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Abstract

Predicting the variation of biodiversity across the surface of the Earth is a fundamental

issue in ecology, and in this article we focus on one of the most widely studied spatial

biodiversity patterns: the species–area relationship (SAR). The SAR is a central tool in

conservation, being used to predict species loss following global climate change, and is

striking in its universality throughout different geographical regions and across the tree

of life. In this article we draw upon the methods of quantum field theory and the

foundation of neutral community ecology to derive the first spatially explicit neutral

prediction for the SAR. We find that the SAR has three phases, with a power law

increase at intermediate scales, consistent with decades of documented empirical

patterns. Our model also provides a building block for incorporating non-neutral

biological variation, with the potential to bridge the gap between neutral and niche-based

approaches to community assembly.
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I N T R O D U C T I O N

The species–area relationship, or SAR (Preston 1960, 1962;

MacArthur & Wilson 1963; May 1975; Connor & McCoy

1979; Rosenzweig 1995; Tjorve 2003), characterizes the

increase in the observed number of species with increasing

sample area, and has been referred to as the closest thing to

a law in ecology (Lawton 1999). The SAR has played a

seminal role in understanding the generation and mainte-

nance of biodiversity, and forms a crucial basis for estimates

of extinction due to habitat loss (May et al. 1995; Thomas

et al. 2004). A number of different shapes have been

proposed for the relationship (Rosenzweig 1995; Tjorve

2003), but one of the most generally accepted SARs falls

into three distinct phases, with the different phases applying

as sample area is increased from local to continental scales

(Preston 1960; Williams 1964; Brown 1995; Rosenzweig

1995; Hubbell 2001). This triphasic SAR has an inverted S

shape (Williams 1964), so that there is a steep increase in

species at very local scales, followed by levelling off at

intermediate scales and an accelerating increase in species

number with area at the very largest, continental scales. The

intermediate phase has commanded particular attention, and

it has been proposed that over these scales species number

increases as a power of area sampled, following the power

law curve introduced by Arrhenius (Arrhenius 1921). This

power law behaviour has been identified across a broad

range of geographical regions (Rosenzweig 1995; Drakare

et al. 2006) and across the tree of life (Green et al. 2004;

Horner-Devine et al. 2004; Green & Bohannan 2006), but

the reasons for the ubiquity of the power law SAR, and the

forces driving the value of its exponent have yet to be

determined definitively from first principles.

One of the earliest approaches to understanding the SAR

was introduced by Preston (1960, 1962), who demonstrated

that if the distribution of species abundances followed a

lognormal distribution, then the number of species present

in a random sample increases as a power law with increasing

sample size, with the power law exponent close to 0.25. May

later considered a wider range of possible species abundance

distributions than Preston (May 1975), but found that the

exponent of this power law would still be within a narrow
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range, typically between 0.15 and 0.4, consistent with a wide

range of empirical results. The weakness of this framework

is that real communities tend to exhibit spatial clustering

(Plotkin et al. 2000b), so that individuals are more likely to

be found near their conspecifics, violating the assumption

that a spatial sample is equivalent to a random sample. More

recent top-down approaches have made a range of different

assumptions for this spatial clustering (Harte et al. 1999;

Martin & Goldenfeld 2006; Harte et al. 2009), to test its

impact on the SAR, and one influential example is the

assumption of self-similar spatial aggregation of individuals

(Harte et al. 1999). However, spatial clustering appears not

to be self-similar with sufficient generality (Plotkin et al.

2000a) to provide a universal explanation for the shape of

the SAR.

An alternative strategy, avoiding a priori assumptions for

the distribution of species abundances or the spatial

clustering of individuals, is to model a community from

the bottom-up. This means that we specify some mecha-

nistic rules for the behaviour of individuals, and then see

what macroecological patterns emerge. An example of this

approach is the neutral biodiversity theory introduced by

Hubbell (2001), building on earlier work (Watterson 1974;

Caswell 1976), and extensively developed (Chave & Leigh

2002; Volkov et al. 2003; Chave 2004; Etienne 2005; Etienne

et al. 2007; Rosindell & Cornell 2007; Aguiar et al. 2009;

O’Dwyer et al. 2009) in recent years. Neutral communities

are idealized approximations where patterns are assumed to

be primarily driven by the effects of stochasticity, but the

present lack of a neutral prediction for the SAR reflects an

outstanding mathematical problem in theoretical ecology:

the combination of stochastic dynamics with a continuous

spatial landscape (Durrett & Levin 1994; Bolker & Pacala

1997). Progress in dealing with stochasticity in continuous

space has been limited by the lack of a practically useful,

flexible mathematical framework, with the consequence that

it has not so far been possible to derive a theoretical,

bottom-up prediction for the SAR.

Our goal is to overcome precisely this problem, and

quantum field theory provides the perfect set of tools.

Field theory was first developed as a model for particle

physics (Schwinger 1958), where collisions of electrons and

photons are expressed in terms of a theory of fluctuating

electromagnetic fields. The same formalism has been

applied to solve many-body problems in numerous fields,

including the theory of phase transitions and critical

phenomena, where the fields are reinterpreted as fluctu-

ations in the density of a gas, or as fluctuations in the

magnetization of a ferromagnetic material at a critical

point. The central tool used to solve these problems is a

moment generating functional, or partition function, which

summarizes all the observable spatial patterns in these

systems, and the challenge of solving a field theory is in

solving for this partition function (Ryder 1996; Zinn-Justin

2002). Our key step is the introduction of a partition

function for spatial ecology, illustrated conceptually in

Fig. 1. Our methods follow earlier work in size-structured

community assembly (O’Dwyer et al. 2009), and our

biogeographical field theory provides a very general

framework to make calculations for discrete individuals

undergoing stochastic processes on a continuous spatial

landscape. This flexibility also opens up the possibility for

a more comprehensive understanding of spatial community

assembly, with the potential to break neutrality and test

which biological processes have the most impact on the

macroscopic patterns we observe in nature.

In this article we begin by deriving a spatially explicit

generalization of neutral biodiversity theory, on a spatially

x

(a) (b)

y

φφ

Figure 1 (a) Snapshot of a fluctuating field, /( x,y ), where for example / could be the net magnetization of a ferromagnet, as a function of

spatial coordinates x and y. The key object in statistical field theory is a partition function, which is defined in terms of a sum over all possible

field configurations /( x, y ). Our model is conceptually closer to (b), with individuals of different species (a single species shown) located on a

spatial landscape according to the stochastic processes of birth, death and dispersal. Some regions are densely populated, and others more

sparsely, and the analogue to the field strength, /(x, y) is the density of individuals as a function of spatial location.
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discrete, grid-like landscape, as a first step towards building

a framework for spatial ecology on a continuous landscape.

We then define the theory in continuous space by

introducing a partition function, and we find that the

partition function satisfies a functional differential equa-

tion, analogous to the Schwinger-Dyson equations of

quantum field theory (Zinn-Justin 2002). Having derived

the defining equation for our model, we solve for the SAR,

and we also derive the expected total number of

individuals as a function of area, and the turnover in

species composition with spatial separation, relating these

quantities to our prediction for the SAR. We conclude by

discussing the significance of our results for predicting

spatial patterns of biodiversity, and detail the ways in

which our model can be generalized to integrate non-

neutral approaches to community assembly.

M A T E R I A L S A N D M E T H O D S

Neutral theory on the lattice

Our goal is to develop a spatial generalization of neutral

biodiversity theory, a theoretical framework for community

assembly introduced by Hubbell (2001). As a first step

towards formulating neutral theory on a continuous

landscape, we begin with the simpler case of a spatially

discrete landscape. In this discrete world, individuals

occupy the cells of a lattice, and the spatial location of

these cells is labelled by a discrete index, i. The

cornerstone of neutral biodiversity theory is the species

abundance distribution, P(n), which is the probability that a

species picked at random from a community has an

abundance of n individuals. We now introduce the spatially

explicit generalization of this distribution, which is the

probability P(…,ni…,t) that a species has ni individuals at

each spatial location, i. This probability is conceptually

similar to the species abundance distribution, only now we

are taking account of the spatial location of individuals, as

well as their abundance.

Individuals in our spatially discrete model die with a per

capita mortality rate, d, and produce new offspring at a per

capita birth rate, b, and the assumption of neutrality means

that these demographic rates apply across all species. The

new feature we are adding is that an individual may also be

dispersed at birth to a different spatial site from its parent,

thus capturing the biological process of seed dispersal by

plants or trees. For an infinite landscape, i takes on an

infinite number of values, and we can implement the

dynamics of birth, death, dispersal to derive a master

equation for the dynamics of P(…,ni,…,t) (Hubbell 2001;

Volkov et al. 2003). If at least one ni is non-zero, then the

dynamics of our spatially explicit abundance distribution are

described by

@P

@t
¼d

X1
i¼�1
ðniþ1ÞPð...;niþ1;...;tÞ

�d
X1

i¼�1
niPð...;ni ;...; tÞ

þb
X1

i¼�1

X1
j¼�1
ðnj�dijÞQjiPð...;ni�1;...;nj�dij ;...; tÞ

�b
X1

i¼�1
niPð...;ni ;...;tÞ:

ð1Þ
This equation generalizes the neutral theory master equa-

tion, and describes the fluctuation in abundances of

individuals in space, as births, deaths and dispersal events

occur through time, each pair of terms reflecting the effect

of a possible transition between two different spatial

configurations. The first two terms capture the effect of

mortality, where the death of an individual can either add or

subtract from the probability of the system being in a

particular spatial configuration, and the final two terms

characterize the birth process, in combination with the

dispersal of seeds from site i to site j. This dispersal occurs

with probability Qij, and in biological terms, we would

typically expect the probability of dispersal Qij to be a

function of the geographical distance between sites i and j.

The Kronecker symbol, dij, is zero when i is different from j,

but one when i ¼ j, accounting for dispersal from and to

the same site.

We have captured the dynamics of individuals in space,

but what happens when a species goes extinct, so that all

values of ni are equal to zero? In spatially implicit neutral

models, d is assumed to be slightly greater than b, so that

every species eventually dies out completely, and these

extinctions must be balanced by speciation. The speciation

process in neutral theory is most often modelled so that

each new species begins with a single individual, and the

impact of this process on the species abundance distribution

is to introduce a possible transition from abundance n ¼ 0

to n ¼ 1. In other words, this way of modelling speciation

can be thought of as a special kind of immigration event

(Etienne et al. 2007), introducing a single individual taken

from the pool of all possible species. We introduce the same

process in our model, with the effect of adding two

additional terms to eqn 1:

@Pð. . . ; 0; 1; 0; . . . ; tÞ
@t

¼mPð. . . ; 0; 0; . . . ; tÞ

þ birth and mortality terms

@Pð. . . ; 0; 0; . . . ; tÞ
@t

¼� mPð. . . ; 0; 0; . . . ; tÞ

þmortality terms;

ð2Þ
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where m measures the rate of speciation and the effect of

mortality is the same as in eqn 1.

Neutral theory in continuous space

This discrete world represents only a rough approximation

to a real community, and we now build on this discrete

model to describe neutral processes on a continuous

landscape. There are two key reasons for tackling this

problem. First, in a real biological system individuals are not

constrained to sit on a perfect grid of cells, and so by

describing processes in continuous space, we better repre-

sent the processes occurring in nature. Second, the methods

we introduce to combine continuous space with the

stochastic processes of birth, death and dispersal naturally

lead to an equation for the species-abundance distribution, a

fundamental spatial biodiversity pattern, and the key

prediction we would like to make using our spatial neutral

theory.

However, in going beyond the discrete approximation we

run up against a problem: it is not possible directly to take a

continuum limit of our discrete master equation, eqn 1.

Before considering continuous space, we must first rewrite

the dynamics of our discrete community in terms of a

moment-generating function. This generating function is

defined by a sum over all spatial configurations of

individuals:

Z ð. . . ; hi ; . . . ; tÞ ¼
X
fnkg

Pð. . . ; ni ; . . . ; tÞexp
X

j

hj nj

 !
;

ð3Þ
and the definition means that derivatives of Z(…,hi,…,t) are

equal to the moments of our spatially explicit probability,

P(…,ni,…,t ). Rewriting eqns 1 and 2 in terms of this gen-

erating function, we find a new master equation:

@Z

@t
¼ b

X1
i¼�1

X1
j¼�1

Qij

@Z

@hj

ehi � 1
� �

þ d
X1

i¼�1

@Z

@hi

e�hi � 1
� �

þ bh
Stot

X1
i¼�1

ehi � 1
� �

:

ð4Þ

The parameters b and d are again per capita birth and

mortality rates, Stot is the total number of species across

the whole landscape, and h ¼ StotmP0/b, where P0 ¼
P(0,0,…). The parameter h is therefore precisely the

neutral theory fundamental diversity parameter (Hubbell

2001; Volkov et al. 2003), measuring the rate per gener-

ation of new species entering the community through

speciation.

It is now possible to take the limit as the spacing

between discrete sites on the grid goes to zero, and in this

limit the discrete set of variables hi, introduced in the

definition of the moment-generating function, eqn 3,

becomes a continuous function of spatial coordinates,

H(x,y). Correspondingly, the generating function itself

becomes a function of H(x,y), which we can write formally

as a functional, Z½H ; t �. In statistical field theory Z½H ; t �
is known as a partition function, and so we use this

terminology here: Z½H ; t � is the partition function for

neutral spatial ecology. We describe the details of the

continuum limit in our Supporting Information section, and

find that the partition function satisfies the following

functional differential equation:

@Z½H ; t �
@t

¼
Z 1
�1

Z 1
�1

dx dy eH ðx;y Þ � 1
� �

br2r2 dZ
dH ðx; yÞ þ b � d e�H ðx;yÞ

� � dZ
dH ðx; yÞ þ

bhs

Stot

� �
:

ð5Þ
In deriving this equation, we have approximated dispersal as

a diffusion process, with a length-scale r, characterizing the

average geographical distance traversed per dispersal event.

We note that this diffusion approximation is not valid when

the moments of the dispersal kernel Q( x,y ) are not finite, as

in the case of long-ranged dispersal (Clarke 1998; Clarke

et al. 1999; Rosindell & Cornell 2009), and that the more

general equations in our Supporting Information must be used

to tackle these cases. The functional derivatives d/dH(x,y) in

eqn 5 can be thought of as a continuous space generaliza-

tion of the partial derivatives, ¶/¶hi, in eqn 4, and similarly

the sums over spatial locations in eqn 4 have been replaced

by integrals over continuous spatial coordinates, x and y.

The derivative operator is �2 ¼ ¶2/¶x2+¶2/¶y2, and hs is a

new fundamental measure of diversity, with dimensions per

unit area.

R E S U L T S

The species–area relationship

We now consider a circular sample region, of radius R. The

equilibrium solution for the SAR is a function of R, and is

equal to the probability of presence for species in the

sampled region, summed over all extant species:

SðRÞ ¼ Stot

X1
n¼1

Pðn;RÞ ¼ Stotð1� Pð0;RÞÞ ð6Þ

where P( n,R ) is the probability that a species picked at

random from the community has n individuals in the sam-

pled region, and P(0,R) is the probability that a species is

completely absent from the sampled region. The second

equality in eqn 6 holds because these probabilities must sum

to equal 1. We can find P(0,R) from the following generating

function:
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Uðh;RÞ ¼
X1
n¼0

Pðn;RÞehn: ð7Þ

We note that from the definition of U(h,R ), as the

parameter h becomes large and negative, every term in this

expansion is exponentially suppressed except for the lowest

order term, P(0). In the limit of h fi ) ¥, we pick out

precisely this term, and have that U()¥,R) ¼ P(0,R ). This

means that if we compute U()¥,R), we have P(0, R ), and

can use eqn 6 to make a prediction for the SAR.

To derive the equilibrium solution for the SAR, we must

consider equilibrium solutions for our partition function,

which satisfy a local, time-independent version of eqn 5:

r2r2 dZeq

dH ðx; yÞ þ 1� d

b
e�H ðx;yÞ

� 	
dZeq

dH ðx; yÞ þ
hs

Stot

¼ 0:

ð8Þ
In our Supporting Information, we use this equation to derive

an exact equilibrium solution for ¶U/¶h, in closed-form.

The solution is as follows:

@U
@h
¼ hspR2

Stotah

þ
2phsrR
Stot
ffiffiffi
ah

p 1
a� 1

ah

� �
I1

R
ffiffiffi
ah

p

r

� �
I0

R
ffiffiffi
ah

p

r

� �
þ

ffiffiffiah

a

p K0
R
ffiffi
a
p

r

� �
K1

R
ffiffi
a
p

r

� � I1
R
ffiffiffi
ah

p

r

� � ; ð9Þ

where the functions I0, I1, K0 and K1 are modified Bessel

functions. The parameter a ¼ d/b ) 1 depends on both

birth and mortality rates, and the parameter ah ¼ (d/b)e)h

) 1 also depends on h, introduced in the definition of

U(h,R).

We still need to integrate our solution for ¶U/¶h with

respect to the parameter h, so that we can combine eqns 6

and 7 to make our prediction for the SAR. This integration

may be completed numerically, but is closely approximated

by expanding the Bessel functions I0 R
ffiffiffiffiffi
ah

p
=r

� �
and

I1 R
ffiffiffiffiffi
ah

p
=r

� �
in powers of ah, in which case the integral

can be completed analytically. Using this expansion and

keeping the lowest order terms in ah, we find that the scaling

of species number with radius of the sampled area is:

SðRÞ ’ hspR2 1þ GðRÞ
GðRÞ � a

log
GðRÞð1þ aÞ
að1þ GðRÞÞ

� 	
; ð10Þ

where the function G(R) is a combination of Bessel

functions:

GðRÞ ¼ R
ffiffiffi
a
p

2r

K0
R
ffiffi
a
p

r

� �
K1

R
ffiffi
a
p

r

� � : ð11Þ

The validity of approximating the numerical integration of

eqn 9 in this way is considered in more detail in our

Supporting Information.

This prediction for the SAR exhibits a classic triphasic

pattern (Williams 1964; Brown 1995; Rosenzweig 1995), and

is also qualitatively consistent with previous computer

simulations of neutral communities (Durrett & Levin 1996;

Rosindell & Cornell 2007). The parameter a is crucial in

determining the ranges of the different phases and the

steepness of the SAR in each phase, and in Fig. 2 we plot

our SAR for varying values of a. First, for small areas,

A < r2, there is a steeply rising �sampling� region, where the

SAR is close to linear and most new individuals sampled

belong to distinct species. Next, for sample areas between

r2 < A < r2/a, there is a phase closely approximated by a

power law:

Figure 2 The species–area relationship (SAR) as a function of the demographic parameter a, and with the dimensionless combination of

parameters hpr2/a fixed to be 1000. On the z-axis is the logarithm of species number, S, on the x-axis the logarithm of sampled area, A and

on the y-axis, the logarithm of a. Area is measured in units of r2/a, so that the transition to the large-scale linear phase occurs at A ¼ 1 and

hence log A ¼ 0, in these units. The SAR displays three distinct phases, with close to linear behaviour for small areas, exactly linear behaviour

for large areas and approximately power law behaviour at intermediate scales. As a becomes smaller the central phase becomes broader and

the exponent of the approximate power law decreases. The region shaded red indicates the large-scale linear phase, the linear shaded yellow

the power law phase and the region shaded green the small-scale sampling phase.
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S ðRÞ � R2z � Az : ð12Þ
While the SAR (eqn 10) is clearly not a true power law as a

function of area, in this region the derivative of log S with

respect to log A is very slowly varying, and so a power law is

an excellent approximation. This middle region of the SAR

extends over a longer range as the parameter a becomes

smaller, and for small a the exponent z is given by:

z ¼ � 4

log a
log a� log �log að Þ

log a� 2 log �log að Þ ; ð13Þ

where we have evaluated the slope at log R¼log r)(1/4)log

a, in the centre of the power law region on a logarithmic

scale, and we note that there is no dependence of z on the

dispersal length-scale, r. This analytical result for the

exponent z highlights the power of our framework, and we

plot the variation of z with varying a in Fig. 3. Finally,

beyond the power law region, for sample areas A > r2/a,

we find a linear SAR with

S ðRÞ ¼ hspR2 log
1þ a

a

� 	
; ð14Þ

so that the parameter r drops out of the SAR altogether.

This large-scale linear behaviour is to be expected at scales

when the turnover in species composition is high.

Applications

How do we compare our prediction for the SAR with

empirical data, or use it to predict biodiversity at scales

beyond which data are available? To do this we need some

way to estimate the three free parameters in eqn 10. These

are the fundamental diversity parameter per unit area, hs,

which derives from the process of speciation, the length-

scale r, which is the typical distance dispersed by a seed

away from its parent, and the parameter a ¼ (d/b) ) 1,

which depends on the per capita demographic rates b and d.

We can tackle this question by extracting two more

equilibrium solutions from our master equation, eqn 5.

First, we look for the expectation value of abundance per

unit area, summed over all species, Æ J æ. In our Supporting

Information we show that this expectation value is given by

h J i ¼ hs

a
: ð15Þ

This result has a precise analogue in previous, non-spatial

formulations of neutral theory (Volkov et al. 2003), where

the expectation value for the total abundance of individuals

in the metacommunity JM ¼ (h/a), but in this case the

spatial-explicit nature of our model naturally gives an

abundance per unit area. This result means that we can

exchange one of the free parameters hs or a for the average

density of individuals in space, a straightforward quantity to

measure empirically. Finally, to think of this equation

another way, for fixed Æ J æ, we now have a direct connection

between a and hs, telling us that a is in effect a per capita

speciation rate (Durrett & Levin 1996; Chave & Leigh

2002).

Next, we step beyond the expectation value of abun-

dance, and look at the turnover in species composition

across space, known as b-diversity. Using our model we

derive the expectation value for F(r), a measure of

b-diversity introduced by Chave & Leigh (2002). F(r) is

the probability that two individuals picked at random, but

separated by distance r, belong to the same species. In the

Supporting Information we show that it has the following shape:

FðrÞ ¼ aþ 1

h J ipr2

� 	
K0

r
ffiffiffi
a
p

r

� 	
: ð16Þ

K0 is a modified Bessel function, and decreases monotoni-

cally with increasing spatial separation, as we would expect

for species turnover. For separations r > r=
ffiffiffi
a
p

, F ( r )

drops off exponentially quickly, so that the probability of

finding two individuals of the same species becomes negli-

gible beyond this scale. This observation adds mathematical

precision to the biological intuition that species turnover

should be very high at large scales, and explains why our

SAR is linear for areas A > r2/a.

Our prediction for F ( r ) has an identical functional form

to the neutral result derived in Chave & Leigh (2002), and

subsequently tested against tropical forest data (Condit et al.

2002). For example, fitting the per capita speciation rate, a,

to Panamanian forest data yielded a best fit of a . 10)7,

and using our prediction for the SAR power law exponent,

eqn 13, this value of a corresponds to a realistic exponent

of z ¼ 0.21. Our framework therefore provides a connec-

tion between the parameters underlying F(r), and the shape

of the SAR, which means we can use our model to estimate

Figure 3 For intermediate scales our species–area relationship is

closely approximated by a power law, where the exponent of the

power law, z , depends on the demographic parameter, a, as shown

above plotted on a log-linear scale.
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total diversity at scales where comprehensive sampling of all

species or taxa would be impossible. Given in particular the

difficulties inherent in fully sampling microbial diversity, our

framework provides a practical method for estimating taxa–

area relationships (Green et al. 2004; Horner-Devine et al.

2004; Green & Bohannan 2006), under the assumption of

neutral community assembly.

D I S C U S S I O N

In this article we have presented a new, spatially explicit,

neutral model of community assembly, and solved this

model to predict a tri-phasic SAR. Our model generalizes

and unifies three distinct approaches to neutral community

assembly. First, we have added the biologically crucial

process of dispersal to the spatially implicit neutral

metacommunity introduced by Hubbell (Hubbell 2001;

Volkov et al. 2003). Second, our framework also generalizes

a previous spatial neutral prediction (Chave & Leigh 2002;

Condit et al. 2002) for beta-diversity, F(r), for which we

derive an identical functional form, and which we connect

directly to the parameters underlying the shape of the SAR.

Finally, our model is qualitatively consistent with computer

simulations of neutral communities on a spatial grid

(Durrett & Levin 1996; Rosindell & Cornell 2007; Aguiar

et al. 2009), identifying the same three-phase SAR, and a

power law exponent z very slowly increasing with the

demographic parameter a. Our analytical framework goes

beyond these simulated results, and allows us to make

predictions in the biologically relevant limit of small

speciation rate, where even the highly efficient coales-

cence-based methods (Rosindell & Cornell 2007) become

intractable.

The three-phase SAR predicted by our model has been

identified across decades of empirical studies (Preston 1960;

Williams 1964; Brown 1995; Rosenzweig 1995), but it has

often been thought that the pattern must arise from the

effects of spatial heterogeneity: as one samples increasingly

large regions, more environmental niches are uncovered,

allowing increasing numbers of species to occupy these

niches. Our prediction demonstrates that neutral processes

and dispersal limitation alone give rise to an extremely

realistic prediction for the SAR, without invoking spatial

heterogeneity and environmental selection, and shows that a

power law SAR at intermediate scales arises naturally from

the combination of speciation with local dispersal. Of

course, this does not rule out environmental heterogeneity

as an important, or even the primary driver of the SAR, and

to compare the effects of dispersal and heterogeneity

quantitatively we will need to extend our framework to

integrate both. But our results demonstrate that dispersal

limitation certainly can play an important role in determin-

ing spatial structure in ecological communities.

We have shown that the exponent of the power law phase

of the SAR can be expressed directly in terms of the

demographic parameter, a, which is in turn related to

speciation rate through eqn 15. We find that the exponent,

z, increases extremely slowly for increasing speciation rate,

and that for biologically realistic values of a taken from

tropical forests (Condit et al. 2002), z is in the canonical

range. Our prediction for z increasing with speciation rate

invites comparison with empirical data. Across different

geographical locations there is evidence that both power law

exponent (Drakare et al. 2006) and speciation rate (Allen &

Gillooly 2006) increase with decreasing latitude, consistent

with our results. Neutral biodiversity theory has also begun

to be tested across the tree of life (Sloan et al. 2006), and so

it is natural to ask whether the relatively low reported values

of z reported for microbial taxa–area relationships (Green

et al. 2004; Horner-Devine et al. 2004; Green & Bohannan

2006) are also consistent with our model. The low values of

z may be due to undersampling (Woodcock et al. 2006), or

to subtleties in finding the appropriate definition of taxa

(Horner-Devine et al. 2004), but could also indicate that

microbial life has a relatively low rate of diversification.

Whether microbial speciation rates are high or low has been

argued in both directions, but it has been hypothesized that

lower speciation rates are to be expected (Green &

Bohannan 2006), consistent with a correspondingly low

value of the exponent, z.

There are a number of possible extensions of our model.

First, we have made the simple choice of a circular sample

area, and exploring different geometries of sample area

represents an important extension of our results. We expect

that qualitatively different shapes of sample area will give

quite different SARs (Kunin 1997), and so characterizing the

dependence of the observed species on both area and

geometry may have important applications in species

conservation. Second, in deriving our central equation,

eqn 5 we approximated dispersal as a diffusion process.

Long-ranged dispersal occurs in many ecological commu-

nities (Clarke 1998; Clarke et al. 1999; Rosindell & Cornell

2009), and so developing a solution for the SAR beyond the

diffusion approximation is likely to be crucial in comparing

the results of our framework with empirical data. Finally,

while the validity of the neutral approximation has been

discussed at length (Hubbell 2001; Chave et al. 2002; Chave

2004; Alonso et al. 2006), our framework has the potential to

take the debate forward quantitatively. There are several

ways to break neutrality in our framework, and our

approach offers the potential to derive analytical results

for the relative impact of demographic stochasticity in

comparison with other forces driving spatial patterns of

biodiversity. For example, we could introduce a range of

different dispersal capabilities for different species, or allow

for spatial heterogeneity, so that a given species fares better
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or worse in different spatial locations (Pickett & Cadenasso

1995; Rosenzweig 1995). But a third important way to break

neutrality is the introduction of biologically realistic inter-

actions between individuals, for example the density

dependence arising from competition for resources. Inter-

actions in our model would naturally be represented by

higher-order functional derivatives in eqn 5, and terms of

this type have precisely the same form as interaction terms

in a quantum field theory (Zinn-Justin 2002).

Our model is the first theory of spatially explicit

community assembly which allows for the analytical

derivation of the SAR, and in particular for the exponent

of the power law phase. It is also the simplest application of

a very general toolbox, which introduces the methods of

field theory to biogeography, and allows us to overcome the

problems of combining demographic stochasticity and a

continuous spatial landscape. Our theory of individuals

undergoing stochastic birth, death and dispersal certainly

does differ from a typical quantum field theory, and the

equations we derive are different from the field theories

used to describe particle physics or critical phenomena. But

the language of the partition function is universal, and the

access to the tools of field theory opens up the opportunity

to develop a much more general understanding of spatial

patterns in ecology.
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