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Abstract

For both clinical and research purposes, biopsies are used to classify liver damage known as
fibrosis on an ordinal multi-state scale ranging from no damage to cirrhosis. Misclassification can
arise from reading error (misreading of a specimen) or sampling error (the specimen does not ac-
curately represent the liver). Studies of biopsy accuracy have not attempted to synthesize these two
sources of error or to estimate actual misclassification rates from either source. Using data from
two studies of reading error and two of sampling error, we find surprisingly large possible misclas-
sification rates, including a greater than 50% chance of misclassification for one intermediate stage
of fibrosis. We find that some readers tend to misclassify consistently low or consistently high,
and some specimens tend to be misclassified low while others tend to be misclassified high. Non-
invasive measures of liver fibrosis have generally been evaluated by comparison to simultaneous
biopsy results, but biopsy appears to be too unreliable to be considered a gold standard. Non-
invasive measures may therefore be more useful than such comparisons suggest. Both stochastic
uncertainty and uncertainty about our model assumptions appear to be substantial. Improved stud-
ies of biopsy accuracy would include large numbers of both readers and specimens, greater effort
to reduce or eliminate reading error in studies of sampling error, and careful estimation of mis-
classification rates rather than less useful quantities such as kappa statistics.
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1   Introduction 
 
Liver biopsies play a prominent role in the clinical care of patients with various 
liver diseases (Manning and Afdhal, 2008), notably hepatitis C virus (HCV) 
infection.  Pathologists typically rate the stage of liver fibrosis in biopsy 
specimens on an ordinal scale that ranges from no damage to cirrhosis (Batts and 
Ludwig, 1995; Bedossa et al., 1994).  Such ratings are also used in research 
concerning progression of HCV disease, and multi-state modeling (Gentleman, et 
al., 1994; Kalbfleisch and Lawless, 1985; Kay, 1986) is perhaps the most 
appropriate statistical approach for such research (Deuffic-Burban, Poynard and 
Valleron, 2002; Terrault et al., 2008).  These methods can estimate 
misclassification probabilities in addition to the parameters governing transition 
rates between states (Jackson and Sharples, 2002; Jackson et al., 2003; Satten and 
Longini, 1996), but the data available for multi-state modeling typically provide 
only indirect information about misclassification rates.   

Studies focused specifically on misclassification may provide better estimates 
of misclassification rates.  In the case of HCV, misclassification of fibrosis stage 
arises from reading error, where the stage of the specimen is misclassified by a 
pathologist, and from sampling error, which refers to sampling of the liver and 
means that the biopsy specimen does not accurately represent the true stage of the 
liver as a whole.  Hepatologists think of the true stage of the liver as being the 
stage of the most diseased part, as reflected by description of disagreements 
between the stages of two specimens as “understaging” or “underdiagnosis” 
(Regev, et al., 2002; Skripenova, et al., 2007).  There are studies that focused 
specifically on reading error via multiple readings of the same liver biopsy 
specimens and studies that focused specifically on sampling error via examination 
of two specimens from the same liver.  Existing studies, however, have not 
combined the two approaches, have not been analyzed in detail, and do not 
attempt to estimate the overall misclassification rates that would be most relevant 
and interpretable for both clinical use and research—they instead provide only 
simple tabulations and kappa statistics, which are not directly useful.  We 
therefore present here an analysis of data from four studies, along with overall 
estimated misclassification rates. 
 
2   Data Sources 
 
We obtained data from four studies that focused on patients with HCV, used 
methods that rate fibrosis from 0 (no fibrosis) to 4 (cirrhosis), and provided usable 
data.  We denote two studies of reading error as R1 (Rousselet et al., 2005) and 
R2 (Netto et al., 2006) and two studies of sampling error as S1 (Skripenova et al., 
2007) and S2 (Regev et al., 2002).   

1

Bacchetti and Boylan: Liver Biopsy Misclassification

Published by The Berkeley Electronic Press, 2009



From study R1 we utilize the data from their substudy 1B, which had 157 
liver biopsy specimens staged using the Metavir system (Bedossa et al., 1994) by 
both a junior and a senior expert pathologist, with consensus reached in a second, 
common reading.  We treat the consensus reading as the true fibrosis stage; this is 
optimistic whenever both pathologists were wrong, and so may tend to understate 
reading error.  The specimens were from chronic hepatitis C patients who had not 
been treated with antiviral or antifibrotic drugs.  Eleven specimens had true stage 
F0, 55 had stage F1, 48 had stage F2, 16 had stage F3, and 27 had stage F4. 
Appendix Table A1 provides the raw data. 

Study R2 reports 17 readings on each of 6 specimens, staged according to 
the Batts and Ludwig schema (Batts and Ludwig, 1995).  Five of the specimens 
were from post-transplant recurrences of HCV and one from chronic HCV 
infection.  One reader was the central pathologist for a multisite clinical trial, and 
the other 16 were local pathologists from 13 of the centers participating in the 
trial.  We used the majority of the readings to define the “true” stage for each 
specimen, which minimizes estimated misclassification rates and may therefore 
be optimistic.  The numbers of correct readings for the six specimens by this 
definition were 8, 9, 10, 10, 11, and 14.  The one with only 8 correct had 8 stage 
F0, 8 stage F1, and 1 stage F2, so we assumed that the true stage was F1.  In one 
case, the stage from 10 of the 16 local pathogists did not agree with the central 
pathologist’s stage.  Raw data are in the original publication (Netto et al., 2006). 

Study S1 examined left and right lobe pairs of liver biopsy specimens 
from 60 patients with chronic hepatitis C.  These were staged by one pathologist, 
blinded to the pairings, using the Batts and Ludwig schema.  Re-readings were 
not used to reduce or eliminate potential reading error in the paired scores that 
were analyzed, but an intraobserver agreement rate of 106/120 (88%) resulted 
from re-readings two weeks after the original readings.  The left and right stages 
were equal for 42 (70%) of the pairs and differed by one point for the other 18.  
Appendix Table A2 provides the raw data.  Notably, there were no readings of 
stage F0 and only 5 of F1, with only one liver read as stage F1 on both sides. 

Study S2 staged left-right pairs of biopsies from 124 patients with chronic 
hepatitis C.  Using the Batts and Ludwig schema, one experienced pathologist 
scored 50 pairs and another scored the other 74 pairs.  Re-readings were not used 
to reduce or eliminate potential reading error in the paired scores that were 
analyzed, but intraobserver agreement rates of 48/50 (96%) and 47/50 (94%) 
resulted from re-readings of some specimens 3-4 months after the original 
readings.  Raw data are not available for this study, but a variety of summaries 
given in the original publication permit the analysis described in Section 3.3.  The 
left and right stages were equal for 83 (67%) of the pairs, differed by 1 point for 
38 (31%), and differed by 2 points for 3 (2%).   
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3   Estimation Methods and Results 
 

We focus here on methods that explicitly assess and estimate variation between 
readers and between specimens, using either fixed or random effects.  This is for 
two main reasons.  First, left-right disagreements in the sampling studies can 
result not only from sampling error but also from reading error on the samples.  
Our estimates of reading error will therefore serve as important inputs into 
estimation of sampling error rates.  Because left and right samples from the same 
patient were always read by the same reader, individual-specific reading error 
rates will be needed, and marginal rates would be inappropriate.  Second, our 
models will allow direct estimation and concrete illustration of reader-to-reader 
variation, which is potentially important.  Where marginal estimates are needed, 
we generate these from random effects models. 
 
3.1   Reading Error Methods 
 
We wish to model the quantity 
 
rjkuv  = Pr{specimen k read as stage v | true stage u, reader j}. 
 
In addition to depending on u and v, this quantity may also depend on reader 
effects and specimen effects.  We suppose that each reader may have a bias 
toward tending to read specimens too high or too low, reflected by a reader effect 
βj.  We also suppose that the skill of readers may vary so that some tend to be 
more accurate or less accurate than others; this is reflected by a random effect γj.  
Finally, we allow for a specimen effect, σk, that allows some specimens to be 
“borderline” in the sense of being much easier to read too high or too low than 
others.  This could reflect the discretization of an underlying continuous disease 
process.  Some specimens are near the bottom of the range of continuous values 
for their stage, so they are more likely to be read as a lower stage, while other 
specimens may be near the top, in which case they are more likely to be read as a 
higher stage.  In principle, there could also be specimen effects to allow for some 
specimens to simply be harder to read than others, but we have not included this 
here because the reading errors in study R2 are clearly directional (rather than 
some specimens showing greater symmetric spread than others), while study R1 
provides little information on specimen effects, as discussed in the next section.  
Our multinomial model for reading probabilities is 
 
rjkuv  = exp(ηjkuv)/∑

w
jkuw)exp(η  ,                                                                           (1) 

where 
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The intercept parameters αuv are unconstrained, and sgn(v-u) is the signum 
function equal to 0 if u=v, 1 if v>u, and -1 if v<u.  This typical multinomial 
framework has larger values of ηjkuv for u ≠ v corresponding to greater chances of 
incorrect readings and the numerator in (1) always equal to unity for correct 
readings.  Although more constrained models have been used for modeling 
misclassification with sparse ordinal data (Albert, Hunsberger and Biro, 1997; 
Mwalili, Lesaffre and Declerck, 2008), this is not necessary with our data.  With a 
large number of readers, the βj and γj can be treated as random effects generated 
from a joint distribution function G(β, γ) that is a bivariate normal with mean (0,0) 

and covariance matrix V = ⎥
⎦

⎤
⎢
⎣

⎡

γβγ

βγβ

VV
VV

.  We choose this form because it can be 

handled by the NLMIXED procedure in the SAS statistical package (SAS 
Institute, Cary, NC, USA).  We treat specimen effects as fixed.  Alternatively, 
with few readers and many specimens, the σk can be modeled as random effects 
with reader effects fixed.  We were not able to model both reader and specimen 
effects as random because no software was readily available for fitting 
multinomial models with crossed random effects. 

For the model with random reader effects, we estimate the parameters, 
{αuv}, V, and {σk}, by maximum likelihood, using the general likelihood feature 
of the SAS NLMIXED procedure (SAS Institute, Cary, NC).  The likelihood is 

LR =∏∫ ∏ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

j k
vjku dGr

jkk
),( γβ ,  

 
where the inner product is over all k read by reader j, the outer product is over all 
readers in the study, uk is the true stage for specimen k, and vjk is the stage 
assigned to specimen k by reader j.  This assumes that all readings are 
independent given the reader and specimen effects.  We use similar methods for 
the case with fixed reader effects and random specimen effects.  Appendix 2 
provides example code for fitting a reading error model. 
 
3.2   Reading Error Estimates 
 
Study R1 had 96 specimens where the two readers agreed (and therefore agreed 
with the “true” consensus stage by definition), 35 specimens where the junior 
reader misclassified the stage, and 27 specimens where the senior reader 
misclassified the stage.  We fit a model with fixed β and γ, specified so the senior 
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reader has +β and the junior -β , and similarly for γ .  We used a random specimen 
effect assumed to follow a normal distribution with mean 0 and variance Vσ.  The 
estimates (95% confidence intervals) were β̂ = 0.67 (0.33 to 1.00), γ̂ = -0.30  
(-0.66 to 0.05), and σV̂ = 0.  The apparent lack of any specimen effects, however, 
may be due to the procedures used in study R1.  The consensus process may have 
only been applied in cases of initial disagreement, and it never produced a 
consensus (which we take as the true state) that was below or above both initial 
readings.  With one exception, the consensus value was always equal to one of the 
readers’ original choices, and the exception was original readings of 2 and 4 that 
produced a consensus of 3.  Thus, it may not have been possible to detect the type 
of cases that would be most indicative of specimen effects, where both readers 
were too low or too high.   

Because the data do not appear to permit estimates of specimen effects, 
and because the estimated γ̂  does not achieve 5% statistical significance, we 
estimated a simpler model without those terms.  This gave β̂  = 0.61 (0.31, 0.91), 
and Appendix Table A3 shows the estimated uvα̂ .  Combinations of u and v that 
never occurred in the data are estimated to have probability zero ( uvα̂ = -∞). 

Study R2 is limited by having only true stages 1, 2, and 3 represented 
(each by 2 specimens), so we have mainly used it in conjunction with study R1.  
For study R2 alone, we fit a model with random β and γ and fixed σk for one 
specimen in each of the 3 true stages, and then we fit various simpler models.  
This estimated βV̂ = 1.71 and γV̂ = 0.58.  A likelihood ratio test for βV = 0 (Stram 
and Lee, 1994) produced p=0.0012, for γV =0 produced p=0.12, and for no 
specimen effects versus 3 effects produced p<0.0001.  The results contrast with 
R1 in suggesting the possibility of important specimen effects, and the design of 
R2 is better able to show such effects, if they exist, because of the large number of 
readers for each specimen.  

To model both R1 and R2 together, we included a random β along with 
fixed specimen effects σk for each of the specimens in R2 (6 parameters).  (Also 
including random γ did not reach statistical significance by likelihood ratio test, 
p=0.26, so we focus on this more parsimonious model for simplicity.)  The 
estimated βV̂ is 0.98, and a likelihood ratio test for βV =0 produces p<0.0001.  If 
one outlying reader from study R2 is excluded from the analysis, then the 
estimated βV̂ drops to 0.52 (p=0.0001 for βV =0).  The estimated specimen effects 
in the model with all readers were -2.6, -2.4, -1.2, -1.0, 0.4, and 2.8.  A likelihood 
ratio test for all 6 specimen effects being zero produced  p<0.0001.   
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Our assumed distribution of specimen effects for subsequent use in 
modeling sampling errors required some additional consideration and analysis.  If 
specimen effects arise from discretization of an underlying continuous disease 
process, then the distribution of specimen effects might be expected to be 
symmetric.  In addition, computational issues in modeling sampling error 
necessitated use of a very simple form for the distribution of specimen effects.  
We modeled the R1 and R2 data together using fixed reader effects and a random 
specimen effect that only pertained to specimens in R2, obtaining an estimated 
normal distribution of specimen effects with mean zero and standard deviation 
1.76.  We divided this normal distribution into thirds, and represented each third 
by the conditional expectation within that third.  This produces a distribution of 
specimen effects equally likely to be -1.92, 0, or +1.92.  We use this in all 
subsequent analyses. 

 
Table 1.  Fitted and tabulated classification rates (percentages) reflecting only 
reading error.  
  Estimated percentage in each read stage, given each true stage* 
True stage u: 0  1 2 3  4 
Read stage v: 0 1  0 1 2 1 2 3 1 2 3 4  3 4 
Specimen 
effects† β              

 
  

-1 93 7  15 79 6 20 77 2 6 40 52 1  16 84
0 83 17  5 78 16 8 85 7 3 20 72 5  6 94
+1 65 35  2 63 36 3 79 18 1 8 76 15  2 98No 

m‡ 81 19  7 73 19 10 80 9 3 23 67 7  8 92
        

-1 86 14  24 63 13 29 64 7 6 41 48 5  25 75
0 74 26  12 62 26 16 69 15 4 28 56 12  13 87
+1 60 40  5 54 41 7 65 27 2 16 58 24  6 94Yes 

m‡ 74 26  14 60 27 17 66 16 4 28 54 14  15 85
Raw tabulations across all readers and specimens: 

Study R1 82 18  6 75 18 9 82 8 3 22 69 6  7 93
Study R2**    47 50 3 12 74 9 6 15 59 21   

* Values shown are 100× uvjr ⋅ˆ  as defined at the beginning of Section 3.1, where j corresponds to a 
reader with the β shown for that row, and the · subscript indicates averaging over specimen 
effects if present.  Bold entries are the percentage correctly classified for each true stage.   

†  If present, specimen effects are assumed to be -1.92, 0, and +1.92 each with probability 1/3. 
‡  Marginal rates, averaged over readers with β= -1, β=0, and β= +1. 
** Two observations (6%) with true stage 2 and read stage 0 not shown due to space constraints 

and no occurrence of this combination in Study R1. 
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  Table 1 shows estimated misclassification rates based on the uvα̂  shown 
in Table A3, with either no specimen effects or the simplified specimen effect 
distribution described in the previous paragraph, and three different types of 
readers: low (β= -1), medium (β= 0), and high (β= +1).  The marginal rates are the 
unweighted average over the three types of readers; averaging instead over a 
normal distribution of β’s with mean 0 and variance βV̂ =0.98 produced similar 
rates.   

Appendix Table A4 shows confidence intervals for the estimates and 
describes the method for obtaining them.  For the fourth row of Table 1, upper 
95% confidence bounds on the percentage read correctly for stages 0 to 4 are 
92%, 81%, 87%, 79%, and 97%.  For the row with specimen effects that is 
marginal over β , the upper confidence bounds on correct classification are 86%, 
69%, 76%, 68%, and 93%. 
 
3.3   Sampling Error Methods 
 
Because studies S1 and S2 did not attempt to determine the true stage of each 
specimen, left-right disagreements can arise from reading error even if the true 
stages of the specimens agree.  To estimate sampling error, we must therefore 
calculate the likelihood of the pattern of left and right observed stages in terms of 
both reading error and sampling error parameters.  Because we do not know the 
true stage of each person’s liver, there are also nuisance parameters for the 
prevalence of true states in the study.  For a given patient and a given study, 
define  
 
ovw = Pr{observe left stage v, right stage w}  
pt   = Pr{true state of liver is t} 
stu  = Pr{obtain specimen with true stage u | true stage of liver is t}. 
 
The stu are the sampling error probabilities that we wish to estimate, and we 
assume that these are the same for left and right specimens and for all patients in a 
study.  We also assume that stu=0 for u>t and u<t-1 (generalizing to allow stu>0 
for u=t-2 often made estimation more difficult even though the estimates ended up 
being infinitesimal).  The assumed downward direction of all sampling errors 
reflects the idea that sampling error only arises due to missing the most diseased 
part of the liver.  In order to deal with the paired data, let 1 index the left 
specimen and 2 the right specimen.  We can then calculate 

vwo  = ∑ ∑∑∑∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

t u u
wujtuvujtut uufrsrsp

1 2 1 2

2211
),|,( 212121

σ σ

σσ ,                            (3) 
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with the reading probabilities vujr
11  and wujr

22  defined by equations (1) and (2).  
Here, ),|,( 2121 uuf σσ is the probability of having specimen effects σ1 and σ2 
given true states u1 and u2.  Equation (3) simply adds the probabilities of all the 
possible combinations of true liver stages, stages of specimens from the liver, and 
readings of the specimens that produce observed stages v on the left and w on the 
right.  We note that it assumes that the chance of sampling error is independent on 
the left and right of the same patient.  This may reduce estimated sampling error 
rates compared to allowing for dependence, because it reduces the possibility that 
concordant pairs arise from both specimens’ stages being lower than the liver’s 
stage.  We also assume that reading probabilities on the left and right are 
conditionally independent given the reader and specimen effects in (2).   

We use multinomial models analogous to (1) for modeling tp and stu: 

tp = exp( tθ )/∑
τ

τθ )exp(  , and 

stu   = exp( tuλ )/∑
w

tw )exp(λ  .                                                                                 (4) 

The tθ and tuλ  are not themselves modeled analogously to (2) but are instead the 
parameters of the models, with reference categories defined by setting 2θ = 0 and 

ttλ = 0 for all t.   
We evaluate three possible assumptions for f (σ1,σ2 | u1,u2).  We assume 

that the marginal distributions of σ1 and σ2 follow the discrete distribution 
described in the previous section, but they may be correlated.  We incorporate 
estimation of this dependence into the sampling error estimation, which we denote 
as the estimated dependence case.  We also evaluate an assumption of complete 
independence.  Finally, we have allowed the distribution to depend on u1 and u2 in 
order to evaluate a biologically plausible exceptional case: that σ1= +1.92 and  
σ2= -1.92 whenever u1<u2, and vice versa.  This assumes that a specimen with a 
true stage less than that of the liver as a whole will be near the top of the 
underlying continuous range for the specimen’s stage, and that a liver capable of 
providing under-staged specimens will provide correctly-staged specimens that 
are near the bottom of the underlying continuous range for the liver’s stage.  We 
couple this assumption with the additional assumptions that σ1=σ2 with the 
marginal distribution from the previous section whenever u1=u2=t and that  
σ1=σ2= +1.92 whenever u1=u2<t, in order to define the case we denote as full 
dependence.  Note that the estimated dependence case does not include our full 
dependence case, due to the specialized assumption when u1≠u2. 

Equation (3) requires specification of reading error rates.  The readings in 
study S1 were all done by a single reader, and those in S2 were done by only two 
readers, 50 pairs by one reader and 74 by the other (but there is no way of telling 
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which were done by which).  Use of marginal misclassification rates would 
therefore not be appropriate.  Although allowing for a random reader bias β in the 
model would be possible in principle, this would be difficult due to the presence 
of random specimen effects as described in the previous paragraph.  We therefore 
separately evaluate use of the low, medium, and high reader misclassification 
rates from Table 1.  Both studies S1 and S2 provided information on intra-reader 
disagreement rates from re-readings, and these were lower than would be 
expected from the models of Table 1.  We therefore also evaluated models that 
had an added reader accuracy effect γ in equation (2) chosen to produce an 
expected intra-reader disagreement rate that exactly matches S1’s or S2’s reported 
rate.  These assumed the marginal distribution of true stages was equal to each 
study’s reported distribution of left and right read stages combined.  

Given a particular assumed reading error model and a particular 
assumption about dependence between the specimen effects, we estimate the 
parameters of the sampling error model (4) by maximum likelihood.  Letting cvw 
denote the number of patients in a given study who have stage v observed on the 
left and w on the right, and c denote the vector of all those counts, we have a 
multinomial likelihood  
LS (c) = N(c) ( )∏

wv

c
vw

vwo
,

,                                                                                        (5) 

where N(c) is the combinatorial term denoting the number of possible ways of 
dividing the total number of patients in the study into the cell counts cvw. 

We know c for study S1, but for study S2, the authors were not able to 
locate the original data and we only have partial information about c, including: 
summaries of how many left-right pairs had |v-w| equal to 0, 1, or 2; mean 
readings for left and right; the kappa statistic for left-right agreement; and various 
summaries of specific types of discordance such as stage 3 on one side and stage 
4 on the other.  For study S2, we therefore estimate the sampling error model by 
maximizing the likelihood of the reported information.  Let C denote the set of all 
possible vectors c consistent with the provided information.  The likelihood of the 
available information is the sum of the likelihoods of all the possible specific 
ways in which it could have arisen.  We then have the likelihood for study S2 
 
LS2 =   ∑     LS (c) .                                                                                                (6) 
            c ∈  C 

 
Note that the combinatorial term in (5), while not needed for study S1, is 
important here because it reflects how many different ways each vector c could 
have arisen.   
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3.4   Sampling Error Results 
 
The reading error rates from Table 1 predicted intra-reader disagreement rates that 
ranged from 2.6 to 4.5 times higher than the observed rates reported for studies S1 
and S2.  Estimation of sampling error rates using the unmodified reading 
distributions from Table 1 often produced implausible estimates, with very high 
or even certain estimated undersampling probabilities tuŝ  for some t, non-zero 

tp̂ for only 2 true liver states t, and/or most stu estimated to be zero, with little 
consistency in which were nonzero across different scenarios.  Table 2 shows the 
estimated undersampling probabilities tuŝ  when the estimation uses modified 
distributions that are tuned (via addition of negative accuracy effects γ as 
described in the previous section) to match the observed intra-reader disagreement  
rates.  Confidence intervals shown are from the Wald intervals around the λ̂ , 
except that a profile likelihood confidence bound is shown if tuŝ =0.  For study S2,  
the estimates are based on maximizing likelihood (6) using 2342 vectors in the set 
C  that are consistent with the reported information. 

The estimates 32ŝ  of undersampling risk from livers with true stage 3 are 
high for both studies and many different possible assumptions.  These estimates 
and others, however, have very wide confidence intervals.  Our biologically-
motivated full dependence assumption for the specimen effects does not fit as 
well as the other assumptions.  We note that the zero estimates for 10ŝ  using S1 
reflect the fact that no reading had stage 0 in that study.  The profile likelihood 
confidence bound extends to 100% in all those cases because models with 10ŝ =1 
worsen -2l by less than the 3.84 worsening needed for a profile likelihood 
confidence bound.  The zero estimates for 21ŝ  using study S2 do not have an 
obvious explanation, and one scenario instead has 10ŝ =0.  There were only 90 
vectors (4%) in C  that had c12+c21=0.  Similarly to the zero estimates in S1, upper 
confidence bounds are often 100%, because setting the probability to 1 worsened 
-2l by less than 3.84. 
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Table 2.  Estimated sampling error rates for 18 combinations of data used, 
assumed reading effects β, and assumed dependence between specimen effects.   
  Assumed Sampling error estimate, %  
  dependence, (95% confidence interval)  
Study β σ1 with σ2 10ŝ  21ŝ  32ŝ  43ŝ  -2l* 

0 3 45 14 None (0, 100) ( 0, 31) (21, 72) ( 2, 54) 28.01 

0 3 46 14 Estimated (0, 100) ( 0, 28) (22, 72) ( 2, 53) 27.82 

0 2 43 13 

-1 

Full (0, 100) ( 0, 41) (19, 69) ( 2, 54) 29.99 

0 3 42 12 None (0, 100) ( 0, 30) (17, 72) ( 1, 58) 28.40 

0 3 43 12 Estimated (0, 100) ( 0, 30) (18, 72) ( 1, 58) 28.12 

0 2 37 10 

0 

Full (0, 100) ( 0, 38) (14, 67) ( 1, 59) 30.48 

0 3 17 6 None (0, 100) ( 0, 26) ( 1, 87) ( 0, 95) 28.50 

0 3 26 7 Estimated (0, 100) ( 0, 24) ( 3, 80) ( 0, 88) 28.11 

0 1 6 5 

S1 

+1 

Full (0, 100) ( 0, 43) (0, 99) ( 0, 97) 30.00 

18 0 46 25 None ( 7, 41) (0, 100) (14, 81) (15, 40) 52.49 

18 0 46 25 Estimated ( 7, 41) (0, 100) (14, 81) (15, 40) 52.49 

17 0 42 25 

-1 

Full ( 7, 39) (0, 27) (16, 73) (14, 39) 53.83 

16 0 45 26 None ( 5, 43) (0, 100) (13, 82) (15, 40) 51.13 

16 0 45 26 Estimated ( 5, 43) (0, 100) (13, 82) (15, 40) 51.13 

15 0 39 25 

0 

Full ( 5, 39) (0, 100) (13, 72) (15, 39) 52.93 

15 0 31 28 None ( 3, 47) (0, 100) ( 5, 80) (16, 44) 51.44 

16 0 34 28 Estimated ( 4, 49) (0, 100) ( 4, 87) (16, 43) 51.41 

0 9 15 26 

S2 

+1 

Full (0, 29) ( 3, 24) ( 1, 80) (15, 41) 51.96 

*  -2 times the maximized log likelihood. 
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3.5   Composite Population-Averaged Misclassification Rates 
 
We suppose that misclassification rates are required for a study involving many 
specimens, each read by one of many different readers.  We therefore want 
population-averaged probabilities 
 
etv = Pr{reading of v | true stage of liver is t} 

     = ∑
=

t

u
uvturs

0
, where                                                                                             (7) 

    ∫∫= ),()( jjkjkuvuv dGdFrr γβσ .                                                                         (8) 
 
For our purposes, the integrals in equation (8) are really just sums of 3 terms, 
because we have assumed γ=0 and used simple, discrete forms for G(βj) and 
F(σk).  To obtain confidence intervals for the tvê , we use a simple importance 
sampling algorithm similar to that given in the Appendix, but we randomly 
generate both }~{ uvα and }~{ tuλ from separate, independent multivariate normal 
distributions with means and covariance matrices as estimated for particular 
entries in Tables 2 and 3.  This ignores some potential dependence between the 
estimated reading and sampling errors.  The need for re-calibration of reading 
errors, as described at the beginning of the previous section, seems likely to us to 
minimize the impact of ignoring such dependence. 

Table 3 shows estimated composite misclassification rates based on 
reading errors from the marginal estimate with specimen effects in Table 1 and 
sampling errors from the best-fitting β=0 entry for study S2 (dependence=None) 
in Table 2.  Because this entry is quite uninformative about s21, we substitute the 
estimate and variance of λ21 from study S1 with the same assumptions (β=0 and 
dependence=None), and set its covariance with other λtu to be zero, reflecting the 
fact that it came from a different study.   

The estimated probabilities of misclassification are quite high, particularly 
when the true stage is 3.  We note that blank cells are those that cannot occur due 
to the assumption of only downward sampling errors of one stage and the 
assumption that some types of reading errors cannot occur because they were 
never present in the raw data.  We also note that upper confidence bounds, 
particularly for cells toward the lower left, are smaller than they would be if some 
uncertainty about the latter assumption had been included in the confidence 
interval estimation.  Estimated composite rates that use sampling error estimates 
from the best-fitting β=0 entry for study S1 (dependence=Estimated) in Table 2 
(but with the λ10 estimate from study S2 replacing the largely uninformative one 
from study S1) are identical for true stages 0, 1, and 2, as they are based on all the 
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same parameter estimates.  Rates are very similar for true stage 3, with slightly 
narrower confidence intervals, and correct classification is better for true stage 4, 
77%, but with a wider confidence interval, 43% to 89%. 
 
Table 3.  Fitted misclassification rates (percentages) reflecting both reading error 
and sampling error.     
  100 × tvê  

(95% Confidence Interval) 
Read stage v 0 1 2 3 4 

74 26    0 (58, 86) (14, 42)    
24 54 22   1 (14, 40) (42, 63) (14, 29)   
0 19 65 16  2 (0, 4) (12, 32) (51, 74) (9, 24)  
 10 45 37 8 3  (4, 20) (29, 61) (21, 54) (2, 20) 
 1 7 25 67 

True 
stage 

t 

4  (0, 6) (3, 13) (16, 35) (54, 78) 
 
 
4   Discussion 
 
We originally envisioned that this analysis would be relatively straightforward 
and would produce reasonably accurate estimates of fairly small misclassification 
rates.  Instead, our results suggest that liver biopsy may be rather unreliable for 
assessing the actual state of HCV-related liver disease, and we found a number of 
limitations in the available data and difficulties in performing analyses that would 
properly accommodate important features in the data.    
 
4.1   Substantive Implications 
 
Analyses of biopsy-measured fibrosis progression have generally ignored 
misclassification.  Although one reason for this may be technical difficulties in 
accounting for misclassification within some of the simple statistical approaches 
that have been used, a lack of any estimates of actual misclassification rates has 
been another barrier—the abstract concordance measures typically provided in 
studies of biopsy reliability are of no use in modeling progression.  We have 
focused here on trying to fill this gap, providing estimated misclassification rates 
that reflect both of the recognized sources or error, reading and sampling. 
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Despite some recognition of inaccuracies in biopsy-measured fibrosis, it is 
still used as a gold standard (Cross, Antoniades and Harrison, 2008; Parkes et al., 
2006).  A recent review states explicitly in its conclusion, “Liver biopsy remains 
the gold standard for assessment of liver fibrosis” (Manning and Afdhal, 2008).  
The misclassification estimates obtained here indicate that biopsy is too 
inaccurate to play such a role.  Even the estimate of reading error alone in the 
fourth row of Table 1 shows error rates that seem too high for use as a gold 
standard, and those estimates are likely to be very optimistic because they 1) 
assume no specimen effects, 2) assume no liver sampling error, and 3) are based 
on optimistic definitions of the true stages of the specimens.  The possibly more 
realistic estimates in Table 3 show dismal performance overall, most notably 
when the true stage of the liver is F3. 

Although one report did characterize agreement between 1 expert and 10 
nonacademic pathologists as “very poor” (Rousselet et al., 2005), previous 
analyses, sometimes using the same raw data that we analyzed here, have 
generally reached more optimistic conclusions.  Several factors may have 
contributed to this.  First, the sampling studies S1 and S2 did show high rates of 
intra-observer agreement.  Second, previous studies focused on reading or 
sampling error in isolation and did not assess possible reader and specimen 
effects.  Third, previous work relied heavily on abstract concordance measures, 
rather than estimating actual misclassification rates.  Unfortunately, concordance 
measures that appear quite high are consistent with the poor substantive 
performance found here, which can produce severe misunderstandings.  Study R2, 
for example, shows substantial raw error rates (see Section 2, above) with strong 
evidence of both reader and specimen effects, but its authors note an “almost 
perfect” Kendall Coefficient of Correlation (0.85) and kappa (0.76, if fibrosis 
stage is grouped into two categories), concluding that, “Acceptable interobserver 
agreement … should help ensure consistency in patient management” (Netto et 
al., 2006).  Study S2 assumes that all left-right disagreements must be due to 
sampling error, because they obtained “almost perfect” kappas for intraobserver 
agreement (Regev et al., 2002).  

Because of the higher risk and expense of liver biopsy, there is 
considerable interest in non-invasive measures of fibrosis (Cross et al., 2008; 
Manning and Afdhal, 2008; Parkes et al., 2006).  Unfortunately, such methods 
have typically been assessed by receiver operating characteristic (ROC) curve 
analyses that use biopsy as a gold standard.  The area under the ROC curve 
(AUC) suffers from several drawbacks: 1) it requires dichotomizing the supposed 
true stage; 2) it has no concrete, practical interpretation; and 3) it does not account 
for the consequences of correct and mistaken classifications (Vickers and Elkin, 
2006).  Moreover, errors in biopsy-measured stage will cause poorer performance 
by AUC (or other measures) even for superior non-invasive measures.  Indeed, 
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non-invasive measures are specifically thought to have poor ability to distinguish 
intermediate levels of fibrosis (Bissell, 2004), but this is precisely where biopsy 
itself appears to be most unreliable.  Thus, fair evaluation of non-invasive fibrosis 
measures would seem to require assessment of long-term clinical and scientific 
utility, not just direct comparison to biopsy results. 

The time of HCV infection is typically unknown (Bacchetti et al., 2007).  
The focus in studies of biopsy-measured fibrosis is usually on progression over 
the entire course of infection, making unknown infection time an important 
limitation.  Non-invasive measures that can be performed more frequently could 
permit focusing instead on trajectories during the measured period, which could 
mitigate this limitation.  In addition, frequent measurement could help mitigate 
the effects of measurement error, particularly if error is largely independent from 
one occasion to the next.   
 
4.2   Limitations and Possible Enhancements 
 
The studies analyzed here fall short of ideal in several respects.  First, the true 
stage of specimens is not known with certainty and is particularly suspect for 
study R1 with regard to estimating specimen effects (see Section 3.2).  Because 
study R2 only had 6 specimens, this limits our assessment of specimen effects, 
and we do not attempt to estimate non-directional specimen-based accuracy 
effects as we do for reader effects.  Second, the studies of sampling error did not 
take any steps to eliminate or reduce reading error.  Estimation of sampling error 
from paired biopsies is already challenging due to the true state of the liver being 
unknown, and the possibility of discrepancies arising from reading error adds 
further complication.  Third, studies R2 and S1 did not represent all stages of 
fibrosis.  Fourth, complete data were not available for study S2.  Finally, the 
studies were heterogeneous in several respects.  Study R1 used a different scoring 
system than the others.  Study R2 included mostly post-transplant specimens, 
although the one from a chronic HCV patient was not read more accurately than 
the others (10 of 17 correct and all errors downward).  Specimen length impacts 
accuracy (Manning and Afdhal, 2008), and study S1 used smaller specimens 
overall (median length 14mm) than study S2 (all ≥15mm), while study R1 
included many (31%) that were <10mm and study R2 did not report on specimen 
length.  In addition, the different study populations may differ in ways that we 
cannot discern. 

The data limitations leave uncertainty about two crucial assumptions for 
our estimates: the existence of specimen effects outside of the post-transplant 
setting and the existence and magnitude of any sampling error.  A key concern in 
estimating sampling error is the reason why intraobserver agreement was much 
higher in studies S1 and S2 than would be predicted by our models of reading 

15

Bacchetti and Boylan: Liver Biopsy Misclassification

Published by The Berkeley Electronic Press, 2009



error based on studies R1 and R2.  Under our models, intraobserver agreement 
upon independent re-reading of a specimen would be influenced only by the 
specimen’s true stage, the α parameters for that stage, one reader parameter, and 
one specimen parameter.  In reality, the read stage may also be influenced by 
multifaceted aspects of the specimen, the reader, and interactions of those aspects.  
This could produce high intraobserver agreement without indicating high 
accuracy—reading the same specimen the same way twice may not be the same 
as reading it correctly twice.  Despite this and the fact that analysis of studies R1 
and R2 provided some evidence against the existence of large reader accuracy 
effects, we estimated sampling error as if the source of those studies’ high 
intraobserver agreement is improved accuracy.  Without this assumption, 
estimates of sampling error appeared to be unstable and implausible. 

We encountered limitations and technical challenges that necessitated 
simplifications.  Due to lack of strong evidence and the minimal amount of useful 
data on specimen effects, we assumed no non-directional accuracy effects for both 
readers and specimens.  We assumed that undersampling risk was independent 
and equal on either side of the liver.  In obtaining composite estimates and 
confidence intervals, we neglected any dependence between reading error 
estimation and sampling error estimation.  Because we found no software that 
would easily include both reader and specimen random effects (crossed random 
effects) simultaneously in a multinomial model, we performed sampling error 
analyses separately for three different types of readers.  Including a full normal 
distribution of specimen effects in the sampling error estimation, particularly for 
study S2 using likelihood (6), appeared to be technically infeasible, so we 
represented the specimen effect with a discrete 3-point distribution.   

Sampling error estimation shares some features with the challenging 
situation of comparing diagnostic tests when there is no gold standard (Albert and 
Dodd, 2004; Hui and Walter, 1980; Pepe and Janes, 2007), notably that the true 
state of the liver is not known.  Our situation is more favorable than comparison 
of different diagnostic tests without a gold standard in that we can reasonably 
assume identical left and right sampling error probabilities, halving the number of 
parameters of interest.  Nevertheless, we still had to estimate latent parameters 
(prevalences of true liver states) and, as noted in Section 3.3, assume conditional 
independence both of left and right sampling errors given the true liver state and 
of left and right reading errors given the reader and specimen effects.  (We were 
able to perform some investigation of dependence between left and right 
specimen effects.)  Even with the simplifications noted above and in the previous 
paragraph, estimation remained difficult for many models, requiring extensive 
computing resources and evaluation of multiple, randomly-perturbed starting 
values to ensure identification of global rather than local maxima in the 
likelihoods.  Despite all these difficulties, we believe that our results suggest that 
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sampling error may substantially increase misclassification rates.  Avoiding the 
difficulties by simply ignoring sampling error would therefore seem likely to be a 
dangerous strategy. 

More comprehensive and elegant statistical methods are possible in 
principle, though probably not feasible for these data sets and not worth the 
extensive effort that would be needed, given the limited amount and quality of the 
available data.  Rather than assigning a true stage for studies R1 and R2, one 
could perhaps generalize the latent class methods discussed in the previous 
paragraph to the multi-state case.  This might require careful parameterization to 
preserve identifiability, particularly because study R1 has only two readers, and 
such an approach probably could not make any use of the consensus readings.  A 
more customized approach, possibly using Markov-chain Monte Carlo methods, 
might be able to estimate models that include both random reader and random 
specimen effects, perhaps even with both directional and non-directional effects 
for each, such as the β and γ in equation (2).  Joint estimation of reading and 
sampling parameters could utilize all four studies at once.  Any future studies of 
sampling error, however, would be much more informative if they eliminated 
dependence on estimation of reading error by ensuring correct readings of all 
specimens.  (The invasiveness and risk of taking two biopsies would seem to 
require optimization of the information obtained from the specimens, justifying 
any extra costs from use of multiple readers.)   

For any future studies of reading error, the potential importance of both 
reader and specimen effects argues for inclusion of large numbers of both readers 
and specimens (in contrast to the severe asymmetries in studies R1 and R2).  Such 
studies need not have each specimen read by each reader, but optimizing 
allocation of numbers of specimens per reader, readers per specimen, and patterns 
of overlap could pay off with improved accuracy and cost efficiency.  Because 
liver biopsy is already unpopular with clinicians and patients (Cross et al., 2008), 
such careful study may never occur, but similar considerations may also apply to 
other multi-state situations. 
 
4.3   Conclusions and Recommendations 
 
There appears to be a considerable possibility that biopsy is far too inaccurate to 
be considered a gold standard for measuring fibrosis in patients with HCV, and 
biopsy reading appears to differ systematically between readers.  We 
acknowledge, however, that the accuracy of biopsy is difficult to estimate with the 
data we were able to obtain.  Many uncertainties about basic modeling 
assumptions, noted in Section 4.2, are difficult to quantify, and even the stochastic 
uncertainty alone, as shown by confidence intervals in Table 3, is considerable.  
Ideally, accurate external estimates of misclassification probabilities could 
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improve the performance of models of fibrosis progression.  Because of the 
uncertainty encountered here, however, we would recommend performing such 
modeling with both optimistic estimates, such as the fourth line of Table 1, and 
less optimistic estimates such as in Table 3.  Because these are so uncertain, use 
of indirect estimation as part of a multi-state modeling process may be as good as 
or better than using external estimates.  In addition, study of fibrosis progression 
in patients with HCV may be as informative with non-invasive fibrosis measures 
as it would be with biopsy assessment.  Many of the non-invasive measures are 
continuous and would therefore avoid the need for multi-state modeling methods 
altogether. 

 
Appendix 1 – Raw data analyzed 

 
Table A1.  Raw data on read and consensus stages for Study R1. 
 

Fibrosis stage by  
Consensus Reader 1 Reader 2 Count

0 0 0 7
0 0 1 1
0 1 0 3
1 0 1 1
1 1 0 6
1 1 1 28
1 1 2 6
1 2 1 14
2 1 2 1
2 2 1 8
2 2 2 31
2 2 3 4
2 3 2 4
3 3 1 1
3 3 2 6
3 3 3 7
3 4 2 1
3 4 3 1
4 3 4 2
4 4 3 2
4 4 4 23

 
 
Raw data for study R2 have already been published (Netto, et al., 2006). 
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Table A2.  Raw counts for each combination of read stages for left liver lobe and 
right liver lobe specimens from Study S1. 
 

  Read stage on right 
  0 1 2 3 4 

0 0 0 0 0 0 
1 0 1 2 0 0 
2 0 2 30 8 0 
3 0 0 4 6 1 

Read 
stage 

on left 
4 0 0 0 1 5 

 
Raw data for study S2 are not available.  We have instead analyzed the published 
information (Regev, et al., 2002), as described in Section 3.3. 
 
Appendix 2 – Example SAS code fitting a reading model 

 
The code below illustrates use of the SAS NLmixed procedure to fit a model like 
the one described in Section 3.2 leading to the estimates shown in Table A3.  For 
illustrative purposes, we include here estimation of a random specimen effect, 
even though that was not included in the model, and it is estimated to have zero 
variance, implying no specimen effects. 
 
data R1; input true reading1 reading2 count; 
do i=1 to count; 
  specimenID+1; 
  reading=reading1; reader=1; output; 
  reading=reading2; reader=2; output; 
end; 
cards; 
<< Data from Table A1 >> 
run; 
 
proc nlmixed data=R1 tech=nrridg absgconv=1e-9[5] gconv=1e-10[5]; 
      title Study R1 with fixed reader, random specimen effects; 
              /* Starting values of parameters */ 
      parms alpha01=-2 alpha10=-2 alpha12=-2 alpha21=-2  
            alpha23=-2 alpha31=-3 alpha32=-2 alpha34=-2  
            alpha43=-2 beta=0 specimenSD=0.1; 
              /* Identifiability constraint for Reader effects */ 
 if reader=1 then shift=beta; else shift=-beta; 
  
 select (true); * stage by consensus, “true” stage ; 
 
 
/* block for observations where true stage = 0 */ 
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 when (0) do; * true stage = 0 ; 
         /* Numerator of likelihood if read stage=1 */ 
   lognumer01 = alpha01 + shift + specimen; 
              /* Denominator of likelihood */ 
   logdenom = log(1 + exp(lognumer01)) ;  
              /* ll is the log-likelihood */ 
              /* Numerator is 1 if read correctly */ 
   if reading = 0 then ll = -logdenom;  
   else if reading = 1 then ll = lognumer01 -logdenom; 
   else ll=.; 
 end; 
 
/* block for observations where true stage = 1 */ 
 when (1) do; 
   lognumer10 = alpha10 - shift - specimen; 
   lognumer12 = alpha12 + shift + specimen; 
   logdenom = log(1 + exp(lognumer10) + exp(lognumer12)) ; 
   if reading = 0 then ll = lognumer10 -logdenom; 
   else if reading = 1 then ll = -logdenom; 
   else if reading = 2 then ll = lognumer12 -logdenom; 
   else ll=.; 
 end; 
/* block for observations where true stage = 2 */ 
 when (2) do; 
   lognumer21 = alpha21 - shift - specimen; 
   lognumer23 = alpha23 + shift + specimen; 
   logdenom = log(1 + exp(lognumer21) + exp(lognumer23)) ; 
   if reading = 1 then ll = lognumer21 -logdenom; 
   else if reading = 2 then ll = -logdenom; 
   else if reading = 3 then ll = lognumer23 -logdenom; 
   else ll=.; 
 end; 
/* block for observations where true stage = 3 */ 
 when (3) do; 
   lognumer31 = alpha31 - shift - specimen; 
   lognumer32 = alpha32 - shift - specimen; 
   lognumer34 = alpha34 + shift + specimen; 
   logdenom = log(1 + exp(lognumer31) +  
                   exp(lognumer32) + exp(lognumer34)) ; 
   if reading = 1 then ll = lognumer31 -logdenom; 
   else if reading = 2 then ll = lognumer32 -logdenom; 
   else if reading = 3 then ll = -logdenom; 
   else if reading = 4 then ll = lognumer34 -logdenom; 
   else ll=.; 
 end; 
/* block for observations where true stage = 4 */ 
 when (4) do; 
   lognumer43 = alpha43 - shift - specimen; 
   logdenom = log(1 + exp(lognumer43)) ; 
   if reading = 3 then ll = lognumer43 -logdenom; 
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   else if reading = 4 then ll = -logdenom; 
   else ll=.; 
 end; 
/* Wrap up likelihood calculations */ 
 otherwise ll=. ; 
 end;  * Close select statement from above ; 
 
/* Specify random specimen effect */ 
 random specimen ~ normal(0, specimenSD*specimenSD)  
                        subject=specimenID; 
/* Use general optimization capability */ 
        model true ~ general(ll); 
run; 

 
Appendix 3 – Fitted intercept parameters 

 
Table A3.  Fitted intercept parameters uvα̂  as defined at equation (2), with (95% 
Confidence intervals), for study R1.  Blank cells had no specimen with that 
combination of u and v and therefore all have estimates of −∞=uvα̂ ; diagonal 
cells have uvα̂ = 0 by definition. 
  Read stage v 

 uvα̂  0 1 2 3 4 

0 0 -1.6 
(-2.7, -0.5) 

   

1 -2.7 
(-3.5, -1.9) 

0 -1.6 
(-2.1, -1.0) 

  

2  -2.3 
(-3.1, -1.6) 

0 -2.5 
(-3.2, -1.7) 

 

3  -3.2 
(-5.2, -1.2) 

-1.3 
(-2.1, -0.4) 

0 -2.6 
(-4.1, -1.2) 

True 
stage 

u 

4    -2.7 
(-3.7, -1.6) 

0 
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Appendix 4 – Confidence intervals for Table 1 
 
Table A4.  Confidence intervals for estimates in Table 1.   
 

  

100 × uvjr ⋅ˆ  
Lower 95% confidence bound 
Upper 95% confidence bound 

True stage u: 0  1 2 3  4 
Read stage v: 0 1  0 1 2 1 2 3 1 2 3 4  3 4 

Specimen 
effects† β              

 
  

93 7  15 79 6 20 77 2 6 40 52 1  16 84
82 2  7 66 4 11 64 1 1 21 30 0  6 65-1 
98 18  28 87 10 34 86 5 31 60 70 6  35 94
83 17  5 78 16 8 85 7 3 20 72 5  6 94
63 6  2 69 11 4 75 4 0 9 50 1  2 840 
94 37  11 85 25 15 90 14 18 36 83 19  16 98
65 35  2 63 36 3 79 18 1 8 76 15  2 98
38 15  1 50 25 1 65 10 0 3 50 4  1 93+1 
85 62  3 73 48 5 88 32 8 16 88 43  7 99
81 19  7 73 19 10 80 9 3 23 67 7  8 92
61 8  3 63 13 5 70 5 0 11 46 2  3 81

No 

m‡ 
92 39  14 81 28 18 87 17 19 37 79 22  19 97

86 14  24 63 13 29 64 7 6 41 48 5  25 75
73 6  14 50 9 20 53 3 1 23 32 1  13 60 -1 
94 27  35 73 19 39 74 12 29 55 60 15  40 87 
74 26  12 62 26 16 69 15 4 28 56 12  13 87
58 13  6 51 19 9 57 8 1 15 36 4  6 750 
87 42  21 71 33 25 79 23 21 40 70 29  25 94
60 40  5 54 41 7 65 27 2 16 58 24  6 94
43 24  2 45 33 4 53 18 0 8 36 9  2 86+1 
76 57  10 63 49 13 76 38 13 25 75 45  14 98
74 26  14 60 27 17 66 16 4 28 54 14  15 85
58 14  8 49 20 11 55 10 1 16 35 5  7 74

Yes 

m‡ 
86 42  22 69 34 25 76 24 21 40 68 30  26 93

†  If present, specimen effects are assumed to be -1.92, 0, and +1.92 each with probability 1/3. 
‡ Marginal rates, averaged over readers with β= -1, β=0, and β= +1. 
 
 
To obtain the above confidence intervals for the uvjr ⋅ˆ  in Table 1, we use a very 
simple importance sampling algorithm (Evans and Swartz, 1995):  
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Algorithm for obtaining confidence intervals 
 

1. Randomly generate }~{ uvα  from a multivariate normal distribution with 
means and covariance matrix as estimated for Table A3.  (For cases where 

−∞=uvα̂ , we set −∞=uvα~  with probability 1.) 
2. Calculate }~{ uvjr ⋅  using equations (1) and (2), along with the same 

assumptions about reader and specimen effects as used for the entries in 
Table 1. 

3. Repeat steps 1-2 a total of 10,000 times. 
4. For each uvjr ⋅ˆ , estimate its confidence bounds as the 2.5 and 97.5 

percentiles of its 10,000 calculated values uvjr ⋅
~ . 
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