. The plasticity of the Th17 and
Treg developmental pathways may indicate that Th17 and
induced Tregs have a common T cell precursor that can dif-
ferentiate into one or the other, depending upon the cytok-
ines present and the activity of a number of transcription
factors. The potential of Tregs to become IL-17-producing
cells and the underlying mechanisms are discussed further
by Afzali et al. in this series [90].

It is important to understand this reciprocal relationship
in autoimmune diseases such as rheumatoid arthritis, pso-
riasis or multiple sclerosis. Although many of the results on
the Th17/Tregs relationship come from murine studies, the
periods of flares and quiescence in human autoimmune dis-
eases also argue for a similar reciprocal relationship between
those two T lineages in humans. It has been proposed that
during acute flares of inflammation immune responses
become dysregulated, and T cell phenotypes have the ten-
dency to lean towards proinflammatory lineages (Th17 or
Th1) and away from anti-inflammatory phenotypes (Treg)
depending upon the cytokine milieu and the local DC popu-
lation [91]. During recovery from flares or periods of quies-
cence, the balance would be redressed and in this instance
the anti-inflammatory phenotype would have a dominant
effect over proinflammatory effector populations.

Conclusion

It is clear that many similarities exist between human and
mouse Th17 cells, and that further understanding of disease
mechanisms in vivo will require accurate dissection in pre-
clinical models. Nevertheless, it is important to recognize
that there may be some differences between human and
mouse disease in the context of T cell polarity, due perhaps
to the effect of genetic modifiers when looking at outbred
human populations. The next few years will provide exciting
opportunities to increase both our understanding of funda-
mental mechanisms in T cell biology and also how we can
translate these discoveries into better diagnosis and therapy
of human disease.
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