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Our knowledge of the complex mechanisms underlying energy homeostasis has expanded enormously in recent years. Food intake
and body weight are tightly regulated by the hypothalamus, brainstem and reward circuits, on the basis both of cognitive inputs and of
diverse humoral and neuronal signals of nutritional status. Several gut hormones, including cholecystokinin, glucagon-like peptide-1,
peptide YY, oxyntomodulin, amylin, pancreatic polypeptide and ghrelin, have been shown to play an important role in regulating
short-term food intake. These hormones therefore represent potential targets in the development of novel anti-obesity drugs. This
review focuses on the role of gut hormones in short- and long-term regulation of food intake, and on the current state of development
of gut hormone-based obesity therapies.

Obesity is classified by the World Health Organization as
one of the eight principal causes of preventable chronic
disease worldwide [1]. Recent, dramatic increases in its
prevalence have resulted in a major burden on healthcare
resources in many industrialized countries [2–5]. Obesity
substantially increases an individual’s risk of cardiovascular
disease, stroke, peripheral vascular disease, renal failure,
cancer, osteoarthritis and Type 2 diabetes mellitus [6, 7].
Indeed, a prospective cohort study of 114 281 women
revealed an exponential relationship between body mass
index (BMI) and risk of developing Type 2 diabetes mellitus,
with those in the group with highest BMI being 93 times
more likely to develop diabetes than those in the lowest
group, after 14 years of follow-up [8].

Treatment options for obesity are limited. A combina-
tion of dieting and increased physical activity is effective
only for as long as it is adhered to, a challenge even for
participants in randomized trials [9]. Currently available
medications are hampered by significant adverse effects
and are only moderately effective, with weight loss persist-
ing only for as long as treatment is continued [10]. In
contrast, bariatric surgery routinely results in substantial,
permanent weight loss and, despite significant periopera-
tive risks, is the only treatment modality shown to reduce
mortality in severe obesity [11, 12].

The two most commonly performed bariatric proce-
dures are gastric banding and Roux-en-Y gastric bypass

(RYGB). Unlike gastric banding, a solely restrictive proce-
dure, RYGB combines gastric restriction with diversion of
food away from the gastric fundus and proximal small
bowel. Although RYGB is therefore a more complicated
procedure, it generally produces greater weight loss and
more rapid resolution of diabetes than gastric banding
[13–15]. It is likely that this superiority results, at least in
part, from altered patterns of secretion of several gut
hormones, including peptide YY (PYY), glucagon-like
peptide-1 (GLP-1) and oxyntomodulin, which occur after
RYGB but not after purely restrictive procedures [16–18].
Similar patterns of secretion are observed in previously
healthy people who lose weight following small bowel
resections [19].These and other observations have encour-
aged research into the role of gut hormones in regulating
appetite and body weight, and into the possibility that
they could represent valuable new targets in the develop-
ment of anti-obesity medications.

GLP-1

Of all the known gut hormones,GLP-1 has proved to be the
most amenable target for drug development to date. One
of several cleavage products of the proglucagon precursor,
GLP-1 is secreted by L-cells located predominantly in the
distal intestine [20]. Release nevertheless occurs rapidly
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after eating, in proportion to food intake, under the control
of the vagus nerve, enteric nervous system, other circulat-
ing gut peptides and the direct effect of nutrients on
L-cells [21–25].

GLP-1 acts by binding to the GLP-1 receptor (GLP-1R),
a seven trans-membrane domain, G-protein-coupled
receptor [26]. Ligand binding stimulates adenylate
cyclase activity and increases the influx of extracellular
Ca2+ ions [26, 27]. The GLP-1R is expressed in many tissues,
including pancreatic islets, lung, brain, stomach, kidney
and heart [26, 28]. The function of GLP-1 in several of
these sites is not yet understood. However, in pancreatic
islets, it functions as an incretin hormone, i.e. as a physi-
ological, glucose-dependent, insulin secretagogue, the
action of which is to potentiate postprandial insulin
release [25]. In rodents, GLP-1 also increases b-cell mass
[29]. It is a matter of conjecture as to whether a similar
process may occur in humans. GLP-1 also inhibits gluca-
gon secretion, delays gastric emptying [30, 31], and inhib-
its food intake in rats, after administration either
systemically or directly into the central nervous system
(CNS) [32–34]. In humans, acute intravenous (i.v.) infusion
reduces energy intake at a subsequent ad libitum meal
[35], whereas chronic subcutaneous infusion to patients
with Type 2 diabetes mellitus results in weight loss and
improved glycaemic control [36].

It is likely that the satiating effect of GLP-1 is due
not only to delayed gastric emptying but also to direct
effects in the CNS, since peripherally administered
GLP-1 causes neuronal activation in the arcuate nucleus
[37], whereas administration into the CNS causes
neuronal activation in the paraventricular nucleus,
nucleus of the tractus solitarius and area postrema [38,
39]. Furthermore, GLP-1R gene expression is altered in the
hypothalamus and brainstem by fasting and refeeding
[40]. It is also possible that GLP-1 acts via the vagus nerve,
since GLP-1R gene expression occurs in the nodose gan-
glion of the vagus nerve [41], and the effect of peripher-
ally administered GLP-1 on both energy intake and
activation of arcuate nucleus neurons is attenuated by
either bilateral sub-diaphragmatic truncal vagotomy or
bilateral transections of the brainstem–hypothalamus
pathway [37].

Recognition of the incretin and satiety-inducing prop-
erties of GLP-1 has made it a prime target for the devel-
opment of treatments for diabetes and obesity. However,
GLP-1 is not itself suitable for use as a drug, owing to the
rapidity with which it is inactivated and cleared from the
circulation, both by the action of dipeptidyl peptidase-IV
(DPP-4) and by renal clearance [42–44]. This problem has
been circumvented by the development of injectable,
DPP-4-resistant incretin mimetics (i.e. GLP-1R agonists)
and of orally available DPP-4 inhibitors. Examples of both
these classes are currently licensed for the treatment of
Type 2 diabetes mellitus. However, in contrast to the
incretin mimetics, DPP-4 inhibitors have not consistently

caused weight loss in Phase III clinical trials. This may be
because DPP-4 does not function solely as an inactivator
of GLP-1 but, rather, modifies a multitude of peptides,
including cytokines [45].

The first available incretin mimetic is exenatide
(Byetta; Amylin/Eli Lilly, Basingstoke, UK), this being the
pharmaceutical name for exendin-4, a naturally occurring
potent GLP-1R agonist that is resistant to DPP-4-
mediated degradation [46, 47]. Exenatide is administered
by twice-daily subcutaneous injection for the treatment
of Type 2 diabetes mellitus, as an adjunct to metformin
and/or sulphonylureas. A long-acting version is in devel-
opment that could allow once-weekly dosing [48, 49].
Phase III trials of short-acting exenatide in patients with
Type 2 diabetes showed not only that it improves glycae-
mic control but also that it significantly reduces body
weight [50–55]. Nausea occurs very commonly, although
its incidence declines with duration of treatment [50, 51].
It has been claimed that weight loss during exenatide
treatment is not a consequence of nausea [50, 51]. Recent
reports have given rise to the concern that exenatide use
might increase the risk of developing acute pancreatitis
[56, 57]. However, an analysis of health insurance claims in
the USA suggests that this risk may in fact be no greater
than that for patients started on other antidiabetic medi-
cations [58].

It has been hypothesized that exenatide could be
used as a treatment for obesity in patients without dia-
betes. However, although trials are in progress, sparse
peer-reviewed data have been published as yet. The
exception is a small-scale, open-label study conducted
in obese, nondiabetic women with polycystic ovary
syndrome. The authors reported that exenatide and
metformin in combination had beneficial effects on
menstrual cyclicity, rate of ovulation, body weight and
insulin sensitivity, and that these effects were more
marked than treatment with either exenatide or met-
formin alone. There were no reported instances of
hypoglycaemia [59].

Several other incretin mimetics are in development at
present. Liraglutide (Victoza; Novo Nordisk, Crawley, UK) is
an analogue of GLP-1(7-37) that received a licence for use
in the treatment of Type 2 diabetes mellitus earlier this
year. Its half-life is prolonged by albumin binding, which
results from the addition of a side chain, comprising a
glutamic acid residue coupled to a palmitoyl group, to
lysine at position 26 [60]. In human studies, liraglutide has
been shown to improve glycaemic control in association
with weight loss [61–64]. As with exenatide, the major
adverse effect is nausea. There are no published data
regarding the effect of liraglutide on body weight in non-
diabetic individuals as yet. Other molecules, including tas-
poglutide (Roche,Welwyn Garden City, UK) and albiglutide
(GlaxoSmithKline, Brentford, UK), are at earlier stages of
development but may have half-lives sufficient for weekly
dosing [65, 66].
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Oxyntomodulin

Like GLP-1, oxyntomodulin is released postprandially from
intestinal L-cells, in proportion to energy intake [67, 68]. Its
actions include inhibition of gastric acid and pancreatic
exocrine secretion, and prolongation of gastric emptying
[68–73]. When administered to rats by either intracere-
broventricular or peripheral injection, oxyntomodulin
reduces food intake, increases energy expenditure and
reduces the rate of increase in body weight [74–77]. In
humans, i.v. infusion of oxyntomodulin reduces food intake
[78], while repeated subcutaneous injection increases
energy expenditure and causes weight loss in obese vol-
unteers [79, 80].

Oxyntomodulin is another product of tissue-specific
cleavage of the proglucagon precursor, comprising the
entire 29-amino-acid sequence of glucagon with a C-
terminal octapeptide extension [81–83]. It is an agonist at
both the glucagon receptor (GLU-R) and the GLP-1R [74],
but its anorectic effect is probably mediated via the latter
receptor, since co-administration of exendin-(9-39), a spe-
cific GLP-1R antagonist, restores food intake to that of con-
trols [74, 75]. Furthermore, whereas the anorectic effect of
oxyntomodulin is maintained in mice lacking the GLU-R, it
is absent in those lacking the GLP-1R [74].

Although oxyntomodulin is a GLP-1R agonist, several
strands of evidence point to it having functions that are
distinct from those of GLP-1. First, the affinity of oxynto-
modulin for the GLP-1R is about fivefold less than that of
GLP-1, yet the two hormones are virtually identical in their
anorectic effect in rodents [75]. Second, injection of
exendin-(9-39) into the arcuate nucleus prevents oxynto-
modulin, but not GLP-1, from reducing food intake
after intraperitoneal (i.p.) injection [77]. Third, functional
imaging studies using manganese-enhanced magnetic
resonance in mice show that oxyntomodulin and GLP-1
differ substantially in their effects on hypothalamic neu-
ronal activity [84, 85]. These findings suggest that there
may be an unknown oxyntomodulin-specific receptor,
and/or that there may be differences between oxynto-
modulin and GLP-1 in regional uptake within the CNS.

Like GLP-1, oxyntomodulin is inactivated by DPP-4 and
neprilysin [86, 87] and cleared rapidly from the circulation
[79].This laboratory has used oxyntomodulin analogues to
investigate the contribution of different regions of the
molecule to its function and its sensitivity to proteolytic
degradation [86]. An analogue of oxyntomodulin synthe-
sized as part of this programme was developed by Thiakis
and is now being evaluated by Wyeth Pharmaceuticals as a
potential therapy for obesity.

Peptide YY

Another product of intestinal L-cells, PYY is co-secreted
with GLP-1 and oxyntomodulin after meals, in proportion

to the calories consumed, with protein providing a greater
stimulus to its release than fat [68, 88–90]. Plasma PYY
concentration reaches a peak 1–2 h after each meal [90].
The hormone exists in two major forms in the circulation:
PYY1-36, which has agonist activity at the Y1, Y2 and Y5

receptors (Y1R,Y2R,Y5R), and PYY3-36, which is a selective Y2R
agonist [91, 92]. The predominant circulating moiety,
PYY3-36, is formed by DPP-4-mediated proteolysis of the
full-length peptide [93, 94].

PYY was originally described as being an appetite
stimulant because of its potent effect when administered
by intracerebroventricular injection [95]. However, autora-
diographic studies show that radiolabelled PYY3-36 binds
only at the area postrema, subfornical organ and median
eminence in the CNS after peripheral administration [96].
Thus, the effect of intracerebroventricular PYY is unlikely to
be representative of the physiological properties of circu-
lating PYY.

Far from being an appetite stimulant, PYY3-36 is now
thought to be a satiety-inducing hormone [97]. Several
facts suggest that this satiating effect is mediated via Y2R in
the arcuate nucleus. First, food intake in rodents is reduced
by injection of PYY3-36 directly into the arcuate nucleus [97].
Second, peripheral injection of PYY3-36 increases c-fos
expression, a marker of neuronal activation, in the arcuate
nucleus [97]. Third, PYY3-36 has no effect on food intake in
Y2R-knockout mice [97]. Fourth, prior administration of a
selective Y2R antagonist, either by intra-arcuate injection
[98] or by i.p. injection [99], prevents inhibition of food
intake by i.p. PYY3-36.

However, PYY3-36 may exert effects on food intake not
only at the arcuate nucleus but also via the vagus–
brainstem–hypothalamic pathway. The Y2R is expressed in
the nodose ganglion [100] and vagal ligation studies show
that Y2R are transported to the peripheral terminals of
vagal afferent neurons [101]. This is reflected in the
fact that i.v. PYY3-36 causes afferent vagal discharges [101],
while disruption of the vagus–brainstem–hypothalamus
pathway, either by subdiaphragmatic truncal vagotomy or
by bilateral midbrain transections rostral to the nucleus of
the tractus solitarius, abolishes the satiating effect of i.p.
PYY3-36 [37, 101]. Subdiaphragmatic truncal vagotomy also
prevents c-fos expression in the arcuate nucleus in
response to PYY3-36 administered by i.p. injection [101].

The first report of the anorectic and weight loss-
inducing effects of PYY3-36 [97] was questioned by a
number of other research groups, who were unable to
demonstrate any reduction in food intake, either acute or
chronic, in rodents [102, 103]. Since then, further studies in
mice, rats, pigs, rhesus monkeys and humans have con-
firmed the acute anorectic properties of PYY3-36 [98, 99,
104–118].Several studies have also confirmed the ability of
chronic PYY3-36 administration to cause weight loss in
animal models of obesity [119–124]. It is possible that the
failure of several groups to replicate the anorectic effects
of PYY3-36 in rodents was due to inadequate acclimatization
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of the animals to study conditions [125]. Nevertheless, an
attempt to use intranasally-delivered PYY3-36 as a treatment
for obesity has foundered after significant problems with
nausea and vomiting were encountered during a Phase II
clinical trial [126].

Cholecystokinin

Cholecystokinin (CCK) is released postprandially by endo-
crine I-cells in the small intestine [127, 128]. Several cleav-
age products of the pro-CCK gene circulate in plasma, the
minimal epitope for receptor binding being a carboxy-
terminal-amidated, tyrosyl O-sulphated heptapeptide
[129]. CCK-8, the shortest bioactive form, functions as a
neurotransmitter, binding to both CCK1 (also known as
CCK-A) and CCK2 (CCK-B) receptors in the CNS [130, 131]. In
the gastrointestinal tract, CCK acts via the CCK1 receptor
[132, 133] with several effects, including gallbladder con-
traction, sphincter of Oddi relaxation, pancreatic enzyme
release and somatostatin release [134].

Peripheral administration of CCK causes early meal ter-
mination in rats, reducing short-term food intake [135].
This satiating effect is abolished by truncal vagotomy or
capsaicin-induced afferent fibre ablation, suggesting that
it is mediated by the vagus [136–139]. Human food intake
may also be reduced acutely by administration of CCK
[140–144]. However, early satiety at each meal does not
necessarily translate into reduced long-term appetite.
Indeed, in a clinical trial of a CCK1 receptor agonist devel-
oped by GlaxoSmithKline,mean body weight was similar in
placebo- and drug-treated groups after 24 weeks’ treat-
ment [145]. This finding is reflected in rodent studies
showing that tolerance to a continuous i.p. infusion of CCK
develops within 24 h [146], and that reduced meal size
during repeated CCK injection is compensated for by
increased meal frequency [147]. Nevertheless, daily CCK
injections enhance the effect of continuous intracere-
broventricular infusion of leptin on body weight in rats
[148], possibly by increasing the rate of leptin transport
across the blood–brain barrier [149]. Further studies are
required to investigate whether co-administration with
leptin or other hormones may provide a role for CCK1
receptor agonists in the treatment of human obesity.

Pancreatic polypeptide

Pancreatic polypeptide (PP) shares a hairpin-fold tertiary
structure, known as the PP-fold, with PYY and neuropep-
tide Y [150]. The product of pancreatic islet PP-cells, it
is secreted postprandially in proportion to the calorie
content of ingested food [151–153]. Secretion is under
vagal control, and is reduced by either atropine or vago-
tomy [154]. PP is a high-affinity agonist at the Y4 receptor
(Y4R) but is also able to bind to the Y1R and Y5R [155]. As

with PYY, the effect of exogenous PP on rodent food intake
depends on route of administration, with the intracere-
broventricular route resulting in an increase in food intake
[156–158] but i.p. administration having the opposite
effect [156, 159, 160]. Autoradiographic studies show that,
after peripheral administration, 125I-labelled PP uptake
occurs only in the area postrema, suggesting that the
effect of intracerebroventricular PP is unlikely to be physi-
ological [161].

Early animal studies showed that chronic administra-
tion of PP by i.p. injection reduces food intake and weight
gain in ob/ob mice [160]. In New Zealand obese mice,
similar treatment reduces hyperglycaemia, hyperinsuli-
naemia and weight gain [162]. More recent studies have
shown that mice with selective transgenic overexpression
of PP in pancreatic islets, resulting in a 20-fold increase in
plasma PP concentration, are lean and hypophagic in com-
parison with controls [163]. Furthermore, this phenotype is
reversed by administration of anti-PP antiserum [163]. Indi-
rect calorimetry has been used to show that weight loss in
ob/ob mice receiving PP is likely to occur both through a
reduction in food intake and also through an increase in
energy expenditure [159].

The effect of PP on human food intake was first studied
in children with Prader-Willi syndrome, following the
observation that meal-stimulated PP secretion is attenu-
ated in this condition [164, 165]. In an initial study, i.v. infu-
sion of extracted bovine PP did not affect measured food
intake, but several parents noticed that their children had
eaten less than usual after returning home from study infu-
sions [166]. A second study was therefore performed, with
a more prolonged infusion protocol, resulting in a 12%
decrease in food intake [167]. More recently, human
sequence PP has also been shown to reduce food intake in
lean human volunteers [168, 169], and to delay gastric
emptying [170]. However, since PP is degraded rapidly in
the circulation [171], it is likely that its use as a treatment
for obesity will depend on the development of long-acting
Y4R agonists.

Amylin

Amylin is co-secreted with insulin by pancreatic islet b-cells
and binds to a receptor complex that comprises the calci-
tonin receptor coupled to receptor activity-modifying pro-
teins [172–176]. Peripheral administration of amylin in rats
retards gastric emptying [177] and reduces food intake
[178]. The anorectic effect is probably mediated via the
area postrema, since it is abolished by experimental lesions
in this area [179]. Furthermore, neuronal activation in the
area postrema may be demonstrated by c-fos immunocy-
tochemistry after peripheral administration of amylin
[180].

A stable analogue of amylin, named pramlintide
(Symlin; Amylin Pharmaceuticals, San Diego, CA, USA), is
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licensed in the USA for use as an adjunct to insulin treat-
ment in both Type 1 and Type 2 diabetes mellitus, and its
use in patients with these diseases is associated with
modest weight loss [181–184]. In addition,small-scale trials
of its efficacy as an obesity treatment have demonstrated
that it may also be of use in patients without diabetes, both
as monotherapy and in combination with a leptin receptor
agonist [185, 186].

Ghrelin

Ghrelin is an octanoylated peptide, secreted by endocrine
cells in the gastric fundus, that activates the growth
hormone secretagogue receptor (GHS-R1a) [187, 188]. In
contrast to other gut hormones, it is a potent orexigenic
agent, causing hyperphagia after acute administration in
humans [189, 190] and weight gain during repeated
administration to rodents [191, 192]. Furthermore, chronic
treatment with an orally available GHS-R1a agonist causes
weight gain in humans [193].

Despite the negative correlation between ghrelin
levels and BMI, a study of the effect of ghrelin infusion on
acute food intake has shown that obese individuals may be
more sensitive to the orexigenic effects of ghrelin than
lean individuals [190]. In addition, obesity is associated
with attenuation of the usual postprandial fall in ghrelin
levels [194]. Furthermore, the GHS-R1a exhibits constitu-
tive activity, suggesting that an inverse agonist may have
greater anorectic effect than an antagonist [195]. These
factors suggest that disruption of ghrelin signalling may
prove useful for treating obesity.

Various approaches have been used to block ghrelin
activity, including GHS-R1a antagonists [196, 197], RNA
Spiegelmers [198–200],anti-ghrelin vaccines [201,202] and
use of somatostatin to inhibit endogenous ghrelin release
[203–205]. A number of orally available GHS-R1a antago-
nists have also been developed, the most promising of
which have been shown in rodents to cause reductions in
food intake and body weight and to improve glucose tol-
erance [206, 207]. However, a viable treatment for human
obesity has yet to emerge from any of these strategies.

Conclusions

Satiety in humans is experienced as a spectrum that
ranges from extreme hunger at one end,through the onset
of satiation during a meal, to feelings of fullness and then
nausea at the other end. Gut hormones play an important
role in generating satiety, alongside neuronal afferent
pathways and blood-borne humoral and nutrient signals.
However,clinical trial experience has shown that enhanced
satiety alone may not be sufficient to cause weight loss
during chronic treatment [145]. Put another way, using gut
hormone-based treatment to advance the onset of satiety

at each meal may not necessarily lead to alterations in
either long-term food intake or energy expenditure. Thus
one of the major challenges in this field is to improve
understanding of the physiological role of each gut
hormone, integrating this knowledge into a comprehen-
sive model of energy homeostasis.

As new peripheral targets for anti-obesity drug devel-
opment, gut hormones also pose several other challenges.
Amongst the greatest of these are that the native hor-
mones are not orally available, and that they are cleared
rapidly from the circulation, rendering their use by sub-
cutaneous infusion or injection uneconomic. Various
approaches have been proposed to circumvent these
issues, including the use of other routes of administration,
e.g. intranasal, inhalational or transdermal, the modifica-
tion of peptide structures to render them resistant to pro-
teolysis and clearance, and the synthesis of small molecule
agonists. Each approach has its merits, but success may be
most likely when the resulting treatment has a smooth
pharmacokinetic profile, reducing the risk of nausea that
may occur at high plasma concentrations.

Nausea has proved to be a very common adverse effect
of treatment with exenatide, and it also occurs during
administration of liraglutide, oxyntomodulin, pramlintide,
CCK and PYY3-36. Studies in human volunteers of the
anorectic effects of infusions of CCK-8 and PYY3-36 suggest
that the presence or absence of nausea does not influence
the extent of reduction of food intake [113, 208]. Further-
more, there is some evidence that the extent of weight loss
with exenatide treatment is not related to the incidence of
nausea [50, 51]. Although these findings suggest that
maximal anorectic effects may be achieved without induc-
ing nausea, it also seems likely that therapeutic windows
may be narrow.

After RYGB, the physiological secretion of several hor-
mones, including GLP-1, oxyntomodulin and PYY3-36, is
increased. Although nausea is common in patients who
have undergone RYGB, it tends only to occur postprandi-
ally, and is rarely severe enough to warrant reversal of the
procedure. This gives rise to the hypothesis that treatment
with multiple gut hormones could be better tolerated, and
more effective, than single hormone treatment. Support
for this hypothesis is available from small-scale studies
of acute food intake in rodents and humans [99, 116],
although not all combinations have proven effective [209,
210]. However, if nausea occurs not simply as a result of
excessive satiety but also as a specific, independent side
effect, it might be avoided, and weight loss maximized,
by co-administration of non-nauseating doses of several
hormones.

In summary, gut hormones present many opportuni-
ties for anti-obesity drug development. As peripheral
targets, they may have relatively few nonspecific side
effects compared with centrally acting drugs. Furthermore,
it may be possible in the future, through judicious use of
combination treatment, to mimic the physiological effect
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of RYGB and hence to cause a similar degree of weight loss
without the perioperative risk. An ambitious goal? Yes, but
one worth striving for.
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