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Abstract
The “Paris Guidelines” have begun the process of standardizing reporting for proteomics. New
bioinformatics tools have improved the process for estimating error rates of peptide identifications.
This perspective seeks to consider these advances in the context of proteomics’ short history. As
increasing numbers of proteomics papers come from biologists rather than technologists, developing
consensus standards for estimating error will be increasingly necessary. Standardizing this
assessment should be welcomed as a reflection of the growing impact of proteomic technologies.
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Perspective
It is because proteomics has become so successful that standardizing its reporting is so
important. A decade ago, the quest for the longest list of proteins dominated the laboratories
of many proteome technologists, and reported proteins were rarely questioned by reviewers.
Since that time, the use of LC/MS/MS has become ubiquitous among those who simply want
to apply this technology in answering biological or biochemical questions. This explosion of
new users has amplified the importance of assessing proteomic identifications in standard
ways. The editors of Molecular and Cellular Proteomics, among others, have done the field a
great service by starting the conversation about regularized reporting of proteomic data.1
Nothing could have declared the significance of the automobile as effectively as the passage
of the first United States speed limits in 1901; the standardization of proteomic reporting is a
similar evolution for our nascent field.

The “Paris Guidelines” (http://www.mcponline.org/misc/ParisReport_Final.shtml) were one
of the first documents produced as part of this standardization. They require the following:
“For large scale experiments, provide the results of any additional statistical analyses that
indicate or establish a measure of identification certainty, or allow a determination of the false-
positive rate, e.g., the results of randomized database searches or other computational
approaches.” Both Journal of Proteome Research and Proteomics have adopted versions of
this requirement as well. How should one compute a false-positive rate, though? Should it be
expressed as a probability of correctness2 or as a false-discovery rate (FDR)?3 Should it be
reported for the set of peptides or for the set of proteins? How can searches employing decoy
sequences enable estimation of error?4 What sequences should serve as decoys?5 Should the
false-positive rate characterize the data set in aggregate or be associated with each item on the
list? These are the questions that this field is attempting to answer.
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This issue of Journal of Proteome Research contains three articles that address these questions.
Käll et al. (Käll, L.; Storey, J. D.; MacCoss, M. J.; Noble, W. S. Proteome Res. 2008, 7, 29–
34) from the University of Washington begin their paper with an accessible review of
estimating aggregate error rates at the peptide level. They continue by demonstrating that FDR
estimates may be improved by incorporating the PIT (the percentage of incorrect target
matches). One interesting effect of this computation is that PIT-corrected FDR estimates may
be less conservative than those that are computed simplistically. The authors note that FDR
computations, typically used for estimating aggregate peptide identification errors, can be
extended to individual identifications in the form of q-values.

Two papers from the University of Michigan and Penn State University describe advances in
the development of PeptideProphet,2 a widely used algorithm for inferring per-peptide
identification accuracy. “Semisupervised Model-Based Validation of Peptide Identifications
in Mass Spectrometry-Based Proteomics” (Choi, H.; Nesvizhskii, A. I. J. Proteome Res.
2008, 7, 254–265) describes modifications to PeptideProphet that use information from target-
decoy searches (such as those incorporating protein sequences in both forward and reversed
orientations) to improve peptide discrimination through semisupervised machine learning. In
essence, PeptideProphet can use the observed scores from decoy matches to learn more
accurately how false matches distribute in score. “Statistical Validation of Peptide
Identifications in Large-Scale Proteomics Using Target-Decoy Database Search Strategy and
Flexible Mixture Modeling” (Choi, H.; Ghosh, D.; Nesvizhskii, A. I. J. Proteome Res. 2008,
7, 286–292) describes new modes for discerning sets of true and false peptide identifications
that forego some of the assumptions of the original PeptideProphet. Instead of modeling true
and false scores by manually selected distributions (such as gamma, Gaussian, or Gumbel
distributions), this advance enables this software to work in a more distribution-agnostic
manner. Taken together, these two articles are likely to improve the extent to which
PeptideProphet can be generalized to new peptide identification algorithms, extracting a greater
amount of information from noisy peptide identification data.

At this time, the proteomics field seems to be divided between groups that compute error
estimates for collections of peptide identifications and groups that estimate error for individual
peptides. Arguments for either can certainly be made. The amount of information available for
each peptide match is limited to that reported by the database search algorithm. In the case of
Sequest,6 for example, XCorr and DeltCN are the primary metrics, with additional information
coming from the preliminary score, the precursor mass error, and the number of tryptic termini
observed. Since DeltCN is computed from the XCorrs of the top two matches, these two metrics
clearly contain mutual information. PeptideProphet modifies and combines these subscores
into a single discriminant score for each identified peptide. Discriminant scores are then
mapped to error probabilities. Figures in the new papers from Nesvizhskii’s group argue
convincingly that PeptideProphet’s error probabilities are surprisingly accurate. Strategies for
estimating aggregate errors for peptide collections, however, can be considerably simpler than
the PeptideProphet approach. This simplicity is a compelling argument in its own right. It is
possible that aggregate error rates are more accurate if computed directly rather than summing
over large numbers of individual peptide error rates. Directly comparing these two chief error
estimation strategies is a challenge that has not yet been surmounted.

A similar discussion took place for DNA sequencing during the 1990s. DNA sequencers
produced electropherograms representing the fluorescence traces observed while separating
dye-terminated DNA sequence ladders. Was it sufficient to truncate the error-prone sequences
interpreted from the beginnings and ends of these electropherograms, or should error be
estimated for individual basecalls? Two papers from Ewing et al.7,8 introduced “Phred,” which
became the de facto standard for sequence quality assessment. Individual basecalls were
associated with quality scores reflecting the probability that each base was in error. These
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statistics were then found to be essential in combining sequence “reads” into larger “contig”
sequences in the process of genome sequence assembly.9 It may be that proteomics will come
to a similar resolution of its debate on error rate estimation. If protein inference is substantially
improved through individual peptide probabilities, this may become the dominant means by
which peptide identification data is evaluated.

Conclusion
As the field of proteomics standardizes, it seems clear that the rules for identification reporting
will change. Different groups compute FDR in different ways; for example, Käll et al. prefer
Decoy/Target to the form (2 * Decoy)/(Decoy + Target).10 Publishing in this transitional time
will be aided by authors reporting their evaluation strategies as explicitly as space permits.
This need not be limited to reporting algorithms and formulas. Authors should also consider
reporting protein lists generated at multiple levels of statistical confidence. Groups willing to
publish their raw data sets will make it possible to determine the impact of different
bioinformatic pipelines in protein identification. The next several years should see the
formation of a field consensus on proper proteomic reporting.

As automobiles became commonplace, other technologies evolved to support them, from gas
stations to superhighways. Proteomics has already been supported by the emergence of high-
resolution mass spectrometry, improved separations strategies, and isotopic labeling
technologies in its short lifetime. The chaos of the first years of automobiles soon gave way to
a more orderly world of traffic lights, speed limits, and parking lots. Standardization will bring
this same sense of order and reliability to proteomics. Mass production made automobiles
available at accessible prices, making cars and trucks ubiquitous. Mass spectrometry has only
begun the market penetration it will one day achieve. As the proteomics community develops
a common language to characterize identification data, it is helping to set a course to this future.
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