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Introduction
Research on the regulatory actions of the renin angiotensin system (RAS) continues to provide
a wealth of information on how cells maintain their internal homeostatic environment, regulate
metabolic processes, and adapt or contribute to disease. Not that long ago, the active product
of the system, angiotensin II (Ang II), was considered the single critical hormone product of
an endocrine system involved in regulating blood volume and vascular tone. A revised concept
emerged following the demonstration that renin and angiotensinogen are present in tissues.
These findings suggested that the RAS is comprised of a dual, independently regulated, blood-
borne and tissue systems. Today, a broader and complex system is being revealed by advanced
genetic and molecular tools, as well as the outcome of clinical studies using medications
selective for one or more of the proteins contributing to the generation of angiotensin peptides.

Recognition that the RAS contains both a pressor and depressor arm in exerting regulatory
functions on vascular tone and cellular signaling paved the way for the generation of an
alternate hypothesis as to how an imbalance of their function contributes to cardiovascular
disease.(1) This review summarizes the data supporting the hypothesis of a counter regulatory
arm that within the RAS opposes the actions of Ang II. We build upon these earlier discoveries
to provide a new insight into an additional pathway in which an extended form of angiotensin
I (Ang I), proangiotensin 12 [Ang-(1–12)], may be an alternate substrate for the production of
the biological active angiotensins. A comprehensive evaluation of this topic cannot be achieved
within the assigned space; therefore, only the key elements of the topic will be addressed,
asking for indulgence in not providing a detailed listing of all published studies.

Angiotensin-(1–7): The Paradigm Shift
The period from approximately 1970 to 1980 represented the beginning of a shift in the concept
of how the RAS was involved in cardiovascular pathology. Renewed enthusiasm for its study
was stimulated by the demonstration that the administration of the angiotensin converting
enzyme (ACE) teprotide had a dramatic effect in reducing the blood pressure of hypertensive
subjects. (2) These results prompted many laboratories to undertake newer approaches to the
investigation of the physiology of Ang II, isolate its receptor, and undertake the eventual
synthesis of orally active Ang II receptor antagonists. (3)
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The progress made throughout these exciting discoveries, nevertheless continued to posit Ang
II as the biologically relevant product of the biochemical cascade that initiated by renin
culminated in the production of Ang II. Alternate processes were assumed to have no major
relevance in terms of biological function. The publication of the first description that the N-
terminal derived heptapeptide, angiotensin-(1–7) [Ang-(1–7)], stimulated the release of
vasopressin from rat hypothalamic explants (4) would over time decisively alter the former
view.

Although initial studies found that Ang-(1–7) acted as a vasodilator, (5) further research
showed that this effect could be best demonstrated in isolated vessels, (6;7) in animals in which
the baroreceptors are eliminated, (5) or in conditions in which endogenous levels of Ang II are
increased by maneuvers such as sodium depletion (8;9) or renovascular hypertension. (10)
These findings underscored the concept that Ang-(1–7) acts as a paracrine hormone when
formed in close proximity to the vascular smooth muscle or that its actions depend upon a
change in the signaling effector mechanisms associated with increased expression or activity
of AT1 receptors. This is not an unreasonable possibility since it has been documented that the
antihypertensive action of ACE inhibitors and Ang II receptor antagonists is amplified by
concomitant use of thiazide diuretics.

Over the following decades, research would demonstrate that Ang-(1–7) contributes to the
cardio-renal control of blood pressure via actions that within the heart, kidney, and the blood
vessels opposed the activity of Ang II. (11–13) Ang-(1–7) was shown to reverse the
hypertrophic and profibrotic effects of Ang II in the heart and the vasculature, (14–17) oppose
Ang II-mediated cardiac arrhythmogenic activity, (18) possess antiatherogenic and
antithrombotic actions, (19–24) inhibit oxidative stress and the generation of radical oxygen
species, (25;26), and modulate hematopoietic function. (27;28)

Identification of the mas receptor as the conveyor for the cellular signaling responsible for
Ang-(1–7) actions (29) and the demonstration that genetic deletion of this receptor abrogates
the protective actions of the heptapeptide (30–36) has affirmed its participation in the regulation
of cardiovascular function. Second messenger mechanisms responsible for the cellular
response mediated by the binding of Ang-(1–7) to the mas receptor include inhibition of the
mitogen activated protein (MAP) kinase kinase pathway, stimulation of cellular phosphatases,
inhibition of cyclooxygenase 2 (COX2) and facilitation of nitric oxide release. (28;37–44)

ACE2 and Ang-(1–7)
The pace of research on the counter lever role of Ang-(1–7) on Ang II expanded with the
identification of an ACE homologue, ACE2, that cleaved Ang II into Ang-(1–7). (45;46) As
reviewed elsewhere,(47–50) ACE2 differs from ACE in acting as a mono-carboxypeptidase
to cleave the Pro7-Phe8 bond of Ang II to form Ang-(1–7) and not been inhibitable by exposure
to ACE inhibitors. A stepping stone in the evolving understanding of the role of ACE2 in
cardiac function followed the demonstration that deletion of the ACE2 gene is accompanied
by severe cardiac contractility defects and that ACE2 mRNA protein and expression were
reduced in three different models of experimental hypertension. (51) Selective overexpression
of cardiac ACE2 in rats is associated with reversal of cardiac hypertrophy (52–54) and
progression of atherosclerosis (55) while chemical inhibition of ACE2 worsened the
progression of renovascular hypertension. (56) While ACE2 has been shown to convert Ang
II into Ang-(1–7) in both animals (57) and humans, (58;59) further work is necessary to affirm
whether the predominant effects of ACE2 inhibition are primarily due to prevention of Ang II
metabolism. Nevertheless, this hypothesis is in keeping with the findings of reduced ACE2
expression or activity in experimental models of hypertension, (51;56;60–64) human
prehypertension, (65) heart failure, (65–68) renal disease and type 2 diabetes. (69–72)
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Following the first demonstration that blockade of AT1 receptors in rats with myocardial
infarction were associated with upregulation of cardiac ACE2 mRNA (73), newer studies
suggest that ACE2 gene transcription is negatively regulated by Ang II while Ang-(1–7)
counteracts the inhibitory effect of Ang II on ACE2 gene expression. (74–76)

Altogether, the proposal that Ang-(1–7) opposes the actions of Ang II became the underpinning
for the recognition that the RAS is biochemically constituted by alternate enzymatic pathways
leading to the generation of separate peptides acting at receptors of which the Ang II AT1
receptor subtype is only a part of the system. In accepting a more complex view of the system
and its function in the regulation of blood pressure and vascular structure, the concept that the
arm of the RAS comprised by the ACE2/Ang-(1–7)/mas receptor axis counterbalances the
activity of the other arm (ACE/Ang II/AT1 receptor axis) has gained acceptance. The new
knowledge is stimulating further research into its possible role as, at the very least, a permissive
contributor of the cardio-renal remodeling accompanying the pathogenesis of hypertensive
vascular disease and target-organ damage.

Proangiotensin 12 (a.k.a., Angiotensin-(1–12)
As the science dissecting the contribution of the RAS to cellular function continues to evolve,
a study from Japan challenged in 2006 the idea that renin-dependent hydrolysis of
angiotensinogen (Aogen) constitutes the rate-limiting step for the formation of angiotensin
peptides. (77) Their observations opened a new window toward exploring how angiotensin
peptides may be formed within the interior milieu of cells or their immediate surrounding
environment. The isolation of a new Aogen-derived peptide by Nagata et al. (77) from the rat’s
small intestine contains a shorter form of the synthetic tetradecapeptide synthesized by Skeggs
et al. (78) in 1958. The Aogen-derived substrate was termed by them proangiotensin-12 based
on its role as an Ang II precursor. In following the terminology approved by the Nomenclature
Committee of the Council for High Blood Pressure Research in 1991, (79) we will use the term
angiotensin-(1–12) [Ang-(1–12)] throughout this review, as it best follows the appropriate
convention in defining the amino acid sequence of the polypeptide within the family of
angiotensins (Table 1). Critically important, their study showed the endogenous presence of
the peptide in Wistar rats and its ability to serve as a substrate for the in vitro and in vivo
generation of Ang II, a finding that strongly differentiates Ang-(1–12) from the
tetradecapeptide isolated previously. As illustrated in Figure 1, Ang-(1–12) levels in the small
intestine, liver, lungs, adrenal gland, heart, brain, and pancreas are higher than corresponding
concentrations of Ang I. The ability of Ang-(1–12) to act as an endogenous substrate for Ang
II production followed the observation that Ang-(1–12) vasoconstrictor effects were prevented
by prior blockade with either captopril or the AT1 receptor antagonist candesartan in both the
isolated aorta and the systemic circulation. (77) Their findings attracted the interest of our
laboratory because this was the first time that an extended form of Ang I had been shown to
exist endogenously.

Intrigued by the potential importance of Ang-(1–12) as an alternate substrate for the formation
of angiotensin peptides, we explored the location of Ang-(1–12) in cardiac and renal tissues
of both Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Polyclonal
antibodies targeting the specific sequence of rat Ang-(1–12) revealed intense and selective
staining of cardiac myocytes and renal tubular cells of both strains (Figure 2). The patchy
staining observed in cardiac myocytes of the left ventricle of WKY rats was markedly altered
in the SHR, since almost all the cardiac tissue displayed intense staining. (80) To more precisely
determine whether the visual display of increased Ang-(1–12) immunoreactive staining
reflected a greater endogenous expression of the peptide, we measured Ang-(1–12) tissue
concentrations by radioimmunoassay. These experiments showed that the endogenous content
of Ang-(1–12) in the cardiac tissue of SHR was 47% higher than those found in WKY. (80)
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Rat kidney also displayed selective expression of Ang-(1–12) in the proximal, distal, and
collecting renal tubules within the deep cortical and outer medullary zones in both strains
(Figure 2); however, Ang-(1–12) concentrations in renal tissue were slightly reduced in SHR.
(80)

Differential tissue expression of Ang-(1–12) led to a second study focusing on whether renin
accounted for the cleavage of Ang-(1–12) into Ang II, Ang-(1–7), or both in isolated perfused
hearts from three normotensive and two hypertensive rat strains. (81) As illustrated in Figure
3, Ang-(1–12) caused the rapid appearance of both Ang I and Ang II in the perfusate of WKY
and SHR, with highest levels occurring between 30 and 60 min of recirculation (Figure 3).
Although renin was present both in the cardiac tissue and in the effluent of isolated perfused
WKY and SHR hearts (Figure 3), addition of a selective rat renin inhibitor (WFML-1) did not
prevent conversion of Ang-(1–12) into angiotensin peptides. (81) These data thus excluded
renin from acting on Ang-(1–12). Recent studies in anephric rats are in agreement with this
interpretation. (82) In the anephric state the loss of renal-derived renin resulted in the expected
fall in the circulating concentrations of Ang I and Ang II to barely detectable levels while it
had only a small reducing effect on plasma Ang-(1–12) levels (Figure 4). In contrast, parallel
measures of the cardiac content of angiotensin peptides documented a 91% increase in cardiac
Ang-(1–12) tissue concentrations 48 h after bilateral nephrectomy. (82) Furthermore, absence
of renin transcripts in cardiac tissue of both sham and nephrectomized rats suggests that both
the processing of Aogen into Ang-(1–12) and its secondary conversion to Ang I occurs via a
non-renin pathway. Therefore, the biochemical processes associated with the expression and
cleavage of Ang-(1–12) through a non-renin pathway suggest an additional level of complexity
within the enzymatic pathways accounting for the expression of biologically active peptides.

Insights into the enzymatic pathway (s) responsible for the conversion of Ang-(1–12) into Ang
II have been recently expanded by studies of Prosser et al. (83) in the isolated heart of Sprague
Dawley rats. In this preparation, ex-vivo and in-vivo conversion of Ang-(1–12) into Ang II was
prevented by the administration of chymostatin using combined high performance liquid
chromatography and tandem mass spectrometry analysis (83). Urata et al. (84) first implicated
a functional role for chymase, a member of the serine protease family, as a tissue enzyme
involved in the conversion of Ang I into Ang II. The location of chymase in secretory granules
and its ubiquitous existence in mast, vascular endothelial and mesenchymal cells provides a
mechanism for the intracellular formation of angiotensin peptides and their functioning as
intracrine and paracrine regulators. (85) A potential limitation in terms of ascribing a primary
role for chymase in the metabolism of Ang-(1–12) is the previous report by Nagata et al. (77)
who found that captopril abolished the constrictor response of aortic strips to Ang-(1–12)
exposure, as well as preventing the pressor effect of intravenous Ang-(1–12). Differences in
the findings between both studies may have been influenced by employed methodology and
the use by Prosser et al. (83) of human recombinant chymase. In this connection, rat, but not
human chymase cleaves the Tyr4-Ile5 bond of Ang II. (86) In addition, tissue damage and
edema associated with saline perfusion of the preparation may have increased cell permeability
exposing the peptide to intracellular chymase. (83)

The tantalizing evidence for the existence of an alternate renin-independent substrate for extra-
or intracellular processing of angiotensin peptides awaits further studies as to whether its
biological activity is expressed through the formation of Ang II or may act independently of
its processing into the known biological peptides of the renin angiotensin system. Further
studies should be undertaken to unravel the potential importance of Ang-(1–12) as an alternate
substrate for the formation of angiotensin peptides as well as determining the enzyme(s)
accounting for the cleavage of Ang-(1–12) from Aogen and its subsequent conversion into Ang
II, Ang-(1–7) or both. As research delves further into the potential role of Ang-(1–12) as a
source of tissues angiotensins formation the question of whether increased formation of Ang-
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(1–12) may contribute to pathology comes to the forefront. A preliminary answer to this
question may be derived from the demonstration of increased expression and cardiac content
of Ang-(1–12) in the myocytes of SHR, (80) increased expression of cardiac Ang-(1–12) and
Ang II in both anephric rats, (82) and in those in which hypertension was abated by
administration of a mineralocorticoid receptor antagonist. (87) In addition, the recent
demonstration that endogenous neutralization of Ang-(1–12) via infusion of a selective Ang-
(1–12) antibody into the cerebrospinal fluid of transgenic hypertensive rats lowers blood
pressure provides further evidence for its role as a precursor for the formation of Ang II. (88)

Summary
Even from this limited overview of the intricate internal mechanisms regulating the pathways
determining the production of angiotensin peptides, it is obvious that the RAS is embodied
with a great capacity to use alternate mechanisms in bypassing blockade of primary pathways.
In unraveling the complexity of the biochemical physiology of the system it is also apparent
that formation of angiotensin peptides within the cellular environment may not follow what
has been characterized in the circulation or even the extracellular compartment.

A new level of regulatory complexity is added with the demonstration of Ang-(1–12) as an
alternate substrate contributing to forming angiotensin peptides by a non renin-dependent
mechanism. The tissue formation and processing of the biological active products of the renin
angiotensin system may follow those outlined in Figure 5, whereby synthesis of Ang II and
Ang-(1–7) may be determined by availability of Ang-(1–12) either formed through intracellular
processing of Aogen, uptake from the extracellular compartment, or both. While there are still
many fundamental gaps in uncovering the conditions and processes that determine the enzyme
(s) accounting for either the cleavage of Ang-(1–12) from Aogen or the processing of Ang-(1–
12) to Ang II and Ang-(1–7), the fact remains that this substrate occurs endogenously, is altered
in a genetic model of hypertension, and can clearly produce angiotensin peptides by a non renin
dependent mechanism. As the ubiquitous functions of tissue RAS extends outside the
cardiovascular system, the detection of high concentrations of Ang-(1–12) in the rat gut needs
to be explored since Ang II contributes to jejunal motility and fluid transport. (89;90) Indeed,
the finding that high doses of the direct renin inhibitor aliskiren are associated in humans with
diarrhea (91;92) posits the question as to whether this side-effect of the drug might be related
to increases in the gut content of Ang-(1–12).

Perspectives
Understanding the structure and the dynamics of the complex intercellular web of interactions
that contribute to the function of a living cell requires acceptance that a discrete biological
action can rarely be attributed to an individual molecule. The intertwined relationship between
the ACE/Ang II/AT1 receptor axis and its counter lever ACE2/Ang-(1–7)/mas receptor axis is
now buttressed on a firm literature. A further investigation of the potential clinical impact of
pursuing the hypothesis of whether genetic or acquired deficiency in one or more of the
components of the Ang-(1–7)/ACE2/mas-R axis may explain the progression of hypertensive
vascular disease ought to be pursued with greater vigor as research in this field is extending
knowledge of disease processes both within and outside the cardiovascular system.
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Figure 1.
Data (Means ± SEM), redrawn from Nagata et al (77), illustrate the relative concentrations of
angiotensin-(1–12) [Ang-(1–12)], angiotensin I [Ang I], and angiotensin II [Ang II] in tissues
and plasma from the Japanese-derived strain of normotensive Wistar rats.
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Figure 2.
Representative micrographs of angiotensin-(1–12) immunostaining from cardiac (A) and renal
(B) tissue of WKY and SHR (upper images in each panel). In panel A, faint immunostaining
for Ang-(1–12) is observed in the myocardium of WKY while intense punctuate staining is
expressed in left ventricular myocytes of SHR. Panel B illustrates the expression of Ang-(1–
12) immunostaining in sections of kidney cortex from WKY and SHR. Fluorescent staining
for Ang-(1–12) found in renal tubules is increased in sections obtained from SHR. Nuclei are
indicated by 4′,6-diamidino-2-phenylindole (DAPI) blue fluorescence staining. Lower images
in each panel illustrate merged confocal and phase contrast immunostaining for each organ.
From studies reported in our reference. (80)
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Figure 3.
Panels A to C are peak concentrations of angiotensin peptides resulting from the addition of
10 nmol Ang-(1–12) to the perfusate of isolated hearts from Wistar Kyoto (WKY) and
spontaneously hypertensive (SHR) adult rats. Panel D illustrated renin concentration in the
effluent of isolated perfused hearts from WKY and SHR. Before, peak angiotensin values
obtained 60 min after administration of Ang-(1–12); After, shows the absence of a change in
the peak values of Ang-(1–12) following administration of 1 μmol/L of the rat specific renin
inhibitor WFML-1. Data (Means ± SEM) redrawn from our reference. (81)
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Figure 4.
Plasma and cardiac tissue concentrations of angiotensin peptides in sham and 48 h bilateral
nephrectomized (BNX) rats reveals differential expression of angiotensin-(1–12) [Ang-(1–
12)], angiotensin I (Ang I) and angiotensin II (Ang II) in adult Wistar Kyoto rats. Data redrawn
from our reference (82)
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Figure 5.
Diagram of the biochemical pathways leading to the formation of angiotensin peptides in
tissues. Abbreviations are: ACE, angiotensin converting enzyme; ACE2, angiotensin
converting enzyme 2; NEP, neutral endopeptidase 24.11 and related endopeptidases
contributing to formation of Ang-(1–7) from Ang I. (12)
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