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WHAT IS ALREADY KNOWN ABOUT
THIS SUBJECT
• The viral protease inhibitor ritonavir is

known to inhibit clearance of intravenous
midazolam.

• ALT-2074, a catalytic mimic of glutathione
oxidase, inhibits human cytochrome P450
3A (CYP3A) isoforms in vitro.

WHAT THIS STUDY ADDS
• Short-term administration of low-dose

ritonavir increases area under the plasma
concentration curve following oral
midazolam by a factor of 28.

• Therefore ritonavir is an appropriate positive
control inhibitor for clinical drug interaction
studies involving CYP3A substrates.

• Midazolam clearance is weakly inhibited by
ALT-2074, consistent with its in vitro profile.

AIMS
We evaluated whether ‘boosting’ doses of ritonavir can serve as a positive
control inhibitor for pharmacokinetic drug–drug interaction studies
involving cytochrome P450 3A (CYP3A). The study also determined whether
4,4-dimethyl-benziso-(2H)-selenazine (ALT-2074), an investigational
organoselenium compound that acts as a catalytic mimic of glutathione
oxidase, inhibits CYP3A metabolism in vivo.

METHODS
Thirteen healthy volunteers received single 3-mg oral doses of midazolam
on three occasions: in the control condition, during co-treatment with
low-dose ritonavir (three oral doses of 100 mg over 24 h), and during
co-treatment with ALT-2074 (three oral doses of 80 mg over 24 h).

RESULTS
Ritonavir increased mean (�SE) total area under the curve (AUC) for
midazolam by a factor of 28.4 � 4.2 (P < 0.001), and reduced oral clearance
to 4.2 � 0.5% of control (P < 0.001). In contrast, ALT-2074 increased
midazolam AUC by 1.25 � 0.11 (P < 0.05), and reduced oral clearance to
88 � 8% of control.

CONCLUSIONS
Low-dose ritonavir produces extensive CYP3A inhibition exceeding that of
ketoconazole (typically 10- to 15-fold midazolam AUC enhancement), and is
a suitable positive control index inhibitor for drug–drug interaction studies.
ALT-2074 inhibits CYP3A metabolism to a small degree that is of uncertain
clinical importance.
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Introduction

The benzodiazepine derivative midazolam, a substrate
for biotransformation by cytochrome P450 3A (CYP3A)
enzymes [1–3], is extensively used in drug development
and clinical pharmacology as an index compound to
profile the activity of hepatic and enteric CYP3A [4–12].
Under baseline conditions, midazolam undergoes exten-
sive presystemic extraction after oral dosage, with net
systemic bioavailability in the range of 30% [13–18]. It is
established that incomplete oral bioavailability of mida-
zolam results from a combination of hepatic and enteric
CYP3A activity. An enteric-specific CYP3A inhibitor, such as
grapefruit juice, has no effect on total area under the
plasma concentration curve (AUC) of intravenous mida-
zolam [19, 20], but increases AUC for oral midazolam by a
factor of up to twofold [17, 20–23]. In contrast, an inhibitor
such as ketoconazole, acting on both hepatic and enteric
CYP3A, increases AUC of both intravenous and oral mida-
zolam, but the effect on oral midazolam AUC is substan-
tially greater [14, 18, 24–27].

In the course of drug development, new chemical enti-
ties suspected of being CYP3A inhibitors may be evaluated
in clinical drug–drug interaction (DDI) studies using mida-
zolam as the in vivo CYP3A probe compound [4–12]. The
scientific value of such studies is strengthened by inclusion
of a ‘positive control’ arm, intended to depict the ‘worst
case scenario’ DDI. Ketoconazole is a possible choice as a
positive control CYP3A inhibitor. However, recent studies
suggest that CYP3A inhibition by ritonavir, even at rela-
tively low ‘boosting’ doses, may produce CYP3A inhibition
exceeding that of ketoconazole [28–35].

The present study evaluated low-dose ritonavir as an
inhibitor of oral midazolam clearance, in the course of a DDI
study of a medication under development. The candidate
drug was 4,4-dimethyl-benziso-(2H)-selenazine (ALT-2074;
formerly BXT-51072), a low-molecular-weight, orally active,
organoselenium catalytic mimic of the enzyme glutathione
peroxidase that is being developed for the treatment of
inflammatory disorders characterized by the involvement
of reactive oxygen species [36–41].One possible indication
is the treatment of acute coronary syndromes.

Previous in vitro studies have shown ALT-2074 is an
inhibitor of human CYP3A, with an IC50 value in the range
of 2.0–2.6 mM. This concentration might be achieved
within the gastrointestinal tract or in the systemic circula-
tion after oral administration of ALT-2074, raising the pos-
sibility that ALT-2074 might produce drug interactions
with other CYP3A substrate drugs in vivo.

Methods and procedures

Study participants and design
The study protocol and consent form were reviewed
and approved by the Western Institutional Review Board

(Olympia,WA, USA). All subjects provided written informed
consent prior to the study.

Participants were healthy male volunteers aged
18–55 years with no current or prior history of significant
medical or psychiatric disease, and receiving no prescrip-
tion medications. All subjects were within 25% of ideal
body weight based on actuarial data incorporating height
and frame size. Screening procedures included medical
history, physical examination, electrocardiogram, haema-
tology and chemistry screening, and urinalysis.

The DDI study was conducted using a three-way
crossover design, with at least a 1-week interval elapsing
between trials. After completing a screening period, sub-
jects received each of the following three trial regimens in
random sequence:

Trial Co-treatment Midazolam

1 Placebo (three doses) 3 mg

2 ALT-2074, 80 mg (three doses) 3 mg
3 Ritonavir, 100 mg (three doses) 3 mg

The dosing schedule for ALT-2074 is consistent with
typical therapeutic exposure. The dosage schedule for
ritonavir represents exposure consistent with a ‘boosting’
regimen.

ALT-2074 and placebo (Synvista Therapeutics, Inc.,
Montvale, NJ, USA) were packaged identically and admin-
istered under double-blind conditions. Because of the
shape and construction of the oral ritonavir dosage form
(Abbott Laboratories, N. Chicago, IL, USA), a placebo to
match ritonavir was not available, and ritonavir was given
under nonblind conditions.

Subjects were admitted to the Study Unit for the dura-
tion of each trial period. Subjects received the first dose of
the co-treatment between 16.00 and 18.00 h on the first
study day. The second and third co-treatments were
administered at 07.30 and 18.00 h on the second study
day. Midazolam was prepared as 3 ml of the commercially
available parenteral dosage form (1 mg ml-1) mixed with
240 ml of tap water. The midazolam was administered
at 08.00 h on the second study day, followed by multiple
pharmacokinetic blood samples. Subjects’ final blood
samples were obtained at 08.00 h on the third study day.
Subjects repeated the procedure, being randomized to a
different co-treatment at approximately weekly intervals.

Experimental procedures
Subjects were admitted to the study unit on the afternoon
prior to each midazolam trial. Between 16.00 and 18.00 h,
the first dose of co-treatment was administered (placebo,
ALT-2074, or ritonavir). On the following morning, a light
breakfast was provided at 07.00 h.At 07.30 h, an indwelling
cannula was inserted, and a predose blood sample was
taken. The second dose of co-treatment (placebo, ALT-
2074, or placebo) was then given. At 08.00 h, a 3-mg oral
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dose was administered, followed by blood sampling at
0.25, 0.5, 1.0, 2, 4, 6, 8, 10 and 12 h after dosage. The third
dose of co-treatment was given at 18.00 h. The final blood
sample was taken at 08.00 h on the following morning,
24 h after midazolam dosage. Subjects were then dis-
charged from the study unit.

Venous blood samples were collected into heparinized
tubes and stored on ice until centrifuged. The plasma was
separated and frozen at -18°C until assay.

Analysis of samples
Plasma concentrations of midazolam in all samples were
determined by liquid chromatography-mass spectroscopy,
having a sensitivity limit of 0.5 ng ml-1 [15]. All samples
from a given subject’s set of three trials were extracted and
analysed together on the same day using the same calibra-
tion standards.

Plasma concentrations of ritonavir during the ritonavir
co-treatment trial were determined by high-performance
liquid chromatography [42]. Methods were not available
for determination of ALT-2074 concentrations.

Pharmacokinetic analysis
The following pharmacokinetic parameters for midazolam
were determined using standard model-independent
(‘noncompartmental’) methods: maximum plasma con-
centration (Cmax), elimination rate constant (b), elimination
half-life (T1/2), total AUC, and apparent oral clearance (CL).

Statistical analysis
A 50% difference in mean values of midazolam clearance
between placebo or ALT-2074 co-treatments, or between
placebo and ritonavir co-treatments, was assumed to be of
potential clinical importance. Based on prior studies [13,
15, 23], the standard deviation of the difference between
mean values was assumed to be 35% of the difference
itself. Under these conditions, a sample size of n = 12 allows
this difference to be detected with a = 0.05 and power of at
least 0.8.

Arithmetic mean and SD/SE of untransformed pharma-
cokinetic variables were calculated and presented [43].
Differences among the three co-treatments (placebo,
ALT-2074, or ritonavir) were evaluated using analysis of

variance (ANOVA) for repeated measures, followed by Dun-
nett’s test to compare ALT-2074 vs. placebo and ritonavir
vs. placebo individually. These analyses were done both
without and with rank transformation (nonparametric
analysis).

Ratios of pharmacokinetic variables with ALT-2074 or
ritonavir co-treatment divided by the placebo value were
also calculated. These were aggregated as arithmetic
means and standard deviations, or geometric means and
90% confidence intervals (CIs).

Kinetic and statistical analyses were performed using
Microsoft Excel or Statistical Analysis Systems (SAS Insti-
tute Inc., Cary, NC, USA).

Results

Subjects
Fifteen subjects initiated participation in the study, and
completed the first of three trials. Two of these individuals
did not complete subsequent trials for administrative
reasons. Pharmacokinetic analysis was based on the 13
subjects that completed all three trials. Age ranges were
21–50 years, and weight ranged from 52 to 97 kg. The
racial/ethnic distribution was eight White, five African-
American.

Studies were completed with no adverse events
reported.

Pharmacokinetics of midazolam
Figure 1 shows the mean plasma midazolam concentra-
tions at corresponding times, comparing placebo with
ALT-2074 and placebo with ritonavir.

Analysis of variance for repeated measures showed
highly significant differences among the three treatments
in all pharmacokinetic variables for midazolam (Table 1).
Dunnett’s test showed significant differences between
ritonavir and placebo co-treatments. Ritonavir increased
midazolam AUC by a factor of approximately 25,
and correspondingly reduced clearance to about 4% of
control values. Co-treatment with ALT-2074 increased
midazolam AUC by a factor of about 1.25, and reduced

Table 1
Statistical analysis of midazolam pharmacokinetic variables*

Mean (�SE, n = 13) for treatment conditions:
Repeated measures ANOVA

Dunnett’s test
Placebo ALT-2074 Ritonavir ALT-2074 vs. placebo Ritonavir vs. placebo

Cmax (ng ml-1) 9.0 (�1.0) 10.6 (�0.9) 35.6 (�2.8) F = 81.8, P < 0.001 NS P < 0.05

t1/2 (h) 2.06 (�0.15) 2.08 (�0.17) 18.07 (�2.25) F = 49.4, P < 0.001 NS P < 0.05
Total AUC (ng ml-1 h-1) 24.65 (�1.93) 29.87 (�2.62) 651 (�77) F = 64.9, P < 0.001 NS P < 0.05

Clearance (ml min-1) 2157 (�142) 1844 (�167) 85.9 (�6.9) F = 92.2, P < 0.001 NS P < 0.05
Clearance (ml min-1 kg-1) 28.84 (�2.84) 24.15 (�2.38) 1.13 (�0.11) F = 64.1, P < 0.001 NS P < 0.05

*Analysis of actual values without transformation.
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clearance to 88% of control. Differences in mean values
between ALT-2074 and placebo co-treatments were not
significant.

When the ANOVA was done on rank-transformed vari-
ables, all conclusions were identical.

Table 2 summarizes the analysis of ratios for the phar-
macokinetic variables. Based on untransformed ratios of
untransformed values, all ritonavir/placebo ratios were dif-
ferent from 1.0 with a high level of statistical significance.
The ALT-2074/placebo ratio for Cmax and clearance did not
differ significantly from 1.0; the AUC ratio was significantly
greater than 1.0 (P < 0.05, two-tailed test).

Geometric mean ratios underestimated the arithmetic
means. For the ritonavir/placebo ratios, the 90% CIs fell
entirely outside the arbitrary 80–125% boundary. For ALT-
2074/placebo, one extreme of the 90% CI fell outside the
80–125% boundaries.

Plasma ritonavir concentrations
Figure 2 shows mean plasma ritonavir concentrations at
specific time points during the ritonavir co-administration
trial. The results demonstrate systemic exposure to
ritonavir consistent with the ritonavir dosage. However,
there was no apparent relationship between the net
exposure to ritonavir over the 0–10-h dosage interval
(expressed as mean concentration over that interval) and
the extent of midazolam clearance impairment relative to
the control trial (expressed as midazolam total AUC ratio
for Trial 3 divided by Trial 1) (Figure 3).

Discussion

In this study we evaluated the capacity of ALT-2074 and
boosting doses of ritonavir to reduce the apparent oral
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clearance and thereby increase the systemic exposure of
midazolam in human volunteers. Midazolam is cleared
essentially exclusively via biotransformation by CYP3A iso-
forms (CYP3A4 and CYP3A5) [1–3]. After oral dosage, mida-
zolam clearance is determined by a combination of enteric
and hepatic CYP3A activity [13–18] and is considered to be
a ‘sensitive’ CYP3A probe to indicate the capacity of drugs
under clinical development to inhibit or induce CYP3A
phenotype in vivo [4–12]. Although our study subjects
were male volunteers, a review of available literature indi-
cates that gender has only a small influence on the kinetics
of midazolam and other CYP3A substrate drugs [44].There
is no evidence to indicate that susceptibility to metabolic
inhibition is meaningfully influenced by gender [14,17,26].

A relatively low dose (100 mg given orally three times
over 24 h) of the antiretroviral agent ritonavir was used as
a positive control inhibitor. Ritonavir is a highly potent
CYP3A inhibitor in vitro, with IC50 or Ki values in the low
nanomolar range [45–48]. Since systemic exposure to
ritonavir [I] with usual clinical dosage generally exceeds
1–2 mM, the ratio of [I]/Ki or [I]/IC50 will exceed 10.0, thereby

predicting a high likelihood of clinical drug interactions
involving ritonavir and CYP3A substrates [4–12]. This pre-
diction has been verified in a number of previous clinical
studies [28–35, 49–55]. It is also reported that CYP3A inhi-
bition by ritonavir is reversible within a few days after dis-
continuation of ritonavir [55]. In the present study, a very
large ritonavir–midazolam interaction was observed, in
which relatively low ‘boosting’ doses of ritonavir increased
midazolam systemic exposure by a factor of about 25. This
exceeds the extent of midazolam clearance inhibition
generally produced by ketoconazole, which typically
increases midazolam exposure by a factor of 10–15
[14, 15, 24–27]. Thus the inclusion of ritonavir as a positive
control inhibitor verified the validity of the clinical model,
including the identification of midazolam as a ‘sensitive’
substrate. The fact that impairment of midazolam clear-
ance was independent of systemic exposure to ritonavir
indicates that all levels of ritonavir exposure were

Table 2
Analysis of ratios for midazolam pharmacokinetic variables

Ritonavir/placebo ratio ALT-2074/placebo ratio
Cmax AUC (total) Clearance Cmax AUC (total) Clearance

Arithmetic
Mean 4.47* 28.4* 0.042* 1.34 1.25** 0.88
SD 2.02 15.3 0.017 0.89 0.39 0.29
SE 0.56 4.2 0.005 0.19 0.11 0.08

Geometric
Mean 4.10 25.6 0.039 1.21 1.19 0.84
90% CI 3.32, 5.07 20.5, 32.0 0.032, 0.049 0.96, 1.52 1.024, 1.40 0.72, 0.98

Student’s t-test vs. 1.0: *P < 0.001; **P < 0.05.
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sufficient to produce extensive reduction of midazolam
clearance [31].

The rationale for the clinical study was based on in vitro
studies with ALT-2074 indicating an IC50 value for CYP3A
inhibition (using triazolam hydroxylation as an index reac-
tion) in the range of 2.0–2.6 mM. Assuming maximum
systemic exposure to ALT-2074 to be in the range of
500 ng ml-1 (2.2 mM), the ratio of [I]/IC50 is approximately
1.0, indicating that a clinical drug interaction involving
ALT-2074 is ‘possible’. However, the results of the clinical
study indicated only a modest increase in midazolam AUC
in the range of 20–25% with co-administration of ALT-
2074.The effect of ALT-2074 was not statistically significant
based on ANOVA, with or without rank transformation of the
values. Analysis of ratios indicated that the arithmetic
mean midazolam AUC ratio (ALT-2074 divided by placebo)
of 1.25 was significantly different from 1.0, and the 90% CI
(1.02–1.40) for the geometric mean ratio (1.19) fell partially
outside the ‘default’ upper boundary of 1.25 as specified
in the Food and Drug Administration guidance. [56] Thus
ALT-2074 could be considered a ‘weak’ CYP3A inhibitor at
most. The clinical importance of this inhibition of CYP3A
by ALT-2074 remains to be determined.
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