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Hypothalamic-Pituitary-Adrenal Axis Abnormalities in Response
to Deletion of 11b-HSD1 is Strain-Dependent
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Alteration in the regulation of the hypothalamic-pituitary-adrenal

(HPA) axis has been implicated in a number of disease states, rang-

ing from metabolic disorders (1) to psychiatric conditions such as

depression (2, 3) and post-traumatic stress disorder (4, 5). Although

the relationship between the different HPA states to the patho-

physiology of these disorders is unclear, reports of the efficacy of

glucocorticoid lowering therapies in metabolic syndrome and in

depression (6–9) suggest a role in pathogenesis and ⁄ or its mainte-

nance. Clearly, the genetic mechansims that underpin individual

differences in HPA axis function are of considerable importance.

HPA axis output is normally measured in terms of plasma con-

centration of glucocorticoids such as corticosterone (rodent) and

cortisol (human). However, of equal or greater importance is tissue

sensitivity to the steroids. Genetic variations in the two nuclear

receptors for glucocorticoids, mineralocorticoid receptor (MR) and

glucocorticoid receptor (GR), associate with the risk of cardio-meta-

bolic and neuropsychiatric disease (10–13). In addition, the effective

concentration of glucocorticoids within cells can be amplified by

conversion of inactive steroids, 11-dehydrocorticosterone and corti-

sone, into active glucocorticoids in tissues expressing 11b-hydrox-
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Inter-individual differences in hypothalamic-pituitary-adrenal (HPA) axis activity underlie differ-

ential vulnerability to neuropsychiatric and metabolic disorders, although the basis of this varia-

tion is poorly understood. 11b-Hydroxysteroid dehydrogenase type 1 (11b-HSD1) has previously

been shown to influence HPA axis activity. 129 ⁄ MF1 mice null for 11b-HSD1 (129 ⁄ MF1

HSD1) ⁄ )) have greatly increased adrenal gland size and altered HPA activity, consistent with

reduced glucocorticoid negative feedback. On this background, concentrations of plasma cortico-

sterone and adrenocorticotrophic hormone (ACTH) were elevated in unstressed mice, and

showed a delayed return to baseline after stress in HSD1-null mice with reduced sensitivity to

exogenous glucocorticoid feedback compared to same-background genetic controls. In the pres-

ent study, we report that the genetic background can dramatically alter this pattern. By contrast

to HSD1) ⁄ ) mice on a 129 ⁄ MF1 background, HSD1) ⁄ ) mice congenic on a C57Bl ⁄ 6J back-

ground have normal basal plasma corticosterone and ACTH concentrations and exhibit normal

return to baseline of plasma corticosterone and ACTH concentrations after stress. Furthermore,

in contrast to 129 ⁄ MF1 HSD1) ⁄ ) mice, C57Bl ⁄ 6J HSD1) ⁄ ) mice have increased glucocorticoid

receptor expression in areas of the brain involved in glucocorticoid negative feedback (hippo-

campus and paraventricular nucleus), suggesting this may be a compensatory response to nor-

malise feedback control of the HPA axis. In support of this hypothesis, C57Bl ⁄ 6J HSD1) ⁄ ) mice

show increased sensitivity to dexamethasone-mediated suppression of peak corticosterone. Thus,

although 11b-HSD1 appears to contribute to regulation of the HPA axis, the genetic background

is crucial in governing the response to (and hence the consequences of) its loss. Similar varia-

tions in plasticity may underpin inter-individual differences in vulnerability to disorders associ-

ated with HPA axis dysregulation. They also indicate that 11b-HSD1 inhibition does not

inevitably activate the HPA axis.
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ysteroid dehydrogenase type 1 (11b-HSD1). In vivo, 11b-HSD1 is

the sole enzyme capable of regeneration of active 11-hydroxy ste-

roids from their inactive keto forms (14). 11b-HSD1 is also

expressed in many peripheral sites, including the liver, adipose, and

bone (15, 16). 11ß-HSD1 is also highly expressed in the brain,

including the cortex, hippocampus and cerebellum (17, 18), as well

as the paraventricular nucleus of the hypothalamus (PVN) (19),

where changes in enzyme activity associate with alterations in HPA

axis function (20). The ability of 11b-HSD1 to amplify glucocortic-

oids locally, and its expression in areas known to be relevant to

glucocorticoid regulation of HPA axis control, suggest that the

enzyme may take part in the overall regulation of HPA output, in

addition to modulating local steroid concentrations.

Characterisation of 11b-HSD1 knockout (HSD1) ⁄ )) mice on a

mixed genetic background (129 ⁄ MF1) showed HPA characteristics

consistent with a role for 11b-HSD1 in HPA regulation. As antici-

pated by the increased clearance of glucocorticoids in these mice

(i.e. the result of the loss of regeneration of steroids by 11b-HSD1

in liver and other peripheral organs), 129 ⁄ MF1 HSD1) ⁄ ) mice have

enlarged adrenals to compensate (14, 21). However, the null mice

also showed elevated morning (nadir) basal plasma corticosterone

and adrenocorticotrophic hormone (ACTH). Corticosterone rose to

peak levels earlier in the day in 129 ⁄ MF1 HSD1) ⁄ ) mice (14, 21).

129 ⁄ MF1 HSD1) ⁄ ) mice also showed an increased early rise in

plasma corticosterone in response to brief restraint (21), and pro-

longed elevation of both ACTH and corticosterone after termination

of restraint (21). Based on these data, and observations of reduced

11b-HSD1 in the hippocampus in obese rats with attenuated HPA

feedback control (22), it was hypothesised that 11b-HSD1 contrib-

utes to glucocorticoid negative-feedback control of the HPA axis

(23). In an effort to further study these initial observations,

MF1 ⁄ 129 HSD1) ⁄ ) mice were repeatedly back crossed onto a

C57Bl ⁄ 6J background to reach genetic homogeneity of background.

On this background, the metabolic and hippocampus-associated

cognitive effects seen on the mixed 129 ⁄ MF1 background are reca-

pitulated (24, 25).

In the present study, we examined the HPA axis in C57Bl ⁄ 6J

HSD1) ⁄ ) mice and show that basal plasma corticosterone levels in

HSD1) ⁄ ) mice on the C57Bl ⁄ 6J background, as opposed to that

observed in 129 ⁄ MF1 mice, are similar to controls. To investigate a

mechanism by which this apparent strain difference may be

explained, we determined GR, MR and corticotrophin-releasing fac-

tor (CRF) mRNAs in the brain and performed a dexamethasone sup-

pression test to determine GR-mediated feedback sensitivity.

Materials and methods

Animals

Adult C57Bl ⁄ 6J HSD1) ⁄ ) male mice were generated by back-crossing a

minimum of 10 generations onto a C57Bl ⁄ 6J (Harlan, Essex, UK) background

from the original MF1 ⁄ 129 HSD1) ⁄ ) line (14). Controls were male C57Bl ⁄ 6J

mice from the same source, maintained and bred within the animal house

designated C57Bl ⁄ 6J HSD1+ ⁄ +. Animals were housed singly for at least

1 week prior to experiments and were age-matched (between 3–6 months

of age). The light ⁄ dark cycle was 12 : 12 h (lights on 07.00 h). Animals were

given standard chow and water ad lib, and all studies were carried out

to the highest standards under the aegis of the United Kingdom Animals

Scientific Procedures Act, 1986. Previously reported data from HSD1) ⁄ )

male mice on other backgrounds comprised: 129 mice (26) and 129 ⁄ MF1

mice (14, 21).

Circadian measurements

To determine activity of the HPA axis at various times during the circadian

cycle, C57Bl ⁄ 6J HSD1) ⁄ ) and HSD1+ ⁄ + mice were sacrificed without prior

disturbance at 07.00 h, 13.00 h and 19.00 h. Sacrifice was performed by

direct decapitation, and trunk blood was collected into EDTA-coated micro-

vette tubes (Sarstedt, Numbrecht, Germany). Tubes were put on ice until

all samples were collected. Tubes were then spun 10 min at 2300 g in a

chilled microcentrifuge. Supernatants (plasma) were stored at )20 �C until

analysed.

Restraint stress

All procedures were carried out between 08.00–10.00 h. C57Bl ⁄ 6J HSD1) ⁄ )

and HSD1+ ⁄ + mice were removed from their home cage to a nearby proce-

dure room. Restraint was carried out for 10 min by placing the mouse into

a 50 ml Falcon tube (Greiner Bio-One, Gloucestershire, UK), which was mod-

ified to allow the tail to protrude out the back with a breathing hole at the

front. Mice were either sacrificed immediately or returned to their home

cage. Separate groups of mice were sacrificed 10, 45 or 90 min after the

start of restraint. An additional group of mice was sacrificed without expo-

sure to restraint within 1 min after removal from their home cage to obtain

basal corticosterone levels. Killing and blood collection were performed as

above.

Analysis of plasma hormones

Analysis of plasma corticosterone and ACTH was performed as described

previously (21). In short, corticosterone was measured by radioimmunoassay

using 3H -corticosterone label, and a polyclonal anti-corticosterone antibody

(kind gift of Dr C. J. Kenyon, Edinburgh). ACTH was measured by an

enzyme-linked immunosorbent assay kit using a monoclonal anti-human

ACTH antibody designed against regions of ACTH that are 100% conserved

in the mouse (Biomerca, Newport Beach, CA, USA).

Adrenal measurements

Left adrenals were removed at sacrifice from C57Bl ⁄ 6J HSD1) ⁄ ) and

HSD1+ ⁄ + mice, and placed immediately into 4% paraformaldehyde (Sigma-

Aldritch, Poole, UK). Twenty-four hours post fixation, adrenals were cleaned

of any attached fat by manual dissection. Adrenals were then weighed on a

microbalance. Body weight of mice was taken prior to sacrifice.

In situ hybridisation

In situ hybridisation was performed as described previously (21). All in situ

experiments were performed on fresh frozen brains collected after decapita-

tion from unstressed animals at the nadir of the corticosterone rhythm

(08.00 h). Cryostat cut sections (10 lm) were collected at the level of the

hypothalamic paraventricular nucleus and the dorsal hippocampus. CRF, GR

and MR mRNAs were all detected by riboprobe based in situ hybridisation

autoradiography. Briefly, plasmids containing fragments of cDNA for rat GR
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(673 bp; Pst1-EcoRI fragment), MR (513 bp; EcoRI fragment) and

CRF (518 bp; PvuII-BamHI fragment) were used as templates to transcribe
35S-UTP radiolabelled antisense riboprobes. After hybridisation and stringent

washes, the sections were exposed to autoradiographic film (XAR-5; Kodak,

Kemel Hempstead, UK). Specific optical density measurements of different

regions of the brain were obtained after subtraction of background density

(obtained over white matter), average from eight to ten measurements ⁄ area

per section, three sections per anatomical area ⁄ mouse using computer-dri-

ven densitometry (MCID; Interfocus, Cambridge, UK). CRF was measured

exclusively in the PVN, MR in the dorsal hippocampus (CA1, CA3 and den-

tate gyrus), and GR was measured in the PVN and the three divisions of the

dorsal hippocampus.

Preparation of RNA from pituitaries

Pituitaries were obtained from freshly killed mice, and immediately frozen

on dry ice. RNA was obtained from each single pituitary by homogenisa-

tion in 300 ll Trizol reagent (Gibco BRL, Paisley, UK) on ice (4 �C) using a

hand held glass homogeniser. Homogenates were transferred to a 1.5-ml

eppendorf and incubated at room temperature for 5 min. To each, 30 ll

of chloroform was added, contents mixed by inversion, and then spun at

4 �C at 9300 g for 10 min in a table top microcentrifuge. The top layer

containing RNA was removed, and transferred to a new eppendorf tube.

One volume of 70% ethanol was added, contents mixed, and RNA purified

using the RNeasy purification kit (Qiagen, GmbH, Hilden, Germany).

Samples were transferred to an RNEasy column and spun for 15 s at

15 700 g at room temperature. Seven hundred microlitres of buffer RW1

was added to the column, and the column was spun for another 15 s at

15 700 g. Five hundred microlitres of buffer RPE was added and spun for

15 s at 15 700 g Another 500 ll of buffer RPE was added and spun for

2 min at 15 700 g. The column was spun once more (dry) for 1 min at

15 700 g to remove trace wash solution. Column bound RNA was eluted

from the column by adding 30 ll RNAse free water followed by a spin

for 1 min at 15 700 g. RNA was stored at )80 �C until ready for cDNA

synthesis.

cDNA synthesis from pituitary RNA

cDNA from pituitary RNA was synthesised using Invitrogen cDNA synthesis

reagents (Invitrogen, Carlsbad, CA, USA). Approximately 0.5 lg of RNA was

heated to 70 �C for 10 min then placed on ice. RNA was incubated in a

20-ll reaction containing 1st-Strand reaction buffer, 500 lM dNTPs, 2.5 mM

MgCl2, 5 mM dithiothreitol, RNAse inhibitor, 300 ng random primers, and

Superscript III reverse transcriptase. The mixture was incubated at 25 �C for

5 min, followed by 60 min at 50 �C. The reaction was terminated by incuba-

tion at 80 �C for 15 min. cDNA was stored at )20 �C until ready for use in

a real-time polymerase chain reaction (PCR) assay. A reaction, which

excluded the Superscript III reverse transcriptase, was performed for each

sample, as a negative control for the real-time PCR reaction.

Quantitative real-time PCR for quantification of GR mRNA

Real-time PCR was performed using the Light Cycler 480 PCR machine

(Roche Diagnostics, Mannheim, Germany). Polymerase, buffer and dNTPs

were provided using reagents from the Light Cycler 480 Probes Master kit

(Roche Diagnostics). GR specific primers ⁄ probe were designed from mouse

cDNA sequence data and synthesised by Eurogentec S. A. (Seraing, Belgium).

Forward primer: 5¢-CCC TGG AAT GAG ACC AGA TG-3¢, Reverse primer:

5¢-GGT AAT TGT GCT GTT CTT CCA C-3¢, Probe: 5¢-CTG CCT GGT GTG CTC

CGA TGA AGC-3¢. The probe for GR is labelled with the 5¢fluorescence repor-

ter Yakima Yellow, the 3¢ quencher BHQ-1, and detected on the VIC channel

of the Cycler. Quantification of GR was expressed relative to an internal

control, 18S. A standard 18S specific primers ⁄ probe mix was used (18S Taq-

man gene expresion assay, Hs99999901_s1; Applied Biosystems, Foster City,

CA, USA). The 18S probe was detected on the FAM channel. Primers were

used at a 6 pmol ⁄ reaction, and probes at 2 pmol ⁄ reaction. Relative values

of both GR and 18S were calculated by comparison with a standard curve.

Samples to be used to generate standard curves were prepared: 2 ll of

pituitary cDNA from each individual animal was mixed together. This mix-

ture was then serially diluted with PCR grade water to produce standards

with relative concentrations of 1 (The original mixture), 1 : 2, 1 : 4, 1 : 8,

1 : 16, 1 : 32, 1 : 64, 1 : 128 and 1 : 256. Individual pituitary cDNA samples

and their corresponding negative control samples (Superscript III reverse

transcriptase excluded), were diluted 1 : 20 in PCR grade water. Two microli-

tres of 1 : 20 diluted cDNA was mixed with 5 ll master mix, 0.5 ll pri-

mer ⁄ probe mix and 2.5 ll H2O. Reactions were performed in triplicate for

GR and 18S on the Cycler. PCR was performed using cycling parameters of

50 �C for 2 min, 95 �C for 10 min, 40 cycles of 95 �C for 15 s, and 60 �C

for 1 min. Relative cDNA quantities for both GR and 18S were derived from

each reaction by comparison with the standard curve using the absolute

quantification ⁄ second derivative max calculation method on the Light Cycler

480 System. Amplification of negative control samples occurred after many

more cycles (> 10) than for experimental samples and were excluded from

the analysis. GR ⁄ 18S ratios were obtained for each individual, and these

ratios were used for presentation and statistical analysis of the data.

Dexamethasone suppression test

To assess dexamethasone feedback regulation of HPA activity, we performed

a modified version of the dexamethasone suppression test. Mice of both

genotypes were injected i.p. with 200 ll of vehicle [2% ethanol (BDH, Dor-

set, UK) ⁄ 0.9% saline (Sigma-Aldritch)] at 13.00 h. Venesection of the tail

was used to obtain blood samples from these animals at 19.00 h the same

day (near peak of circadian rise in plasma corticosterone). Blood was col-

lected and plasma prepared as above, and processed for corticosterone mea-

surements. At 2-weekly intervals, the same mice were injected with 2 lg ⁄ kg

or 10 lg ⁄ kg dexamethasone (Sigma-Aldritch) in approximately 200 ll vehi-

cle at 13.00 h, followed by tail blood sampling at 19.00 h.

Statistical analysis

Adrenal weight, and gene expression data obtained from unstressed animals

were analysed by an independent samples t-test to determine an effect of

genotype. Plasma corticosterone and ACTH data from stress experiments

were analysed by two-way analysis of variance (ANOVA) for the effects of

time and genotype. Corticosterone data from dexamethasone suppression

tests were analysed by a repeated measures design two-way ANOVA. Post-hoc

analysis was performed using the Tukey’s honestly significant difference test.

P < 0.05 was considered statistically significant.

Results

Adrenal weight is increased in C57Bl ⁄ 6J HSD1) ⁄ ) mice

Adrenal mass was significantly higher in C57Bl ⁄ 6J HSD1) ⁄ ) mice

compared to control C57Bl ⁄ 6J HSD1+ ⁄ + mice, by approximately

20% (Fig.1A) (t = 2.19, P = 0.042; n = 10 per group). The adrenal

enlargement was also observed when adrenal weights were

expressed relative to body weight (Fig. 1B) (t = 3.12, P = 0.006;

n = 10), reiterating the findings on the 129 ⁄ MF1 background (26).

Strain-dependent HPA changes in HSD1
) ⁄ ) mice 881
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Body weights were not significantly different on the C57Bl ⁄ 6J

background (HSD1+ ⁄ + 38.8 + ⁄ ) 1.5 g, HSD1) ⁄ ) 35.4 + ⁄ ) 0.73 g;

n = 10).

Circadian rhythms of plasma corticosterone and ACTH
are unaltered in C57Bl ⁄ 6J HSD1) ⁄ ) mice

We have previously shown that MF1 ⁄ 129 HSD1) ⁄ ) mice have ele-

vated nadir (08.00 h) and an earlier diurnal rise in plasma cortico-

sterone levels compared to MF1 ⁄ 129 HSD1+ ⁄ + mice. We therefore

investigated the circadian profile of plasma corticosterone in both

C57Bl ⁄ 6J HSD1) ⁄ ) and C57Bl ⁄ 6J HSD1+ ⁄ + mice.

Although there was a clear difference between basal levels

(07.00 h) and peak levels (19.00 h) in all mice, two-way ANOVA for

the effects of time and genotype indicated an effect of time

(F2,24 = 9.55, P = 0.001), but not genotype (F1,24 = 1.77, P = 0.196),

nor any interaction between genotype and time (F2,24 = 0.637,

P = 0.537) (Fig. 2A). Therefore, there is no evidence of either

increased basal plasma corticosterone or earlier rise to peak levels

in C57Bl ⁄ 6J HSD1) ⁄ ) mice. Similarly, plasma levels of ACTH did not

differ between C57Bl ⁄ 6J HSD1) ⁄ ) and C57Bl ⁄ 6J HSD1+ ⁄ + mice

(two-way ANOVA). There was no indication of elevated nadir ACTH in

C57Bl ⁄ 6J HSD1) ⁄ ) mice compared to C57Bl ⁄ 6J HSD1+ ⁄ + mice

(Fig. 2B), contrasting with findings previously observed in MF1 ⁄ 129

HSD1) ⁄ ) mice (21).

Altered plasma corticosterone, but not ACTH, response
to restraint stress in C57Bl ⁄ 6J HSD1) ⁄ ) mice

We have previously shown that MF1 ⁄ 129 HSD1) ⁄ ) mice have an

exaggerated stress-induced rise in plasma corticosterone levels, and

a retarded return to baseline of both corticosterone and ACTH com-

pared to strain controls. In the present study, we determined stress

induced levels of plasma corticosterone in C57Bl ⁄ 6J HSD1) ⁄ ) and

C57Bl ⁄ 6J HSD1+ ⁄ + mice.

Again, basal (nadir) plasma corticosterone levels did not differ

between C57Bl ⁄ 6J HSD1+ ⁄ + and C57Bl ⁄ 6J HSD1) ⁄ ) mice (Fig. 3A).

Ten minutes of restraint led to marked elevations in plasma cortico-

sterone in mice of both genotypes, but a significantly greater

response in C57Bl ⁄ 6J HSD1) ⁄ ) mice (P < 0.05) (Fig. 3A). These

levels remained elevated over basal after 45 min, but there was a

significant reduction of peak values only in the C57Bl ⁄ 6J HSD1) ⁄ )

mice at this time-point (P < 0.05) (Fig. 3A). By 90 min, plasma

corticosterone levels in both genotypes were similar to unstressed

values (Fig. 3A).

Plasma ACTH levels did not differ between C57Bl ⁄ 6J HSD1+ ⁄ + and

C57Bl ⁄ 6J HSD1) ⁄ ) mice, prior to or during the response to restraint

(Fig. 3B). Ten minutes of restraint led to increased levels of plasma

ACTH in mice of both genotypes, returning to baseline by 45 min

(Fig. 3B). A two-way ANOVA for the effect of time and genotype

on plasma ACTH revealed no main effect of genotype

(F6,40 = 0.034, P = 0.85), but a significant effect of time (F6,40 =

207.9, P < 0.001).

The normal return to baseline of plasma corticosterone and ACTH

levels in response to restraint stress in C57Bl ⁄ 6J HSD1) ⁄ ) mice is

indicative of a tightly regulated HPA axis, suggesting that these
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mice may induce compensatory mechanisms not seen in MF1 ⁄ 129

HSD1) ⁄ ) mice. We therefore looked at expression of genes impor-

tant in HPA axis regulation.

C57Bl ⁄ 6J HSD1) ⁄ ) null mice have altered gene expression
in the paraventricular nucleus of the hypothalamus
and the hippocampus

C57Bl ⁄ 6J HSD1) ⁄ ) mice show considerable differences in the

expression of HPA relevant genes in the PVN and hippocampus rel-

ative to C57Bl ⁄ 6J HSD1+ ⁄ + mice. In the PVN, GR mRNA expression

was significantly elevated (P < 0.001) and CRF mRNA showed a

tendency to be elevated (P = 0.057) in C57Bl ⁄ 6J HSD1) ⁄ ) mice

(Fig. 4A). Expression of GR mRNA in the hippocampus was also ele-

vated in C57Bl ⁄ 6J HSD1) ⁄ ) mice throughout all measured subfields

(P < 0.001) (Fig. 4B). MR mRNA expression was significantly ele-

vated only in the CA1 region (P < 0.05), but not in the CA3 and

dentate gyrus in C57Bl ⁄ 6J HSD1) ⁄ ) mice (Fig. 4C). By contrast, the

expression of GR mRNA in the pituitary was not altered in

C57Bl ⁄ 6J HSD1) ⁄ ) mice relative to C57Bl ⁄ 6J HSD1+ ⁄ + mice

(Table 1). The up-regulation of corticosteroid receptors in areas of

the brain (but not pituitary) involved in negative-feedback regula-

tion of the HPA axis suggests that this may be an important mech-

anism whereby C57Bl ⁄ 6J HSD1) ⁄ ) mice may be able to reset their
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factor (CRF), glucocorticoid receptor (GR) and mineralocorticoid receptor

(MR) in HSD1) ⁄ ) and C57Bl ⁄ 6J mice in the paraventricular nucleus (PVN)

and hippocampus. In situ hybridisation for each study was analysed by inte-

grated optical density (IOD) measurements of autoradiographs. (A) IOD mea-

surements for CRF and GR mRNA in the PVN. CRF expression tends towards

being increased in the PVN of HSD1) ⁄ ) mice (a, P = 0.057, compared to

C57Bl ⁄ 6J controls). GR expression is increased in the PVN of HSD1) ⁄ ) mice

(*P < 0.05, compared to C57Bl6 controls). (B) IOD measurements for GR

mRNA in the dentate gyrus (DG), CA1 and CA3 areas of the hippocampus.

GR expression is increased in all areas of the hippocampus of HSD1) ⁄ )

mice (*P < 0.05, compared to C57Bl6 controls). (C) IOD measurements for

MR mRNA in the DG, CA1, and CA3 areas of the hippocampus. MR expres-

sion is increased only in the CA1 of the hippocampus of HSD1) ⁄ ) mice

(*P < 0.05, compared to C57Bl ⁄ 6J controls). Values are the mean � SEM.

Table 1. Glucocorticoid Receptor (GR) mRNA Expression in the Pituitary of

HSD1) ⁄ ) and HSD1+ ⁄ + Mice Estimated by Quantitative Real-Time Polymerase

Chain Reaction (Relative to 18S Internal Control).

Genotype GR ⁄ 18S ratio (mean � SEM)

HSD1+ ⁄ + 0.998 � 0.071

HSD1) ⁄ ) 0.904 � 0.086
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axis and maintain normal basal plasma corticosterone levels. There-

fore, we determined whether the C57Bl ⁄ 6J HSD1) ⁄ ) mice have

increased sensitivity to feedback, using the dexamethasone suppres-

sion test.

C57Bl ⁄ 6J HSD1) ⁄ ) mice show greater sensitivity to
dexamethasone suppression of peak plasma corticosterone

Evening plasma corticosterone levels were suppressed by prior

dexamethasone administration, but the minimal effective dose dif-

fered between C57Bl ⁄ 6J HSD1) ⁄ ) mice and C57Bl ⁄ 6J HSD1+ ⁄ +

mice (Fig. 5). Repeated measures ANOVA for between-subjects effect

of genotype and within-subjects effect of dose revealed a main

effect of dose (F = 20.2, P < 0.0001) but not genotype. Post-hoc

analysis revealed that afternoon plasma corticosterone was reduced

from levels observed in vehicle-injected mice with a dose of

2 lg ⁄ kg dexamethasone in C57Bl ⁄ 6J HSD1) ⁄ ) mice, but not

C57Bl ⁄ 6J HSD1+ ⁄ + mice (Fig. 5). Plasma corticosterone was reduced

from levels observed in vehicle-injected mice after a dose of

10 lg ⁄ kg dexamethasone in mice of both genotypes (Fig. 5). Hence,

C57Bl ⁄ 6J HSD1) ⁄ ) mice appear to be more sensitive to negative-

feedback signals than controls.

Summary of HPA profile of HSD1) ⁄ ) mice on different
strain backgrounds

In addition to the data presented for HSD1) ⁄ ) mice congenic to

C57Bl ⁄ 6J, Table 2 presents a summary of various aspects of the

HPA axis that we found in HSD1) ⁄ ) mice on a number of different

strain backgrounds. These include our published data on the origi-

nal 129 ⁄ MF1 cross (21) and on HSD1) ⁄ ) congenic on the 129

background (26).

Adrenal size is increased in HSD1) ⁄ ) mice on all strain back-

grounds. Consistent with this, early peak stress corticosterone levels

are also increased in HSD1) ⁄ ) mice on all backgrounds. However,

although basal (early morning) corticosterone levels are increased

in HSD1) ⁄ ) mice on the 129 and 129 ⁄ MF1, they are the same as

controls on the C57Bl ⁄ 6J background, despite an increased adrenal

size. A disturbed overall rhythm is observed in 129 ⁄ MF1 HSD1) ⁄ )

but not C57Bl ⁄ 6J HSD1) ⁄ ) mice. These data suggest that genetic

elements, probably from the 129 strain, contribute to the altered

basal plasma corticosterone of HSD1) ⁄ ) mice. Shut off of HPA

activity after stress is also abnormal in 129 ⁄ MF1 HSD1) ⁄ ) mice,

but not in C57Bl ⁄ 6J HSD1) ⁄ ) mice. In line with these observations

are the findings regarding GR and MR expression in the brain of

HSD1) ⁄ ) mice. 129 ⁄ MF1 mice, with features consistent with

impaired negative-feedback regulation of plasma glucocorticoid lev-

els, have reduced GR expression in the PVN. Conversely, C57Bl ⁄ 6J

HSD1) ⁄ ) mice, with apparent normal plasma glucocorticoid regula-

tion (despite loss of 11b-HSD1), have elevated GR expression in

both the PVN and the hippocampus. Increased suppression by dexa-

methasone of HPA activity in HSD1) ⁄ ) mice congenic to C57Bl ⁄ 6J

suggests that feedback sensitivity is increased, as would be pre-

dicted from increased GR expression in feedback-sensitive sites

such as the PVN and hippocampus.

Discussion

HPA phenotype of HSD1) ⁄ ) mice is dependent upon strain
background

In the present study, we report that, on a strain background con-

genic to C57Bl ⁄ 6J, no differences were observed between HSD1) ⁄ )

mice and HSD1+ ⁄ + mice in either plasma corticosterone or ACTH

at the nadir of the HPA rhythm. This is in contrast to the marked

hypercorticosteronemia and elevated morning ACTH previously
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Fig. 5. C57Bl ⁄ 6J 11bHSD1) ⁄ ) mice are hypersensitive to dexamethasone

suppression of evening plasma corticosterone compared with C57Bl ⁄ 6J con-

trol mice. C57Bl ⁄ 6J 11bHSD1) ⁄ ) mice, but not C57Bl ⁄ 6J controls had

reduced evening (19.00 h) plasma corticosterone after 2 lg ⁄ kg dexametha-

sone given i.p. 5 h previously (*P < 0.05, compared to vehicle). Plasma corti-

costerone was reduced in mice from both genotypes after 10 lg ⁄ kg

dexamethasone. Values are the mean � SEM.

Table 2. Summary of Hypothalamic-Pituitary-Adrenal Axis Phenotype of

HSD1) ⁄ ) Mice, From Different Strain Backgrounds.

Measure 129 129 ⁄ MF1 C57Bl ⁄ 6J

Adrenal size › › ›
Basal AM Cort › › M

Basal PM Cort ND M M

Peak Stress Cort ND › ›
Recovery Cort ND › M

Basal AM ACTH ND › M

Basal PM ACTH ND M M

Peak Stress ACTH ND M M

Recovery ACTH ND › M

CRF mRNA (paraventricular nucleus) ND fl* ›*

GR mRNA (paraventricular nucleus) ND fl ›
GR mRNA (hippocampus) fl M ›
MR mRNA (hippocampus) ND M ›*

Arrows designate direction of change in HSD1) ⁄ ) mice relative to HSD1+ ⁄ +

mice from the same background: ›, higher; fl, lower; M, not different. All

changes are significant to P < 0.05, except those designated by an asterisk

(*), which tend towards change with P < 0.1. Measurements not carried out

on a particular background are indicated by ND (not done). ACTH, adreno-

corticotrophic hormone; CRF, corticotrophin-releasing factor; AM Cort,

morning corticosterone; PM Cort, afternoon corticosterone; GR, glucocorti-

coid receptor; MR, mineralocorticoid receptor.
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reported in HSD1) ⁄ ) mice on the MF1 ⁄ 129 background (21).

Although adrenal weight was found to be increased in size in

C57Bl ⁄ 6J HSD1) ⁄ ) mice in the present study, in line with the pre-

vious report, the extent of size difference is much less dramatic.

Adrenal weights were increased approximately 70% in HSD1) ⁄ )

mice on the MF1 ⁄ 129 background (14), but only 20% in C57Bl ⁄ 6J

HSD1) ⁄ ) mice in the present study. The ability to ‘turn off’ the

hormone response to a stressor is, in part, indicative of the

strength of the negative-feedback signal within the brain and the

anterior pituitary (27). The delayed return of both plasma cortico-

sterone and ACTH to pre-stress levels after restraint, as seen on

MF1 ⁄ 129 HSD1) ⁄ ) mice, is no longer observed in C57Bl ⁄ 6J

HSD1) ⁄ ) mice. These strain differences in HPA axis parameters

contrast with the similar metabolic and cognitive phenotypes seen

with HSD1) ⁄ ) on 129 ⁄ MF1 crossed and congenic 129 and

C57Bl ⁄ 6J backgrounds (14, 23, 26, 28, 29).

The phenotype of elevated basal plasma corticosterone is most

likely contributed to largely by genetic modifiers within the 129

strain genome. Consistent with this hypothesis is the observation

that the HPA phenotype in HSD1) ⁄ ) mice on a pure 129 background

is remarkably similar to the phenotype on the MF1 ⁄ 129 background,

yet 11b-HSD1) ⁄ ) mice on a pure MF1 background show little or no

HPA phenotype at all (R. Carter, M. C. Holmes, unpublished

observations), including a lack of both increased adrenal size or peak

corticosterone in response to stress. The 129 strain has often been

compared to other strains, including C57Bl ⁄ 6J, and is known to show

more anxiety-related behaviours in the elevated plus-maze (30), open

field (31) and light ⁄ dark test (32). One hundred twenty-nine mice

also showed greater sensitivity to benzodiazepine anxiolytics (33),

perhaps indicating an altered GABA system. There is some suggestion

of elevated basal corticosterone in 129 relative to C57Bl ⁄ 6J mice

(34), although we found no evidence for this in our own comparisons

(25, 26, 35). However, the importance of genetic background

in determining the phenotype of transgenic animals has been

recognised for some time (36–38). For example, knockout mice for

the ACTH processing genes, prohormone convertase and 7B2 have

phenotypes leading to elevated corticosterone, which is only

observed on a 129, but not C57Bl ⁄ 6J background (34).

Mechanism of resetting of HPA axis feedback in C57Bl6
mice

The phenotype of HSD1) ⁄ ) mice originally described on the MF1 ⁄ 129

background, interpreted as reduced feedback sensitivity, is not

surprising given the expression of HSD1 in feedback-related areas of

the brain (19). The loss of local production of corticosterone would

predict that higher plasma levels of hormone are required to reach

equivalent tissue levels in feedback sites that normally express the

enzyme. It is therefore of interest to speculate how C57Bl ⁄ 6J

HSD1) ⁄ ) mice maintain apparently normal HPA regulation. The

elevation of GR expression in the hippocampus and PVN may well

compensate for the lack of local cellular corticosterone regeneration.

Indeed, the dexamethasone suppression test provides direct evidence

for increased GR function because C57Bl ⁄ 6J HSD1) ⁄ ) mice suppress

evening corticosterone levels at a lower dose of dexamethasone than

controls. This squares with the phenotype of transgenic mice with

increased central nervous system (CNS) GR expression, which show

suppressed basal HPA activity (39). Moreover, brain specific reduction

of GR increases basal HPA activity (40), and global reduction of GR

leads to prolonged HPA activity after restraint (41). Thus, the relative

changes in central GR (increased in C57Bl ⁄ 6J HSD1) ⁄ ) mice, and

decreased in 129 or MF1 ⁄ 129 HSD1) ⁄ ) mice) correspond well with

their phenotypes of relative high and low feedback, respectively.

These differences suggest that the principle difference between

strains may lie in the regulation of central GR expression. Indeed,

similar HPA axis differences were observed when deletion of the

neurokinin 1 receptor was investigated on a mixed 129 ⁄ C57Bl ⁄ 6
background compared to pure C57Bl ⁄ 6, and, again, a strain

dependent GR up-regulation was considered to underpin these

changes (42). The mechanism by which elevated GR may occur in one

strain, but not another, in response to ablation of HSD1 is unclear.

Intriguingly, the GR gene uses a series of alternate promoters, several

of which are CNS-enriched, and regulated by distinct transcription

factors (43), so possibly this may underlie strain differences in the

response to loss of 11b-HSD1. To elucidate the mechanisms underly-

ing strain specific GR changes in response to a gene deletion,

mapping of genetic modifiers using informative crosses of the

relevant strains would need to be carried out. It is worth noting that

GR was unchanged in the pituitary of C57Bl ⁄ 6J HSD1) ⁄ ) mice

relative to controls. A body of evidence indicates that the pituitary

gland is an important site of action for glucocorticoid negative

feedback (27, 44, 45). A lack of GR up-regulation in the pituitary in

the C57Bl ⁄ 6J HSD1) ⁄ ) mice strengthens our view that, in these

experiments, feedback sensitivity is altered by GR changes in the brain

itself. Hence, the correlation of GR mRNA up-regulation and

increased glucocorticoid sensitivity is indicative of increased GR

protein being expressed in the PVN and hippocampus, which

comprise key sites of negative-feedback regulation of the HPA axis.

The results obtained in the present stusy, together with those

from our previous reports (14, 21), suggest that 11b-HSD1 has a

significant role in regulating the HPA axis. However, the manner of

adaptation to the loss of 11b-HSD1 in genetically modified mice

appears to be dependent upon other, probably genetic modifiers. The

two phenotypes described on the C57Bl ⁄ 6J and 129 ⁄ MF1 back-

grounds (i.e. either reduced or increased glucocorticoid receptor

functioning) are potentially neuroendocrine markers of psychopa-

thology. For example, melancholic depression is most commonly

associated with elevated basal plasma glucocorticoids and impaired

glucocorticoid receptor functioning (46, 47). By contrast, disorders

such as post-traumatic stress disorder and atypical depression are

associated with low or normal plasma steroids and increased gluco-

corticoid receptor functioning (46, 48). 11b-HSD1, therefore, may be

an important factor in the overall regulation of the HPA axis in this

clinical context, and may itself be relevant to disease susceptibility,

severity or outcome. Furthermore, genetic modifiers of HPA adapta-

tion to the loss of 11b-HSD1 may be important regulators of

HPA axis function. In this regard, genetic dissection of 129 and

C57Bl ⁄ 6J mice strains could identify important genes involved in

HPA regulation in health and disease. Inhibitors of 11ß-HSD1 are

in development for metabolic and age-related cognitive disorders

Strain-dependent HPA changes in HSD1
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(43, 49). If the murine strain differences extrapolate to humans, then

analysis of relevant human genotypes may allow the determination

of sub-populations that may benefit from treatment with such

agents without the unwanted side-effects of HPA axis dysregulation.
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