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Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, usually fatal, form of interstitial lung disease
characterized by failure of alveolar re-epithelialization, persistence of fibroblasts/myofibroblasts,
deposition of extracellular matrix, and distortion of lung architecture which ultimately results in
respiratory failure. Clinical IPF is associated with a histopathological pattern of usual interstitial
pneumonia (UIP) on surgical lung biopsy. Therapy for this disease with glucocorticoids and other
immunomodulatory agents is largely ineffective and recent trials of newer anti-fibrotic agents have
been disappointing. While the inciting event(s) leading to the initiation of scar formation in UIP
remain unknown, recent advances in our understanding of the mechanisms underlying both normal
and aberrant wound healing have shed some light on pathogenetic mechanisms that may play
significant roles in this disease. Unlike other fibrotic diseases of the lung, such as those associated
with collagen vascular disease, occupational exposure, or chemotherapeutic agents, UIP is not
associated with a significant inflammatory response; rather, dysregulated epithelial–mesenchymal
interactions predominate. Identification of pathways crucial to fibrogenesis might offer potentially
novel therapeutic targets to slow or halt the progression of IPF. This review focuses on evolving
concepts of cellular and molecular mechanisms in the pathogenesis of UIP/IPF.
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Introduction
Pulmonary fibrosis is the end result of a variety of insults to the lung. Antecedent injuries to
the lung may be recognized, as with chemotherapy [1], collagen vascular disease [2], or
inhalational injury [3]. However, in idiopathic pulmonary fibrosis (IPF) [also termed
cryptogenic fibrosing alveolitis (CFA)], the inciting insult remains unidentified. In 1969,
Liebow and Carrington first classified interstitial pneumonias into five distinct categories,
based on histological features [4] (Table 1). Subsequently, giant cell interstitial pneumonia
(GIP) was excluded from the category of IPF because GIP is the histological manifestation of
hard-metal pneumoconiosis [5]. The classification scheme of interstitial lung diseases has
undergone numerous revisions and currently, seven distinct subtypes of idiopathic interstitial
pneumonia (IIP) have been proposed by the American Thoracic Society/European Respiratory
Society (ATS/ERS): usual interstitial pneumonia (UIP), desquamative interstitial pneumonia
(DIP), respiratory bronchiolitis interstitial lung disease (RB–ILD), acute interstitial pneumonia
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(AIP), non-specific interstitial pneumonia (NSIP), cryptogenic organizing pneumonia (COP),
and lymphoid interstitial pneumonia (LIP) (Table 2) [6]. Of these histopathological subtypes,
UIP is the histological pattern that characterizes patients with the clinical entity of IPF [6].
Based on the high proportion of UIP/IPF among the IIPs, its overall poor prognosis, and its
unresponsiveness to currently available therapy, the remainder of this review will focus on
mechanisms of fibrosis associated with UIP/IPF.

Epidemiology and clinical features of IPF
Epidemiology

IPF is a relatively rare disease, although the true prevalence is unknown. Prevalence rates of
three to six cases per 100 000 population are often cited [7], but a recent study in Finland
demonstrated a nationwide prevalence of 16–18 per 100 000 [8]. Subgroup analyses
demonstrate a higher prevalence of IPF among older individuals. In one study, the prevalence
of IPF was 2.7 per 100 000 population among adults between age 35 and 44 years but rose to
175 per 100 000 population in individuals older than 75 years [9]. The mean age at diagnosis
of IPF is 66 years [7,10]. IPF is more common in males than in females and some studies
indicate that an environmental or occupational exposure to dusts, organic solvents, or urban
pollution increases the risk of developing IPF [7,11,12].

Recently, data have emerged linking both genetic and environmental factors to the
development of UIP/IPF. A familial form of UIP has been reported in 0.5–2.2% of cases [13]
and a number of candidate genes encoding both cytokines and structural proteins have been
identified in large kindreds [14,15]. Using linkage analysis, Thomas et al demonstrated a
mutation in the pro-surfactant protein-C (proSP-C) gene encoding a leucine → glutamine
substitution in the C-terminus [14]. This mutation results in improper intracellular trafficking
of proSP-C in type II alveolar epithelial cells, as evidenced by electron microscopy showing
aberrant subcellular localization of the protein and abnormal lamellar bodies [14]. These
findings suggest that in this kindred, improper cellular processing of proSP-C may contribute
to pulmonary fibrosis.

Pantelidis et al evaluated single nucleotide polymorphisms (SNPs) in four pro-inflammatory
genes of 74 unrelated patients with clinical or biopsy-proven CFA [15]. Candidate genes
included tumour necrosis factor-α (TNF-α), lymphotoxin-α (LTα), high affinity TNF-α/LTα
receptor 2 (TNF-RII), and interleukin-6 (IL-6). Although no difference existed between
patients and controls with respect to genotype, allele, or haplotype frequencies, a strong
association between carriage of the IL-6 (intron 4G) allele and the TNF-RII (1690C) allele was
observed in patients, but not in controls [15]. Additionally, these investigators identified a
strong linkage between the IL-6 (intron 4GG) genotype and disease progression as measured
by diffusion capacity for carbon monoxide (DLCO), suggesting that progression of disease may
be associated with decreased production of IL-6 [15].

Data implicating the major histocompatibility (HLA) system are sparse. In one study, Fulmer
et al found no difference when comparing 35 separate antigens of the HLA-A and HLA-B loci
in 33 patients with IPF with 329 healthy controls [16]. However, Libby et al identified an
increase in HLA-DR2 in patients with IPF compared with controls [17]. It should be noted that
both of these studies were performed at a time when the term ‘IPF’ encompassed many different
histopathological entities and may not be representative of UIP/IPF.

Environmental factors have also been thought to contribute to the development of pulmonary
fibrosis. In 1977, Millar reported a case of infectious mononucleosis in a woman with
pulmonary fibrosis [18]. Since that time, numerous investigators have evaluated a possible link
between viral infection and pulmonary fibrosis. Egan et al first demonstrated evidence of
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Epstein-Barr virus (EBV) replication in lower respiratory tract epithelial cells of patients with
CFA [19]. Yonemaru et al subsequently showed increases in both cytomegalovirus (CMV)
and EBV viral capsid antigen IgG and complement fixation titres in patients with IPF and
connective tissue disease-related pulmonary fibrosis (CTD-PF) compared with controls or with
patients with sarcoidosis or emphysema [20]. However, Wangoo et al evaluated the presence
of EBV RNA and DNA in lung biopsy specimens from 12 patients with CFA compared with
biopsy specimens from three normal controls and 12 patients with other diffuse lung diseases
[21]. These investigators reported no difference in EBV antibody staining between patients
and controls, no evidence for EBV RNA by in situ hybridization in any patient, and no
difference in EBV DNA by polymerase chain reaction (PCR) [21]. This supports their
conclusion that EBV infection is not associated with CFA. In contrast, Stewart et al observed
that lung biopsy specimens from 12 of 27 (44%) patients with IPF stained positively for EBV
compared with 3 of 28 (10%) controls (p = 0.005) [22]. Additionally, 13 IPF patients (48%)
but only four controls (14%) were EBV-positive by PCR (p = 0.007) [22]. These investigators
subsequently showed that a rearrangement of EBV DNA termed EBV WZhet was associated
with active EBV replication and was found in the peripheral blood of 16/27 (59%) IPF patients
compared with 0/26 (0%) lung transplant recipients and 1/24 (4%) normal blood donors [23].
This suggested an association between this DNA rearrangement pattern and IPF.

Together, these data suggest a potential link between genetic or environmental factors that may
predispose to the development of UIP/IPF in a subset of patients.

Clinical features
Patients with IPF typically complain of a dry, non-productive cough and dyspnoea. Dyspnoea
is often associated with exertion early in the disease course, but usually progresses to shortness
of breath at rest [24]. On physical examination, bi-basilar, end-expiratory rales are appreciated
in greater than 80% of patients [25]. Clubbing is noted in up to half of all patients [7]. Late in
the course of the disease, cyanosis of the lips and fingers as well as signs of pulmonary
hypertension may be seen [26]. Laboratory evaluation of patients with suspected UIP is
primarily to rule out alternative causes of interstitial lung disease, such as sarcoidosis or CTD-
PF. There are no laboratory tests specific for the diagnosis of UIP.

Restrictive pulmonary physiology is the classic finding on pulmonary function testing in IPF
[27]. When a patient has concurrent emphysema, lung volumes may be relatively preserved
[28]; however, the DLCO is disproportionately reduced [29]. Severe derangements in DLCO
(<45%) and VC (<50%) are associated with increased mortality [30].

Greater than 90% of patients with UIP will have abnormal chest radiographs at the time of
diagnosis [7]. The characteristic pattern is diffuse bilateral interstitial or reticulonodular
infiltrates, most common in the basilar and subpleural regions of the lung [31]. Pleural disease
and lymphadenopathy are rare and suggest an alternative diagnosis. Similar radiographic
findings may be seen in secondary causes of pulmonary fibrosis including pneumoconioses
and CTDPF [32].

High-resolution CT (HRCT) scanning has revolutionized the diagnostic evaluation of patients
with suspected UIP. HRCT uses thin sections (1–2 mm slices) with special reconstruction of
images that allows for enhanced visualization of lung parenchyma. Patterns typically seen
include coarse reticular or linear opacities (intralobular and interlobular septal thickening) with
a predilection for the periphery and lower lobes of the lungs, honeycomb cysts, and traction
bronchiectasis [33]. Ground glass opacities (ill-defined hazy zones representing active
alveolitis or fibrosis of the intralobular and alveolar septae) can be present; if they are the
predominant pattern, it may indicate another subtype of IIP [34,35]. Extensive honeycombing,
septal thickening, and a lack of ground glass opacities reflect a poor prognosis.
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Diagnostic certainty of IPF is improved with a surgical lung biopsy showing a UIP pattern.
Transbronchial lung biopsies usually do not allow for distinction among the various idiopathic
interstitial pneumonias because of the limitations of the small biopsy size. Video-assisted
thoracoscopic surgical (VATS) biopsy is the preferred method of obtaining lung tissue, as this
procedure offers a similar yield to open thoracotomy [36]; VATS can be performed with
relative ease and decreased morbidity [37].

Histopathology
UIP typically demonstrates a heterogeneous appearance, on low-power magnification, of
normal-appearing lung alternating with areas of peripheral fibrosis, interstitial inflammation,
and honeycomb changes [25], the so-called ‘temporal heterogeneity’ that is a hallmark of the
disease (Figure 1). The inflammatory component is typically mild and consists primarily of
lymphocytes and plasma cells. Other inflamma-tory cells such as neutrophils and eosinophils
may be present, but are not abundant. Dense, relatively acellular, collagen bundles with smooth
muscle meta-plasia can be seen on higher-power magnification. At the border between fibrotic
and normal lung are collections of fibroblasts/myofibroblasts, termed fibroblastic foci, that are
thought to represent the active lesion of UIP (Figure 2) [38]. Alveolar epithelial injury with
hyperplastic type II pneumocytes is often seen at areas of active fibrosis [39]. Honeycomb
changes are depicted by enlarged, cystic airspaces lined by hyper-plastic type II pneumocytes.

The presence of fibroblastic foci may be an important prognostic factor in IPF/UIP. Nicholson
et al devised a semi-quantitative scoring system which grades four separate histological
features (on a scale from 0 to 6): extent of fibroblastic foci, extent of interstitial mononuclear
infiltrates, extent of established fibrosis, and extent of intra-alveolar macrophage accumulation
[40]. These investigators showed that extent of fibroblastic foci strongly correlated with
decreased Forced Vital Capacity (FVC) and DLCO as well as mortality [40]. These data are in
agreement with those of King et al, who devised a separate semi-quantitative scoring system
to evaluate surgical lung biopsies of patients with UIP [41]. Biopsy scores were obtained for
14 histopathological features, which culminated in the derivation of four factor scores: the
‘fibrosis factor’, the ‘cellularity factor’, the ‘alveolar space cellularity factor’, and the
‘granulation and young connective tissue factor’ [41]. Controlling for age, gender, and smoking
status, these researchers demonstrated that the granulation and young connective tissue score
was a strong predictor of survival [41]. Together, these two studies suggest that the number of
fibroblastic foci and the extent of granulation tissue and young connective tissue seen on
surgical lung biopsies of patients with UIP/IPF may assist in predicting survival.

Mechanisms of fibrogenesis
Alveolar epithelial cells (AECs): targets of early injury

The normal alveolar basement membrane is lined with alveolar epithelial cells (AECs), which
can be subdivided into type I and type II pneumocytes. Ninety-five per cent of the alveolar
surface is covered with type I pneumocytes. These cells are metabolically active and harbour
cell surface receptors for a variety of substances, including extracellular matrix (ECM)
proteins, growth factors, and cytokines. The remaining 5% of alveolar lining cells consist of
cuboidal epithelia (type II pneumocytes). Type II pneumocytes secrete surfactant, facilitate
transepithelial movement of water, function as antigen presentation cells, and represent a
reservoir of progenitor cells that regenerate the alveolar epithelium following lung injury
[42].

It has been postulated that UIP may be the result of abnormal ‘wound healing’ of the alveolar
epithelium after an injury [24,38]. In surgical lung biopsies of patients with UIP, morphological
changes including hyperplastic type II cells, elongated type II cells, and bronchiolar cells lining
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areas of honeycomb lesions can be seen [43]. In addition, the apposition of denuded basement
membrane and the obliteration of the airspace may result from lack of alveolar epithelial cell
proliferation and differentiation [44]. Evidence for an altered AEC phenotype is also supported
by data demonstrating that AECs from patients with UIP synthesize a different set of
cytokeratins than AECs from normal lung [45]. Epithelial cell function is often determined by
the type of cytokeratin expression; thus, AECs in UIP may have both different form and
function when compared with alveolar epithelial cells in normal lung.

Biopsy specimens of patients with UIP often demonstrate areas of denuded alveolar basement
membrane. This implies either an increase in AEC death (necrosis or apoptosis), a lack of
proliferative capacity of AECs, or a combination of both processes. Uhal et al demonstrated
that myofibroblasts from patients with fibrotic lung disease secrete soluble factor(s) that induce
apoptosis of human AECs [46]. A follow-up study from this same group of investigators
showed that angiotensin II accounted for the majority of this effect; the addition of angiotensin
II antibodies or receptor antagonists prevented fibrotic-lung fibroblasts from inducing
apoptosis in AECs [47]. Other evidence for AEC apoptosis in the pathogenesis of UIP is
provided by Maeyama et al, who demonstrated an up-regulation of the pro-apoptotic Fas–Fas
ligand system in AECs from patients with pulmonary fibrosis [48].

Classically, local expansion of type II AECs following lung injury was thought to re-populate
denuded alveolar basement membranes in response to growth factors such as hepatocyte
growth factor and keratinocyte growth factor [43]. Recent data from animal models of lung
injury also suggest that bone marrow-derived progenitor cells can differentiate into type I AECs
[49,50], suggesting an additional mechanism for re-epithelialization of damaged alveoli.
However, this mechanism has not yet been demonstrated in humans and further studies are
needed to determine whether human bone marrow-derived cells possess the capacity to
transdifferentiate into alveolar epithelium.

In the normal alveolus, an intact AEC lining may exert a homeostatic effect on local fibroblasts/
mesenchymal cells. A discontinuous and/or damaged layer of AECs, as in patients with UIP,
may induce the secretion of stimulatory molecules or result in diminished synthesis of
inhibitory factors. Prostaglandin E2 (PGE2) is a potent inhibitor of fibroblast collagen synthesis
and proliferation [51,52]. In broncho-alveolar lavage (BAL) fluid from patients with UIP,
PGE2 levels have been shown to be approximately half those of control patients [53],
suggesting that loss of AECs or the diminished capacity of AECs to synthesize PGE2 may
contribute to the pro-fibrotic milieu in the alveolar space.

In addition to prostanoids, AECs also synthesize numerous growth factors and cytokines that
activate fibroblasts/mesenchymal cells. AECs are the primary source for transforming growth
factor-beta (TGF-β) [54], a critical cytokine in the transdifferentiation of fibroblasts into the
activated myofibroblast phenotype. Additionally, AECs produce platelet-derived growth factor
(PDGF) [55], tumour necrosis factor alpha (TNF-α) [56], and endothelin-1 [57]. PDGF is a
potent mitogen and chemoattractant for fibroblasts; PDGF mRNA and protein have been shown
to be up-regulated in epithelial cells of patients with IPF [55]. TNF-α is secreted by hyperplastic
type II AECs in pulmonary fibrosis [56,58] and promotes DNA synthesis and proliferation of
fibroblasts [59]. Endothelin-1 has also been shown to stimulate fibroblast DNA synthesis and
proliferation as well as to induce transdifferentiation of fibroblasts to myofibroblasts [60].

AECs also likely contribute to the pathogenesis of UIP by regulating the plasminogen
activation system. The plasminogen activation system is critical to normal wound healing
[61]. Plasminogen, activated by tissue-type plasminogen activator (tPA) or urokinase-type
plasminogen activator (uPA) to plasmin, is the primary fibrinolytic enzyme responsible for
degrading fibrin clots and allowing for wound reepithelialization. Plasminogen, and thus
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plasmin activity, is negatively regulated by plasminogen activator inhibitors (PAIs). Animal
models suggest that over-expression of PAIs (which inhibits plasmin activity) promotes
fibrosis, whereas lack of PAIs (allowing greater plasmin activity) prevents the formation of
significant fibrosis [62]. Additionally, overexpression of uPA was shown to decrease fibrosis
in a murine model [63]. In UIP, the plasminogen activation system has been implicated in
regulating fibrin turnover and ECM degradation [42]. It is known that AECs synthesize both
PAI-1 and urokinase [64,65] as well as the urokinase receptor, uPAR [66]. Kotani et al showed
that BAL fluid from patients with IPF contains significantly greater amounts of tissue factor
and PAIs than normals, whereas uPA levels were similar between the two groups [67]. These
studies suggest that the alveolar microenvironment in IPF favours a pro-coagulant, anti-
fibrinolytic state that favours ECM accumulation and retards alveolar re-epithelialization.

Fibroblasts/myofibroblasts: key effector cells in fibrogenesis
Fibroblasts are the most versatile of the connective-tissue cell family and possess a remarkable
capacity to undergo various phenotypic conversions between distinct but related cell types.
This phenotypic plasticity is an important feature of the responses to many types of tissue injury
[61]. Fibroblasts participate in repair and regenerative processes in almost every human tissue
and organ. Their primary function is to secrete ECM proteins that provide a tissue scaffold for
normal repair events such as epithelial cell migration. Eventual dissolution of this scaffold and
apoptosis of fibroblasts/myofibroblasts are critical for restoration of normal tissue architecture
[68,69].

Fibroblasts with an activated myofibroblast phenotype have been described in the fibroblastic
foci that characterize UIP [39,70]. Gabbiani et al first described the transient appearance and
disappearance of these so-called myofibroblasts in the granulation tissue of healing cutaneous
wounds [71]. Myofibroblasts possess ultrastructural features intermediate between fibroblasts
and smooth muscle cells and have been defined by their ability to express contractile proteins
[72]. This contractile function is important in the re-epithelialization process by bringing
wound margins closer together. In addition, myofibroblasts represent an ‘activated’ fibroblast
phenotype with high synthetic capacity for ECM proteins [73,74], growth factors/cytokines
[75], growth factor receptors [76], integrins [77], and oxidants [78,79]. Persistence of
myofibroblasts in areas of active fibrosis appears to be a consistent finding in the pathology of
human fibrotic diseases involving diverse organ systems [38,80].

Several studies have attempted to characterize the phenotype of fibroblasts in UIP/IPF. These
studies have sometimes produced conflicting results, which may be related to inherent tissue
fibroblast heterogeneity and changes in cellular microenvironment, including in vitro culture
conditions. Fibroblasts derived from fibrotic tissue have been reported to demonstrate both
high and low proliferative capacities [81–83]; lower rates appear to be associated with more
advanced fibrosis [81]. Fibrotic lung fibrob-lasts demonstrate anchorage-independent growth
in soft agar, whereas normal fibroblasts do not [84]. In vivo apoptotic rates of fibroblasts/
myofibroblasts from UIP appear to be lower than those found in the fibromyxoid connective
tissue of bronchiolitis obliterans organizing pneumonia [85]; paradoxically higher rates have
been observed in in vitro culture of UIP fibroblasts [83]. The discrepancies in growth,
apoptosis, and myofibroblast pheno-type most likely reflect differences in culture technique,
passage number, and inter-patient variability. Newer techniques, such as laser capture
microdis-section (LCM), have been proposed to address these inherent problems related to
tissue heterogeneity [86]. Coupled with gene expression and protein expression arrays, LCM
of fibroblastic foci fibrob-lasts will allow investigators to define the pheno-type of the active
lesion in UIP fully and more accurately.

UIP fibroblasts possess a highly synthetic phenotype and produce a number of ECM proteins
and integrin molecules [39,70,83,87,88]. This is accompanied by imbalances in the production
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of matrix metalloproteinases (MMPs) and tissue inhibitors of metal-loproteinases (TIMPs)
[83,89]. In particular, TIMP-2 expression by UIP fibroblasts/myofibroblasts appears to
contribute to the irreversible structural remodelling in this disease [90–92]. Myofibroblasts in
UIP have been shown to secrete angiotensin peptides that may induce apoptosis of adjacent
alveolar epithelial cells [46,47,93]. Other phenotypic characteristics described in UIP
fibroblasts include enhanced migratory capacity [94], increased fibroblast contractility [95],
and diminished cyclooxygenase-2 expression/prostaglandin E2 synthesis [96]. Moreover,
fibroblasts themselves express surface receptors such as CD40 typically associated with
immune cells and are capable of producing a number of chemokines and cytokines [97–99].
Thus, fibroblasts and myofibroblasts, with their variegated phenotypes and multiple roles,
appear to be key effector cells in the pathogenesis of fibrosis.

Neutrophils and other inflammatory cells: effector cell or bystander?
The role of neutrophils and other inflammatory cells such as eosinophils, mast cells, and
lymphocytes in the pathogenesis of IPF is largely unknown. Neutrophils have been more
extensively studied in pulmonary fibrosis than other inflammatory cells, but data demonstrating
an active role for these cells in the late stages of UIP/IPF are scant. A number of studies have
demonstrated an association between the presence of inflammatory cells and disease [100–
107]; however, the precise cause–effect relationship is unclear.

Neutrophils circulate in blood as quiescent cells and express small quantities of surface proteins
that serve as adhesion molecules [108]. Once recruited to sites of injury, neutrophils undergo
a variety of functional changes affecting cellular adhesion, trans-migration, and the release of
toxic products. Neutrophils contain a large number of hydrolytic enzymes and other toxic
molecules in their granules, including neutrophil elastase, lysozyme, myeloperoxidase, and
members of the MMP family [109]. In addition, these cells can generate various oxidant
species, including superoxide anion (O2

–), hydrogen peroxide (H2O2), and hypochlorous acid
(HOCl) [110,111]. Extracellular release of these toxic substances can result in lung
parenchymal and stromal cell injury, as well as degradation of key ECM components of lung
tissue. In addition to elastin, neutrophil elastase can degrade collagen types III and IV, laminin,
fibronectin, and core proteins of proteoglycans [112]. Furthermore, elastase can cleave pro-
enzyme forms of MMPs into the fully active form of these enzymes [113]. Elastase burden
was found to be increased in BAL fluid from patients with IPF [107], suggesting a potential
role for this protease in the pathogenesis of IPF.

Of the enzymes found in neutrophil granules, MMPs (notably MMP-2 and MMP-9) have been
most closely linked with degradation of ECM components in UIP [89,91]. Exuberant
expression of neutrophil-derived serine proteinases and MMPs has also been observed in the
airspace and lung interstitium of patients with IPF [91,114]. These proteases may propagate
abnormal tissue remodelling in IPF by damage to alveolar basement membranes. An alternative
hypothesis suggests that enhanced protease expression may be overly compensated for by even
greater expression of TIMPs and other anti-proteases in the lung interstitium of IPF patients,
which would have the net effect of diminished proteolytic activity and progressive ECM
accumulation. In support of this concept, Selman et al observed that IPF lungs display increased
TIMP expression compared with MMP expression, suggesting an imbalance between MMPs
and TIMPs [89].

In addition to proteolytic enzymes, the neutrophil is an important source of reactive oxygen
species [111]. Nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase is the
predominant enzyme responsible for oxidant production. Upon neutrophil activation, NADPH-
oxidase generates O2

•–, which dismutates to H2O2. Neutrophil-derived myeloperoxidase then
catalyses the conversion of H2O2, a relatively weak oxidant, into the more potent oxidant HOCl
[115]. HOCl and other oxidants may directly convert pro-metalloproteinases into active
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enzymes [116], further altering the protease–anti-protease balance. Superoxide anion
generated by activated neutrophils can also perpetuate tissue injury by reacting with nitric oxide
released by neutrophils, macrophages, endothelial cells, and fibroblasts to form the highly
reactive species peroxynitrite and peroxynitrous acid [117]. These metabolites can induce lipid
peroxidation in vitro; enhanced peroxynitrite activity has been observed in the lungs of patients
with IPF [118]. Furthermore, oxidants produced by neutrophils and myofibroblasts may
mediate cross-linking of ECM proteins that contribute to the remodelling process [119].
Finally, reactive oxygen species can further amplify neutrophilic inflammation and injury by
activating key cellular transcription factors, including NF-κB, AP-1, and JAK-STAT, critical
for the activation of proinflammatory and pro-fibrotic genes [120,121].

It remains possible that neutrophils do not play an active role in the pathogenesis of IPF, but
might instead be ‘bystander’ cells recruited in response to mediators released during the fibrotic
response. Notably, a family of chemotactic cytokines, referred to as CXC chemokines, exerts
potent neutrophil chemoattractant activity and are critical mediators of angiogenesis [122]. In
human pulmonary fibrosis, the CXC chemokine family, which consists of both angiogenic and
angiostatic molecules, is thought to be important in influencing angiogenesis [123,124]. It has
been shown that the expression of the neutrophil chemotactic CXC chemokines interleukin-8
(IL-8/CXCL8) and epithelial neutrophil-activating peptide (ENA)-78/CXCL5 is markedly
increased in the BAL fluid and cells isolated from patients with UIP, compared with patients
with sarcoidosis or normal volunteers [125]. IL-8/CXCL8 mRNA expression positively
correlated with the degree of BAL neutrophilia. However, there was a distinct lack of
neutrophilic infiltration in areas of lung where ENA-78/CXCL5 was expressed, suggesting a
role for ENA-78/CXCL5 in UIP that is distinct and separate from neutrophil chemotactic
effects [124]. Similarly, in a murine model of bleomycin-induced pulmonary fibrosis, these
investigators demonstrated that macrophage inflammatory protein (MIP)-2, the murine
functional homologue of IL-8 [126], mediates angiogenesis but not neutrophil recruitment
[127]. Specifically, neutralization of MIP-2 activity resulted in decreased angio-genesis and
attenuated pulmonary fibrosis, but had no effect on the influx of neutrophils into the lung, again
suggesting that the neutrophil chemoattractant properties and angiogenic properties of the CXC
chemokine family may be quite distinct.

It should be noted that the role of angiogenesis in the development of UIP/IPF remains
controversial. Angio-genesis is required for initiation of wound healing and formation of
granulation tissue [128]. However, as scar tissue matures, there is an ordered regression of
vessels with deposition of collagen and contraction of the wound bed by myofibroblasts
[128]. In support of the wound healing model of UIP/IPF, Renzoni et al recently observed a
net vascular regression in lung biopsy specimens from patients with CFA or with fibrosing
alveolitis associated with systemic sclerosis, compared with control samples [129]. These
investigators demonstrated decreased vascular density as well as decreased total vascular area
in specimens of CFA compared with normals. This finding is in agreement with the earlier
findings of Cassan et al, who identified decreased mean capillary surface area in nine patients
with CFA compared with normal controls [130].

Eosinophils were first postulated to be involved in the pathogenesis of IPF in 1977, when
Reynolds et al demonstrated a significant increase in BAL fluid eosinophils from patients with
pulmonary fibrosis compared with controls [103]. Further investigation revealed that a higher
eosinophil count in BAL fluid predicted failure to respond to corticosteroid therapy and a
greater likelihood of disease progression [131]. Elevated eosinophil counts and increased levels
of an eosinophil-specific protein (eosinophil cationic protein, ECP) in BAL fluid have been
shown by other investigators [132,133], but the role of eosinophils in fibrogenesis remains
obscure. Wells et al compared BAL fluid cellularity from patients with IPF and patients with
scleroderma-associated pulmonary fibrosis. These investigators observed that eosinophil
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counts were higher in patients with IPF than in patients with scleroderma, suggesting that
eosinophils might play a pathogenetic role in IPF and contribute to a worse prognosis [101].

Mast cells have been found in increased numbers in biopsy specimens of patients with IPF
[134,135]. In addition, mast cell products, notably mast cell tryptase and histamine, have been
recovered from the BAL fluid of patients with IPF [136]. Ultrastructurally, on electron
microscopy, mast cells in tissue specimens of IPF show evidence of degranulation [137] and
close apposition to fibroblasts [138], suggesting a potential role for mast cells in the
pathogenesis of UIP. Incomplete degranulation on electron microscopy suggests a chronic
‘piecemeal’ degranulation process which contrasts with the total degranulation observed in
anaphylaxis [139]. This ‘piecemeal’ degranulation may result in ongoing tissue injury that
promotes fibrosis.

Therapeutic options for pulmonary fibrosis
Currently, no effective treatment for IPF exists. Therapeutic options for IPF have traditionally
focused on the paradigm that chronic inflammation leads to tissue injury and fibrosis; thus,
corticosteroids have been considered the mainstay of treatment for IPF. However, no
prospective, randomized, placebo-controlled trials evaluating their efficacy in the treatment of
IPF have been performed [25] and recent data suggest that corticosteroids may be harmful
rather than beneficial in these patients [140]. Regimens containing other immunosuppressive
and cytotoxic agents, such as cyclophosphamide [141], azathioprine [142], and colchicine
[143], have been used but confer no benefit compared with steroids alone or, in some cases,
placebo alone. A newer anti-fibrotic agent, pirfenidone, has been proposed in patients with IPF
[144]; a phase III, randomized, multi-centre trial with this agent is planned. Interferon-γ has
also been shown to have promising effects in the treatment of IPF, although a preliminary study
showing efficacy included only 18 patients (nine who received prednisolone and nine who
received prednisolone plus interferon-γ [145]. Additionally, in this pilot study, survival benefits
were not assessed. Recently, a phase III, double-blinded placebo controlled multi-centre
randomized trial of interferon-γ in IPF was completed, but the results of this trial have not yet
been published.

Conclusion
IPF is a progressive, fibrotic process of the distal airspaces and interstitium of the lung that is
characterized by the histological pattern of usual interstitial pneumonia (UIP). Therapy for this
disease with glucocorticoids and other immunomodulatory agents is largely ineffective. UIP
is not associated with a signifi-cant inflammatory response; rather, it appears to result from
dysregulated epithelial–mesenchymal communication (Figure 3). Only recently have we begun
to identify some of the key intracellular pathways and mediators that play a role in the
pathogenesis of UIP [146,147]. As our understanding of the pathogenetic mechanisms in UIP/
IPF increases, the development of more targeted approaches that interfere with fibrogenesis
will help to combat this progressive, disabling and fatal disease.
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Figure 1.
Histopathology of UIP (low power). H&E-stained whole mount section of lung from a patient
with IPF. Note the characteristic peripheral, subpleural location of fibrosis and honeycomb
change. These changes are heterogeneous, with regions of lung parenchyma spared from
fibrosis
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Figure 2.
Histopathology of UIP (higher power). A hallmark of UIP is the heterogeneity, represented by
dense, acellular bundles of collagen with smooth muscle metaplasia (arrow) in close
approximation to the fibroblastic focus (FF), a dense collection of fibroblasts and
myofibroblasts. Cuboidal epithelial cells lining distorted airspaces (which may be undergoing
apoptosis) are seen overlying the fibroblastic focus
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Figure 3.
Overview of some of the key pathogenetic mechanisms in UIP/IPF. Following an unidentified
insult, alveolar epithelial cells become injured and delayed re-epithelialization leads to a
denuded, disrupted basement membrane. A fibrin clot forms early and serves as a provisional
matrix for the migration and proliferation of reparative type I alveolar epithelial cells.
Angiogenic factors may be elaborated, leading to the formation of nascent vasculature early
in the disease process. Neutrophils secrete pro-inflammatory mediators, reactive oxygen
species (ROS) and MMPs, while recruited lymphocytes elaborate the Th2-type cytokines, IL-4
and IL-13. Fibroblasts migrate into the wound and produce extracellular matrix (ECM) proteins
and mediators such as angiotensin II which may further promote alveolar epithelial cell
apoptosis. Alveolar macrophages and epithelial cells secrete TGF-β1, which promotes
myofibroblast differentiation, increases ECM production, and inhibits apoptosis of fibroblasts/
myofibroblasts. As ECM deposition progresses, regression of blood vessels may occur.
Reciprocal communication between alveolar epithelial cells and mesenchymal cells results in
a ‘positive feedback loop’ that promotes ongoing fibrosis and destruction of alveolar
architecture
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Table 1

Original classification of interstitial pneumonia (Liebow)*

Bronchiolitis obliterans with interstitial pneumonia (BIP)

Desquamative interstitial pneumonia (DIP)

Giant cell interstitial pneumonia (GIP)

Lymphoid interstitial pneumonia (LIP)

Usual interstitial pneumonia (UIP)

*
Adapted from ref 4.
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Table 2

New classification of idiopathic interstitial pneumonias (ATS/ERS)*

Acute interstitial pneumonia (AIP)

Cryptogenic organizing pneumonia (COP)

Desquamative interstitial pneumonia (DIP)

Respiratory bronchiolitis–interstitial lung disease (RB-ILD)

Lymphoid interstitial pneumonia (LIP)

Non-specific interstitial pneumonia (NSIP)

Usual interstitial pneumonia (UIP)

*
Adapted from ref 6.
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