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Abstract
Goal-directed behavior can be thought of as dynamic links between sensory stimuli and motor acts.
Neural correlates of many of the intermediate events of both auditory and visual goal-directed
behaviors are found in the posterior parietal cortex. Here, we review studies that have focused on
how neurons in the lateral intraparietal area (area LIP) differentially process auditory and visual
stimuli. Together, these studies suggest that area LIP contains a modality-dependent representation
that is highly dependent on behavioral context.
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Goal-directed behavior is characterized by the flexible mapping of sensory stimuli onto actions
(Snyder, 2000). A single stimulus can be arbitrarily mapped onto different actions.
Alternatively, different stimuli can be mapped onto the same action. The dynamic quality of
these links is the key to goal-directed behavior since it allows humans and other animals to
respond adaptively to different environmental scenarios and not just through reflexive loops.

If goal-directed behavior is viewed as dynamic links, we encounter computational questions
as to how the nervous system forms, maintains, and alters these links. For example, at any
moment in time, we are bombarded with a variety of stimuli from different modalities. How
do we choose which of these many stimuli will be the endpoint (cause) of an action? How do
we choose which to ignore? Also, the mapping between stimuli and actions is often not one-
to-one. Stimuli from different sensory modalities, for example, may elicit the same action. If
you have just robbed a bank, the sound of police sirens or the sight of police lights may elicit
the same action: run! In other situations, however, the same stimulus can elicit different actions.
The sound of the same police sirens may elicit a different action than “run!” if you own the
bank that has been robbed. Finally, the valence of a stimulus, the manner in which it is
categorized, or even motivational state might affect which action is chosen or whether an action
is even selected (Russ et al., 2007).

One cortical region that plays an important part in both auditory and visual goal-directed
behavior is the parietal cortex. Parietal activity reflects many of the intermediate processes
between sensation and action that are essential for goal-directed behavior.
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Indeed, in functional subdivisions of the posterior parietal cortex of rhesus monkeys, such as
the lateral intraparietal area (area LIP) and the medial intraparietal area (see below for more
details on these parietal areas), neurons are modulated by attention and salience (Bisley et al.,
2003; Cohen et al., 2004b; Colby et al., 1999; Gifford III et al., 2004; Goldberg et al., 2002;
Gottlieb et al., 2005; Gottlieb et al., 1998; Ipata et al., 2008; Kusunoki et al., 2000; Powell et
al., 2000), response selection (Baldauf et al., 2008; Cohen et al., 2004a; Gnadt et al., 1988;
Platt et al., 1997; Snyder et al., 2000), coordinate transformations (Andersen et al., 1997; Buneo
et al., 2008; Mullette-Gillman et al., 2005; Mullette-Gillman et al., In Press; Sabes et al.,
2002; Snyder et al., 1998; Stricanne et al., 1996), and decisions to “act” on a sensory stimulus
(Bendiksby et al., 2006; Klein et al., 2008; McCoy et al., 2005; Platt et al., 1999; Schall,
2004; Shadlen et al., 2001; Sugrue et al., 2004; Sugrue et al., 2005). These variables are also
reflected in the activity of the human parietal cortex (Binkofski et al., 1998; Connolly et al.,
2003; Connolly et al., 2000; DeSouza et al., 2000; Dinstein et al., 2008; Huettel et al., 2006;
Jancke et al., 2001; Karnath et al., 2001; Kastner et al., 2000; Kawashima et al., 1996; Levy et
al., 2007; Luna et al., 1998; Rushworth et al., 2001; Schluppeck et al., 2005; Schluppeck et al.,
2006; Silver et al., 2005; Tosoni et al., 2008). Moreover, and key for this review, both non-
human and human studies have demonstrated that the parietal cortex is activated during tasks
that use auditory or visual stimuli (Ahveninen et al., 2006; Bremmer et al., 2001a; Bremmer
et al., 2001b; Bushara et al., 2003; Bushara et al., 1999; Butters et al., 1970; Cohen et al.,
2000; Cohen et al., 2004b; Crottaz-Herbette et al., 2004; Cusack et al., 2000; Deouell et al.,
2000a; Deouell et al., 2000b; Gifford III et al., 2004; Griffiths et al., 1998; Grunewald et al.,
1999; Karabanov et al., 2009; Linden et al., 1999; Mazzoni et al., 1996; Mullette-Gillman et
al., 2005; Phan et al., 2000; Schlack et al., 2005; Stricanne et al., 1996; Warren et al., 2002).

Here, we focus on area LIP and review a series of studies on the auditory and visual properties
of LIP neurons. First, though, we briefly review the anatomy of the posterior parietal cortex
and area LIP.

Anatomy of the Posterior Parietal Cortex and Area LIP
In both humans and monkeys (Andersen, 1987; Hyvärinen, 1982), the posterior parietal cortex
forms a circuit with sensory areas and with frontal, temporal, and limbic areas. The posterior
parietal cortex contains a number of functional subdivisions including area 7a, area 7b, the
medial temporal area, the medial superior temporal area, the medial lateral intraparietal area,
and the lateral intraparietal area (LIP) (Andersen, 1987; Andersen et al., 1989).

Visual and auditory input to area LIP is well-described. Area LIP is classically considered to
be part of the dorsal visual processing stream (Ungerleider et al., 1982). Consequently, LIP
neurons receive input from neurons in extrastriate visual areas as well as cortical and brainstem
areas involved with saccadic eye movements (Asanuma et al., 1985; Blatt et al., 1990; Lynch
et al., 1985). The main source of auditory input to area LIP is the temporoparietal cortex (Divac
et al., 1977; Hyvärinen, 1982; Pandya et al., 1969), which is part of the parabelt of auditory
cortex (Kaas et al., 1998). Neurons in this region of the cortex are sensitive to the location of
a sound (Leinonen et al., 1980; Pandya et al., 1985) and, consequently, may support any role
that area LIP has in auditory spatial processing. Auditory input to area LIP may also arise via
input from multimodal cortical areas (Baizer et al., 1991; Blatt et al., 1990; Seltzer et al.,
1991). Indirect auditory input may also reach area LIP through its connections with the frontal
cortex or the superior colliculus; neurons in these brain areas receive input from auditory areas
and have responses that are modulated by auditory stimuli (Andersen et al., 1985; Andersen
et al., 1990; Barbas, 1988; Barbas et al., 1981; Cavada et al., 1989; Hackett et al., 1999; Harting
et al., 1980; Kaas et al., 1998; Romanski et al., 1999; Russo et al., 1994; Schall et al., 1995;
Stanton et al., 1995; Vaadia, 1989).
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We should note that since the prefrontal and parietal cortices are highly interconnected
(Andersen et al., 1985; Barbas et al., 1981; Petrides et al., 1984; Schall et al., 1995; Stanton et
al., 1995), it is not surprising that many of aforementioned intermediate processes that are
found in the parietal cortex are also found in the prefrontal cortex. Indeed, it is hypothesized
that parietal, prefrontal, and other cortical areas form a functional loop that potentially creates
and maintains internal representations and possibly transforms these representations into motor
acts (Barash et al., 2006; Chafee et al., 2000).

LIP Responses to Auditory Stimuli with Competing Visual Stimuli
In one of the earliest examinations of LIP auditory activity, Grunewald, Linden, and Andersen
(Grunewald et al., 1999) tested how training history modulates LIP responses. They first asked
“naïve” monkeys to fixate a light while an auditory stimulus was presented at different
peripheral locations. In their study, naïve monkeys were those that had not been operantly
trained to associate an auditory stimulus with an action and a subsequent reward; these
monkeys, though, had been trained to associate a gaze shift to a visual-stimulus location for a
juice reward. Grunewald et al. (1999) found that when the monkeys fixated a light, LIP activity
was modulated by the locations of visual stimuli but was not modulated by auditory stimuli at
comparable locations. However, following auditory training, LIP neurons were modulated by
the locations of auditory stimuli when the monkeys participated in this visual-fixation task.

This pattern of results was interpreted to suggest that laboratory-based auditory training
induced some form of “oculomotor salience” on the auditory stimuli. That is, the auditory
responses reflected the fact that the monkeys learned to associate the stimuli with an action
(shift gaze toward their location) to receive a reward (Assad, 2003; Gottlieb et al., 1998;
Kusunoki et al., 2000; Linden et al., 1999).

However, if we hypothesize that LIP neurons reflect stimulus salience (Kusunoki et al.,
2000), a different interpretation of the Grunewald et al. study emerges. Namely, auditory
stimuli are salient stimuli but, in naïve monkeys, LIP auditory responses may be suppressed
by a more salient central fixation light. Why would the fixation light suppress the auditory
responses? Maybe, in primates, visual stimuli are inherently more salient stimuli than auditory
stimuli (Posner et al., 1976). A second possibility is that whereas the auditory stimulus was
irrelevant for successful completion of the task, the fixation light was highly salient since the
monkeys were required to maintain their gaze at the light to receive a reward.

If this suppression hypothesis is correct, a natural prediction would be that if the central light
is removed, LIP neurons should be modulated by auditory stimuli even in the absence of
auditory training. To test this prediction, we (Gifford III et al., 2004) recorded LIP activity
while naïve monkeys listened to auditory stimuli and either (1) fixated a central light or (2)
fixated in the dark without a central light. Consistent with our prediction, LIP neurons were
modulated by auditory stimuli and had spatially limited response fields.

We interpreted these data to suggest that LIP neurons reflect the relative salience of stimuli.
In naïve monkeys, LIP neurons do not code auditory stimuli when they compete with a more
salient visual stimulus. But, they do code these same stimuli when a competitive stimulus (i.e.,
the central fixation light) is removed from the environment. A recent human
electrophysiological and behavioral study is consistent with these ideas: when visual stimuli
are removed from the environment, neural processes are “freed” that allow for enhanced
auditory processing (Haroush et al., 2008).
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Differences Between Auditory and Visual Sensitivity
Why do LIP neurons respond differently to auditory and visual stimuli? One hypothesis is that
differences between LIP auditory and visual activity relate to differences between the physical
properties of stimuli. Thus, differences between LIP responsivity may simply reflect
differences between the physical properties of these two classes of stimuli. One solution to this
issue would be to equate the auditory and visual stimuli along a particular psychophysical axis.
However, this solution is not as straightforward as it would appear since there is no principled
way to determine which axis (e.g., bandwidth, intensity, etc.) is the “proper” one to equate the
two stimuli (Spence et al., 2000).

A second hypothesis is that modality-dependent activity reflects differences between the
auditory and visual perceptual systems. For instance, the visual system has a higher spatial
acuity than the auditory system (Blauert, 1997; Brown et al., 1978a; Brown et al., 1978b;
Brown et al., 1980; Recanzone et al., 1998; Wightman et al., 1993). In contrast, in other
situations such as when timing information is critical or when visual-spatial information
becomes unreliable, aspects of a auditory stimulus may be more perceptually salient than
aspects of a visual stimulus (Alais et al., 2004; Fendrich et al., 2001; Shams et al., 2000; Welch
et al., 1980). Consequently, depending on the nature of the task, information provided by the
visual perceptual system may be more or less salient than information provided by the auditory
system. This idea has been formalized computationally within the context of Bayesian
inference, where multi-modal percepts are formed as a function of the more “reliable” stimulus
(Burr et al., 2006; Deneve et al., 2004; Ma et al., 2008).

A third non-exclusive hypothesis is that modality-dependent LIP activity reflects differences
between the relationship of a stimulus and the cognitive or behavioral requirements of a task.
For example, during saccade tasks, LIP neurons may respond more to visual stimuli than to
auditory stimuli (Linden et al., 1999) because, as discussed above, in the context of planning
eye movements, visual stimuli are more salient (Kusunoki et al., 2000; Toth et al., 2002) than
auditory stimuli. This possibility may exist despite the fact that the behavior of the monkeys
is similar (e.g., saccade to a stimulus location). Indeed, similar outward behavior does not
eliminate the possibility that animals use different cognitive strategies and different neural
circuits to solve the analogous versions of the same task (Gibson et al., 1997).

To test these hypotheses and, in particular, the latter hypothesis, we had monkeys participate
in the predictive-cueing task (Cohen et al., 2004b). The predictive-cueing task is a version of
Posner's cueing paradigm (Posner, 1980) that tests the allocation of attention. In our version
of the task, monkeys shifted their gaze to a visual target whose location was predicted by the
location of an auditory or visual cue. As found in other cueing tasks (Driver et al., 1998; Posner,
1980), the monkeys' response latency was faster to the target when the cue predicted the target
location than when the cue was not predictive. More importantly, this “predictive effect” was
the same regardless of whether the cue was an auditory cue or a visual cue. This result suggested
that, within the context of the task, the auditory cue and visual cue had the same task-related
salience. However, despite this equivalence, the mean firing rate of LIP neurons was
significantly higher when the visual cue was presented than when the auditory cue was
presented.

This result suggests that the link between a stimulus and a task is not the only determinant in
the level of LIP activity (Cohen et al., 2004b). If it was the only factor, then LIP activity in
response to the auditory cue and visual cue should have been the same during the predictive
cueing task. But is this difference between auditory and visual activity absolute or is it task
dependent? To address this question, we had monkeys participate in a memory-guided saccade
task; in this task, monkeys made saccades to the remembered locations of auditory stimuli or
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visual stimuli. We found that visual activity during the memory-guided saccade task was
comparable to that seen during the predictive-cueing task. However, auditory activity during
the memory-guided saccade task was substantially lower than that seen during the predictive-
cueing task.

Since auditory activity was task dependent, it suggests that changes in LIP activity reflect
differences between the behavioral or task context (salience) of an auditory stimulus (Kusunoki
et al., 2000). A similar result was reported by Linden et al. (1999) who observed that LIP
neurons were modulated more by an auditory stimulus that signaled the location of a future
eye movement than by an auditory stimulus that did not signal the location of a future eye
movement. Overall, it appears that the factors that contribute to LIP activity are complex and
depend both on the stimulus modality and the behavioral task. However, these modality-
dependent differences can be minimized (and hence differences between the representation of
salience may be minimized) when auditory and visual stimuli are explicitly equated as they
were in the predictive-cueing task.

Spatial Sensitivity and Representations of Auditory and Visual Activity
So far, we have discussed differences between how area LIP represents the more cognitive
attributes of auditory and visual stimuli. In this section, we focus on more fundamental
properties of the parietal cortex and area LIP. Namely, the auditory and visual spatial properties
of LIP neurons (Mullette-Gillman et al., 2005; Mullette-Gillman et al., In Press), which underlie
area LIP's role in forming extra-personal spatial representations of attention, salience, and other
related factors.

Three important points emerge from the Mullette-Gillman studies (2005; In Press). First,
bimodal auditory and visual LIP neurons code comparable regions of auditory space. Second,
the reference frame of LIP activity during the presentation of a visual or an auditory stimulus
is complex and differs from that previously reported (Cohen et al., 2002; Stricanne et al.,
1996). That is, LIP neurons do not preferentially code visual and auditory spatial information
in a canonical eye- or head-centered reference frame1, respectively. Instead, the reference
frame of both visual and auditory activity can be best described as existing within a continuum
of reference frames from eye-centered to head-centered representations. Within this
continuum, the auditory and visual reference frames of bimodal LIP neurons are in rough
correspondence. Finally, when the monkeys were actually saccading to the location of the
auditory or visual target, we found that LIP activity was still not represented in an eye-centered
reference frame but continued to exhibit this head-to-eye-centered continuum. We did, though,
find that between the time of target presentation to the saccade time there was a slight
improvement in the correspondence between visual and auditory signals: auditory signals
shifted their coordinates to become slightly more similar to the coordinates of the visual signals.
Whereas the rationale as to why the nervous system uses this continuum of reference frames
is not known, it is seen in other parietal regions (Schlack et al., 2005) and other cortical systems
(Batista et al., 2007; Wu et al., 2006; Wu et al., 2007) suggesting that it may be a ubiquitous
computational format (Pouget et al., 1997). Another possibility is that trying to define the
reference frame of cortical (or brainstem) activity in a format that is based on sensory

1A reference frame can be thought of as a set of axes that describes the location of an object. In the earliest stages of sensory processing,
auditory, visual, and other sensory signals are coded in different reference frames. For example, describing the location of an auditory
stimulus depends initially on the brain's capacity to correlate differences between the time of arrival and intensity of a sound at the two
ears with a location, as well as the brain's ability to correlate the location-dependent filtering properties of ears/head with a sound location.
Consequently, identifying the location of a sound depends on the location of the head relative to the location of the sound. This reference-
frame is referred to as a “head-centered” reference frame. In contrast, describing the location of a visual stimulus depends initially on
the pattern of light that falls on the retinas and the resulting pattern of activity in the photoreceptors. That is, an “eye-centered” reference
frame.
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properties, muscle forces, etc. may be too simplistic or even ultimately incorrect (Batista et al.,
2007; Mullette-Gillman et al., In Press). That is, there is no a priori reason to believe that just
because LIP neurons are involved in some aspect of spatial processing, they have to represent
that information in a code that is dependent on the sensory stimulus or the eventual motor act
(Batista et al., 2007).

Conclusion
An underlying premise of many LIP studies is that area LIP's role in goal-directed behavior is
the same regardless of whether the stimulus is auditory or visual (Cohen et al., 2002). However,
as we have discussed above, there are substantial functional differences between auditory and
visual LIP activity; since these studies used a head-fixed preparation, a significant confound
in the monkeys' behavior and the subsequent neural activity may have been introduced
(Populin, 2006). Consequently, it is reasonable to hypothesize that these differences do not
relate entirely to differences between stimulus saliency, which suggests an alternative role for
auditory signals in area LIP.

We hypothesize that area LIP does not perform the same computations on auditory and visual
signals (e.g., reflect their salience as a function of firing rate). Instead, auditory and visual
signals may play substantially different roles. One possibility is to consider that area LIP is
essentially a visual structure and that one of the main functions of auditory signals, and perhaps
other extra-visual signals, is to modulate/enhance the computations that area LIP performs on
visual stimuli. As such, we suggest that future studies test how the combined integrative effect
of simultaneous auditory and visual presentation (Alais et al., 2004; Stein et al., 1993)
modulates LIP neurons using more behaviorally-relevant tasks (Populin, 2006). For instance,
if there are multiple visual stimuli, a concurrent auditory stimulus at the location of one of the
visual stimuli may increase its salience (Kusunoki et al., 2000) and allow for attentional shifts
(Goldberg et al., 2002) or eye-movement plans (Snyder et al., 2000) toward its location. Area
LIP's primary role then may be to create a visual representation of extra-personal space in
which extra-visual signals are used to modulate these representations.
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