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Abstract
Recently, high resolution 3 Tesla (T) Dynamic Contrast-Enhanced MRI (DCE-MRI) of the prostate
has emerged as a promising technique for detecting prostate cancer (CaP). Computer-aided diagnosis
(CAD) schemes for DCE-MRI data have thus far been primarily developed for breast cancer and
typically involve model fitting of dynamic intensity changes as a function of contrast agent uptake
by the lesion, as done by schemes such as the 3 time point (TP) scheme. Non-linear dimensionality
reduction schemes such as locally linear embedding (LLE) have been previously shown to be useful
in faithfully embedding high dimensional biomedical data into a lower dimensional subspace while
preserving the non-linear geometry of the data manifold. In this paper, we present a novel
unsupervised detection scheme for CaP from 3T DCE-MRI that combines LLE and consensus
clustering to discriminate between tissue classes at the image pixel level. The methodology comprises
3 distinct steps. First, a multi-attribute active shape model is used to automatically segment the
prostate boundary from in vivo 3 T MR imagery. A robust multimodal registration scheme is then
used to non-linearly align corresponding whole mount histological and DCE-MRI sections from
prostatectomy specimens to determine the spatial extent of CaP. LLE followed by consensus
clustering is finally used to identify distinct clusters. Quantitative evaluation on 21 histology-MRI
slice pairs against registered CaP ground truth yielded a maximum CaP detection sensitivity of
60.72% and specificity of 83.24% while the popular 3TP scheme gave an accuracy of 38.22%.

1 Introduction
Prostatic adenocarcinoma (CaP) is the second leading cause of cancer related deaths among
males in the United States, with an estimated 186,000 new cases in 2008 (Source: American
Cancer Society). Recently, high resolution 3 Tesla (T) endorectal in vivo Dynamic Contrast-
Enhanced MRI (DCE-MRI) has been shown to discriminate between normal and cancerous
regions [1].

Most current efforts in computer-aided diagnosis of CaP from DCE-MRI via involve
pharmacokinetic curve fitting based modeling approaches such as the 3 Time Point (3TP)
scheme [2]. Based on the curve/model fits these schemes attempt to identify wash-in and wash-
out points, i.e. time points at which the lesion begins to take up and flush out the contrast agent.
Lesions are then identified as benign, malignant or indeterminate based on the rate of the dye
uptake and wash out. The most recent work in this field is a supervised CAD scheme as
demonstrated in Vos et al. [3] which analyzed only the peripheral zone of the prostate.
Pharmacokinetic features derived from curve fitting [4] were used to train the model and coarse
quantitative evaluation was performed based on a roughly registered spatial map of CaP on
MRI. An accuracy of 0.83 was reported.
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The 3TP and pharmacokinetic approaches are modeled on the dynamic MR image intensity
profiles which we have previously shown suffers from intensity non-standardness [5] wherein
MR image intensities do not have fixed tissue-specific meaning within the same imaging
protocol, body region, and patient. Figures 1(a), (b), and (c) show the image intensity
histograms for the non-lesion areas within 7 3T in vivo DCE-MRI prostate studies for
timepoints t = 2, t = 4, and t = 6 respectively. Figures 1(a)–(c) show the intensity drift in the
MR images and apparent mis-alignment of the intensity histograms. Non-linear dimensionality
reduction methods such as locally linear embedding (LLE) [6] have been shown to faithfully
preserve relative object relationships in biomedical data from the high- to the low-dimensional
representation. Previously, Varini et al. [7] have performed a visual exploratory analysis based
on applying different dimensionality reduction methods, including LLE on breast DCE-MRI
data to differentiate between benign and malignant lesions. LLE was found to be relatively
robust and accurate in this characterization as compared to results from application of linear
methods such as Principal Component Analysis (PCA).

In this paper we present a comprehensive segmentation, registration detection scheme for CaP
from 3T in vivo DCE-MRI imagery that has the following main features, (1) a multi-attribute
active shape model [8] is used to automatically segment the prostate boundary, (2) a multimodal
non-rigid registration scheme [9] to map CaP extent from whole mount histological sections
onto corresponding DCE-MR imagery for radical prostatectomy studies, and (3) an
unsupervised CaP detection scheme involving LLE on temporal intensity profiles at every pixel
followed by consensus clustering [10] in the reduced dimensional space. Our proposed
methodology is evaluated on a per-pixel basis against registered spatial maps of cancer on
MRI. Additionally, we quantitatively compare our results with those obtained from the 3TP
method for a total of 21 histology-MRI slice pairs.

2 Experimental Design
2.1 Data description and Notation

A total of 21 3 T in vivo endorectal MRI (T2-weighted and DCE protocols) images with
corresponding whole mount histological sections (WMHS) following radical prostatectomy
were obtained from 6 patient datasets from the Beth Israel Deaconess Medical Center. The
DCE-MRI images were acquired during and after a bolus injection of 0.1 mmol/kg of body
weight of gadopentetate dimeglumine using a 3-dimensional gradient echo sequence (3D-GE)
with a temporal resolution of 1 min 35 sec. Following radical prostatectomy, the prostate was
sectioned into whole-mount sections which were stained via Haemotoxylin and Eosin (H & E)
and then examined by a trained pathologist to accurately delineate the presence and extent of
CaP .

We define a 2D DCE-MRI image CD,t = (C, fD,t) where C is a set of spatial locations c ∈ C
and t ∈ {1,…, 7}. fD,t(c) represents the intensity value at location c ∈ C at timepoint t. We
define a 2D T2-weighted (T2-w) MRI image as CT2 = (C, fT2) and the corresponding WMHS
as CH · G(CH) is defined as the set of locations in the histology scene CH that form the spatial
extent of CaP (”gold standard”).

2.2 Automated prostate segmentation on in vivo MRI imagery
We have recently developed a multi-attribute, non-initializing, texture reconstruction based
active shape model (MANTRA) [8]. Since MANTRA operates within a multi-resolution
framework, only a rough initialization (such as a bounding-box) around the prostate is required
to be able to segment the prostate accurately. The algorithm comprises the following main
steps:
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Step 1: During the training step, a statistical shape model is generated by performing PCA
on expert selected landmarks along the prostate border.

Step 2: A patch of pixels is sampled from the area surrounding the prostate border formed
by these landmark points for each training image. PCA is then performed across these
patches to generate a statistical texture model for each landmark point.

Step 3: To segment a new image, regions within are searched for the prostate border. Any
potential location for the border has a patch of pixels sampled. The pixel intensity values
within this patch are reconstructed from the texture model as best as possible, and mutual
information is maximized between the reconstruction and the original patch to find the
optimal border location. The shape model is fit to these border locations, and the process
repeats until convergence of the active shape model algorithm (ASM).

Unlike traditional ASMs MANTRA does not require model initialization and makes use of:
(1) local texture model reconstruction to overcome limitations of image intensity, (2) multiple
attributes with a combined mutual information metric. Figure 2(a) shows an original sample
image CT2. The final segmentation of the prostate boundary via MANTRA is seen in Figure 2
(b). Similarly, MANTRA is applied to segment the prostate boundary for images CD,t, t ∈ {1,
…, 7}.

2.3 Establishment of Ground Truth on DCE-MRI via Elastic Multimodal Registration of
Histology, T2-w, and DCE-MRI

To estimate the gold standard for spatial extent of CaP on DCE-MRI, we map the spatial extent
of CaP determined from WMHS G(CH) onto DCE-MRI via a multi-step elastic registration
procedure which comprises the following steps:

1. Initial affine alignment of CH to corresponding CT2 using our previously presented
registration technique, combined feature ensemble mutual information (COFEMI)
[9], to incorporate multiple feature images for robustness to modality differences.

2. Elastic registration using thin plate splines (TPS) warping of CH (Figure 2(c)) to
correct for non-linear deformations from endorectal coil in CT2 (Figure 2(b)) and
histological processing. TPS warping is based on selected control points representing
salient anatomical landmarks on both modalities.

3. Having put the underlying tissue represented by the pixels in CT2 and CH into spatial
correspondence, mapping of histological cancer extent G(CH) onto CT2 to obtain
Gr(CT2 ) via the transformation r determined in (1) and (2).

4. Affine alignment of CT2, on which CaP extent has now been mapped to CD,0 using
MI-based registration to correct for subtle misalignment and resolution mismatch
between the MR protocols. It is known that CD,t, t ∈ {1,…, 7} are in implicit
registration, and therefore no alignment need be done between timepoints.

5. Mapping of histology-derived cancer ground truth Gr(CT2 ) from registered CT2

(Figure 2(d)) onto CD,t to obtain GR(CD,t) via the transformation R determined in (3).

2.4 Classification of DCE data via LLE and Consensus Clustering
Locally Linear Embedding (LLE)—For each pixel c within each DCE-MRI image CD,t,
there is an associated intensity feature vector F(ci) = [fD,t(ci)|t ∈ {1,…, 7}], ci ∈ C, i ∈ {1,…,
|C|} where |C| is the cardinality of C. The result of LLE [6] on the set F = {F(c1) ,F(c2) ,…, F
(cp)}, p = |C| of high-dimensional intensity feature vectors is the set of lower dimensional
embedding vectors χ = {XLLE (c1) ,XLLE (c2) ,…,XLLE (cp)}. Let {cηi(1),…, cηi(m)} be the m
nearest neighbors of ci where ηi(m) is the index of the mth neighbor of ci in C. The feature
vector F (ci) and its m nearest neighbors (mNN), {F (cηi(1)) , F (cηi(2)) ,…, F (cηi(m))} are
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assumed to lie on a patch of the manifold that is local linearly, allowing us to use Euclidean
distances between the neighbors. Each F (ci) can then be approximated by a weighted sum of
its mNN. The optimal reconstruction weights are given by the sparse matrix WLLE (subject to
the constraints WLLE(i, j) = 0 if cj does not belong to the mNN of ci and ∑j WLLE(i, j) = 1) that
minimizes

(1)

Having determined the weighting matrix WLLE, the next step is to find a low-dimensional
representation of the points points in F that preserves this weighting. Thus, for each F (ci)
approximated as the weighted combination of its mNN, its projection XLLE (ci) will be the
weighted combination of the projections of these same mNN. The optimal χLLE in the least
squares sense minimizes

(2)

where tr is the trace operator, χLLE = [XLLE (c1) ,XLLE (c2) , …,XLLE (cp)],
 and I is the identity matrix. The minimization of (2) subject to the

constraint  (a normalization constraint that prevents the solution χLLE ≡ 0) is an
Eigenvalue problem whose solutions are the Eigenvectors of the Laplacian matrix L.

Unsupervised classification via consensus k-means clustering—To overcome the
instability associated with centroid based clustering algorithms, we generate N weak

clusterings  by repeated application of k-means clustering for
different values of k ∈ {3, …, 7} on the low dimensional manifold XLLE(c), for all c ∈ C. As
we do not know a priori the number of classes (clusters) to look for in the data, we vary k to
determine upto 7 possible classes in the data. Based on accuracy values, we can then decide
the correct number of classes that exist. As the number of elements in each cluster tends to
change for each such iteration of k-means, we combine these clusters using the consensus
clustering technique [10] via calculation of a co-association matrix H with the underlying
assumption that pixels belonging to a natural cluster are very likely to be co-located in the
same cluster for each iteration. H(i, j) thus represents the number of times ci, cj ∈ C were found
in the same cluster over N iterations. If H(i, j) = N then there is a high probability that ci, cj do
indeed belong to the same cluster. We apply MDS [11] to H followed by a final unsupervised
classification via k-means to obtain the stable clusters 

3 Results
3.1 Qualitative Results

We have applied our scheme on 21 DCE-histology slice pairs. Representative results are shown
in Figure 3 with each row corresponding to a different dataset. Corresponding histology
sections (not shown) were registered to DCE-MRI data (CD) to obtain the ground truth estimate
GR(CD) shown in Figures 3(a), 3(e), and 3(i) highlighted in green. Figures 3(b), 3(f) and 3(j)
show the RGB scaled values of XLLE(c) at every c ∈ C. Hence similar colors in Figures 3(b),
3(f) and 3(j) represent pixels embedded close together in the LLE-reduced space. Each of the
clusters  for each value of k ∈ {3,…, 7} are evaluated against GR(CD) and the
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cluster showing the most overlap is considered to be the cancer class. Figures 3(c), 3(g), and
3(k) show the result of plotting this label back onto the slice (in red). Additionally, the 3TP
method was used to determine cancer extent on the same datasets. This method involves
determination of inflection points within the intensity-time curves for each pixel which signify
the wash-in and wash-out times of the contrast agent. Red, blue and green colors are then used
to represent regions that are possibly cancerous, possibly benign and indeterminate respectively

based on the ratio of the contrast agent uptake. When w is close to 1, this
implies the corresponding pixel is in a possibly cancerous area (red), when w is close to zero,
this implies the pixel is in a possibly benign area (blue). For cases which do not fall under either
of these, the pixel is said be in an indeterminate region (green). Results from the application
of the 3TP scheme are shown in Figures 3(d), 3(h) and 3(l).

3.2 Quantitative evaluation against registered CaP ground truth estimates on DCE
Within the consensus clustering framework, 5 separate classification results were achieved for
k ∈ {3, 4, 5, 6, 7} (Table 1). For each of 21 slices, labels corresponding to the clusters

 are each evaluated against the registered CaP extent on DCE-MRI (GR(CD)).
The cluster label showing the largest overlap with the ground truth is then chosen as the cancer
class. This class is used to calculate the sensitivity and specificity of our CAD system at a
particular k value for the slice under consideration. The maximum sensitivity observed is
60.72% (k = 3) while the maximum specificity is 83.24% (k = 7). We see a reduction in
sensitivity as k increases from 3 to 7, with a corresponding increase in specificity. Based on
the change in sensitivity and specificity it is clear that k = 3 possible classes exist within the
prostate MRI image. Using the 3TP technique (which assumes that only 3 classes can exist in
the data), we achieve a sensitivity of 38.22%) and sensitivity of 69.12%. It can be seen that
our proposed technique has an improved performance as compared to the existing 3TP method
across k ∈ {3, 4, 5, 6, 7}.

To put these results into context, Vos et al. [3] reported an accuracy of 0.83 in differentiation
between non-malignant suspicious enhancing and malignant lesions in the peripheral zone of
the prostate alone. Analyzing the reported values of sensitivity and specificity reveal that this
sensitivity of 83% corresponds to a 58% specificity. These values have been achieved within
a framework which utilized an approximation of the ground truth on MRI obtained by a rough
registration of histology and MRI. Comparatively our metrics (60.72% sensitivity and 83.24%
specificity) have been achieved when examining the whole of the prostate while utilizing a
more rigorously registered CaP extent for evaluation. The difference in performance could be
attributed to: (1) the larger region of interest (the whole of the prostate compared to the
peripheral zone alone), (2) the more rigorous ground truth estimates obtained in this study via
multimodal registration which were used for evaluation, and (3) the unsupervised approach to
classification of the data.

4 Concluding Remarks
In this paper we have presented a novel integrated methodology for segmentation, registration,
and detection of prostate cancer from 3 Tesla in vivo DCE prostate MR images. A multi-
attribute multi-resolution active shape model-based segmentation scheme was used to
automatically segment the prostate from in vivo DCE and T2-w images, following which a
multimodal registration algorithm, COFEMI, is used to map spatial extent of CaP from
corresponding whole mount histology to the DCE-MRI slices. Owing to the presence of MR
image intensity non-standardness we utilized a non-linear DR scheme (LLE) coupled with
consensus clustering to identify cancerous image pixels. An unsupervised approach was
adopted owing to the lack of perfect slice correspondences between MRI and histology (due
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to different slice thicknesses). Our results, 60.72% CaP detection sensitivity and 83.24%
specificity, compare very favourably with results obtained by Vos et al [3] as well as those
obtained via the 3TP method. In comparison to Vos et al. [3] our methodology involves a larger
region of interest (the whole of the prostate) for classification and a more rigorously determined
ground truth estimate of CaP for evaluation. Future work will focus on validating our
methodology on a much larger cohort of data.
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Fig. 1.
Image intensity histograms for non-cancerous regions in 7 in vivo 3 T DCE-MRI prostate
studies at time points (a) t = 2, (b) t = 4, and (c) t = 6. A very obvious misalignment between
the MR intensity histograms across the 7 DCE-MRI studies is apparent at multiple time points.
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Fig. 2.
(a) Original 3 T in vivo endorectal T2-w prostate MR image CT2, (b) prostate boundary
segmentation via MANTRA in green, (c) corresponding WMHS CH with CaP extent G(CH)
outlined in blue by a pathologist, (d) result of registration of CH to CT2 visualized by an overlay
of CH onto CT2. The CaP extent on CT2 (Gr(CT2 )) is highlighted in green.
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Fig. 3.
(a), (e), (i) showing the CaP extent GR(CD) on the DCE-MRI slice CD high-lighted in green
via registration with corresponding histology (not shown), (b), (f), (j) RGB visualization of the
embedding coordinates from XLLE onto the slice, (c), (g), (k) classification result from plotting
the cluster in  that shows the highest overlap with the ground truth GR(CD) back
onto the slice in red, (d), (h), (l) results from using the 3TP method on the DCE data. The
improved correspondence of the regions labeled red in (c), (g), (k) with the ground truth regions
shown in green in (a), (e), (i) over the red regions in the 3TP results in (d), (h), (l) can be seen.
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