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Abstract

Some of the sleep disruption seen in seniors (>65 yrs) may be due to alteration of the circadian
pacemaker phase and/or its phase angle with bedtime. The purpose of this study was to determine
the effects of 2 h changes in the timing of bedtime (both earlier and later) on the sleep of seniors.
Ten healthy seniors (9 F, 1 M, age 70-82 yrs) were each studied individually during three 120 h
sessions (each separated by >2 weeks) in a time-isolation laboratory. On nights 1 and 2, bedtime and
rise-time occurred at the subjects’ habitual times; on nights 3-5, bedtime was specified by the
experiment, but rise-time was at the subjects’ discretion (without knowledge of clock time). Under
the control condition, subjects went to bed at their habitual bedtime (HBT), under the earlier bedtime
condition at (HBT — 2 h), and under the later bedtime condition at (HBT + 2 h). Sleep was
polysomnnographically recorded and rectal temperature continuously monitored. Although total
sleep time increased in the earlier compared to the later condition (p < 0.01), sleep efficiency
decreased and wake after sleep onset increased (p < 0.01). Subjective ratings of sleep were also worse
under the earlier (HBT — 2 h) than under later (HBT+ 2 h) condition (p < 0.05). Performance did
not differ between the earlier and later conditions. The larger the phase angle between actual bedtime
and circadian temperature minimum (Tmin), the longer the time spent in bed and total sleep time,
and the worse the sleep efficiency and subjective sleep ratings. There were no effects related to the
phase angle between Tmin and rise-time. The relative benefits of longer vs. more efficient sleep in
the elderly require further investigation.
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INTRODUCTION

Sleep changes as we age. It changes not only in its length, depth, and fragility (Bliwise,
1993; Prinz, 2004), but also in its timing. It is likely that at least some of the sleep disruption
experienced by healthy older adults (seniors) is the result of circadian timing issues (Monk,
2005) that are orchestrated principally by the master brain clock, the suprachiasmatic nuclei
(Dardente & Cermakian, 2007), although sleep may also be affected by various life events,
such as illness or the death of a spouse (Monk et al., 2008). Even in healthy seniors, there are
significant age-related circadian phase differences (Czeisler et al., 1992; Monk, 2005). In
particular, seniors often choose to go to bed and wake-up several hours earlier than young
adults (Buysse et al., 1992; Czeisler et al., 1992) and have higher “morningness” scores (more
“morning lark” like) on the Horne-Ostberg (Horne & Ostberg, 1976) instrument (Czeisler et
al., 1992; Monk et al., 1991). Seniors have also been found to have circadian phases (as
indicated by temperature and/or melatonin rhythms) that are 1 or 2 h earlier than those of the
young, and to have greater phase angles between bedtime and circadian pacemaker phase
(Duffy et al., 2002; Monk et al., 1995). When we studied the sleep and morningness scores of
healthy older seniors (80 yrs +), we found that those within this age group who had the higher
morningness scores (i.e., were morning “lark”-like) were the ones who slept the longest (Monk
et al., 1991). Because higher morningness scores are associated with earlier bedtimes, this
finding suggests that earlier bedtimes might lead to more sleep being obtained by the elderly.

The fact that seniors are often troubled by extreme levels of early evening sleepiness and
wakefulness in the very early morning hours, sometimes warranting a diagnosis of Advanced
Sleep Phase Syndrome (Sack et al., 2007), has led researchers to develop treatments based
upon the need to change circadian pacemaker phase to a later time (i.e., a phase delay). Thus,
the question has arisen as to whether the sleep of elderly people with unwanted early morning
awakening could be improved by changing the timing of their circadian pacemaker to more
closely follow that of a younger adult (e.g., by delaying pacemaker phase by a couple of hours).
The intervention of choice has been evening bright-light therapy (Czeisler et al., 1986). Several
authors have shown short-term beneficial effects on sleep of evening bright-light treatment
designed to accomplish such a phase delay (Campbell et al., 1995). Unfortunately, though,
many older people do not like light therapy, and a recent report has shown that maintenance
light therapy for such patients is unlikely to work in the long term (Suhner et al., 2002).

One can instead choose to approach the problem differently. Rather than change the timing of
the circadian pacemaker to a later phase, one might instead change the bedtime to an earlier
phase. This would move the sleep episode to an earlier phase position relative to the circadian
pacemaker; thus, at least in the short term, rectifying the problem of an aberrant phase angle
between circadian pacemaker and sleep episode onset without directly intervening to change
the timing of the circadian pacemaker. In an earlier publication (Monk et al., 2006), we reported
an archival diary-based study of the relation between spontaneous changes in bedtime and the
amount of sleep obtained. A total of 128 healthy seniors (63F, 65 M) aged 70-92 yrs each
provided a week of sleep diary data yielding a total of 896 individual subject-nights for analysis.
Separately for each subject-night, diary data were used to derive measures of time in bed (TIB)
and total sleep time (TST). Although there were strong inter-individual and intra-individual
differences, the particular timing of bedtime on any individual night had a statistically
significant effect (p < 0.001) on both TIB and TST. We observed that earlier bedtimes were
associated with longer TIB and more TST. On average, between 7 and 8 min of extra TIB and
TST were associated with each 10 min advance in bedtime.

These results prompted us to develop an intervention study in which the bedtimes of seniors
were deliberately changed, both earlier and later, by 2 h from the habitual bedtime in a study
conducted in a time-isolation laboratory setting. Sleep was measured by polysomnography
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(PSG) and by post-sleep questionnaire (PSQ); circadian rhythm phase was measured by
continuous rectal temperature records, and mood, alertness, and performance were measured
using a battery of tests. Three conditions were considered in three separate ~ 120 h laboratory
sessions using a within-subjects design that was counter-balanced in the earlier and later
conditions: control = habitual bedtime (HBT); earlier = 2 h before HBT; and later = 2 h after
HBT. The design also allowed subjects to determine their own rise-time for the last three nights
of each condition, thus enabling TIB to become a dependent variable under conditions of
temporal isolation, with no knowledge of clock time. This also meant that there were no external
time constraints on TST, making TST essentially ad libitum, although there were, of course,
biological constraints, some probably related to the advanced age of the subjects. We
hypothesized that, in terms of the amount of time spent in bed and the amount of sleep obtained,
the earlier condition would be better than the control condition, and the later condition worse
than the control condition. We also sought to determine whether sleep efficiency and/or
subjective ratings of sleep quality would also show an improvement in the earlier, and
worsening in the later, condition relative to the control condition, and to evaluate how these
changes related to the phase angle both between the bedtime and circadian temperature
minimum and between the rise-time and circadian temperature minimum, using an inexact
(masked) measure of the latter.

Ten healthy paid volunteer subjects, without complaint of sleep problems, took part in the study
(9F, 1M, age range 70-82 yrs). All passed a strict medical screening that included a complete
medical history, physical examination, and review of current medical records from each
subject’s personal physician. Some subjects had stable, non-acute, chronic medical problems,
such as well-controlled hypertension or hypothyroidism, but none evidenced unstable medical
problems or central nervous system diseases. Medical screening also included a routine
laboratory panel (i.e., complete blood count, electrolytes, blood glucose, BUN, creatinine, liver
function tests, thyroid function tests, urinalysis, and electrocardiogram). All potential subjects
were required to be non-obese (i.e., body mass index (BMI) <27 kg/m?) and non-smokers.
None were seeking help for a sleep problem, and none were taking medication known to affect
sleep or circadian rhythms. No subject had a current or past history of psychiatric illness, as
assessed by the Structured Clinical Interview for DSM-I11-R adapted for DSM-1V. In addition,
all subjects scored <10 on the Hamilton Rating Scale for Depression (HRSD) and >27 on the
Mini-Mental State Examination (MMSE). All subjects were also given the Pittsburgh Sleep
Diary (Monk et al., 1994) to complete for 14 nights as well as one screening night of
polysomnography in the laboratory with oximetry. All subjects were required habitually to
sleep at least 6 h per night (at night). No subject had >20 apneas or hypopneas per hour of sleep
or >20 periodic limb movements with arousals per hour of sleep as measured in the laboratory
screening night. The protocol complied with the University of Pittsburgh Biomedical Internal
Review Board (IRB), as well as the ethical standards of this journal (Portaluppi et al., 2008).
Full informed consent was obtained from each participant.

Procedure Overview

A within-subject design was used with each subject attending for three 5-day/night (~ 120 h)
sessions, each starting at about 09:00 h. Each session was separated from the others by at least
two weeks. During the three laboratory sessions, complete temporal isolation was enforced.

At each session, for the first two nights, bed- and rise-time were at the subject’s habitual times
from their two-week sleep diary (Monk et al., 1994) completed before the first laboratory study.
For the next three nights, bedtime was specified, but rise-time was at the subject’s discretion
(whenever you feel you have slept enough and want to get up) without any knowledge of clock
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time. Under the control condition, which was always the first condition experienced, these
three bedtimes (i.e., nights 3, 4, and 5 of the ~ 120 h session) were at the subject’s habitual
bedtime (HBT); under the earlier condition, the three bedtimes were 2 h before HBT; and
under the later condition, the three bedtimes were 2 h after HBT. The order of earlier and
later conditions was counterbalanced.

Each night of sleep was polysomnographically (PSG) recorded and circadian phase estimated
from continuous rectal temperature measurement and evening salivary dim light melatonin
onset (DLMO) assessments. Upon rising from bed, the subject completed a post-sleep
questionnaire (PSQ), which among other things contained self-evaluations of the previous
night’s sleep, including ratings of whether enough sleep was obtained, sleep soundness, and
how well-rested the subject felt. Assessments were made four times per day of global vigor
(alertness), global affect (mood), and performance using our usual battery of tests (Monk et
al., 1997).

Facilities and Procedure

The laboratory studies took place in the University of Pittsburgh Neuroscience Clinical and
Translational Research Center (N-CTRC) time-isolation laboratories. These laboratories are
comprised of two one-bedroom apartments with living and eating areas that are isolated from
daylight, protected from noise, and allow the precise monitoring of subjects. Thus, the subject
lived in a windowless apartment with no timepieces, no knowledge of clock time, no telephone
calls, and no “real time” radio or TV. Only technicians and project staff specially trained to
avoid giving time cues were allowed to enter the apartment. Subjects knew that bedtimes might
change by up to 2 h, but were not told on which runs, on which nights, or by how much. Thus,
potential expectancies concerned with the clock time at which they went to bed and requested
to get up were eliminated. The daily procedure allowed subjects to pursue activities, such as
hobbies, reading, watching videotapes, etc., during the day as the protocol allowed. Unknown
to subjects, breakfast, lunch, and dinner were specified at times related to rise-time (for
breakfast) and to bedtime (for lunch and dinner) on that particular day. Thus, breakfast was 1
h after rise-time (whether experimenter-specified or at the subject’s request), lunch was 12 h
before bedtime, and dinner was 6 h before bedtime. Snacks were also available ad libitum.
Caffeine was restricted to one or two cups of tea or coffee, only in the morning with the
breakfast meal, and was forbidden at all other times. Exercise and showers were limited to a
90 min interval prior to lunch. Mood and performance tests were given before breakfast,
between breakfast and lunch, between lunch and dinner, and after dinner. As the subject started
dinner, the lighting in the apartment was dimmed. Instead of the usual combination of
fluorescent tubes and bulbs that gave a light level of about 250-350 lux, dim incandescent
bulbs (<20 lux) comprised the only lighting for the 6 h between dinner and bedtime. This was
to allow DLMO assessments to be made (see below). At bedtime, lights were extinguished
(light levels <3 lux), although infra-red lights and TV cameras still allowed subject monitoring
for safety reasons.

Sleep was recorded both by polysomnography (PSG) and by a post-sleep questionnaire (PSQ).
PSG studies included one channel of EEG (C3 or Cy, referenced to A1 + Ay), two channels of
electrooculogram (EOG; asymmetric lateral canthus from each eye, referenced to A; + Ap),
and one channel of electromyogram (EMG; bipolar submentalis). Review and scoring of sleep
records was conducted by trained technicians on-screen with the digitized records divided into
20 sec epochs using modified Rechtshaffen and Kales criteria (Rechtschaffen & Kales,
1968). The PSG measures considered in the present analysis were: time in bed (TIB), defined
as the duration between lights-out and rise-time (final awakening as specified by the
experimenter or requested by the subject); sleep latency (SL), defined as the time elapsed
between lights-out and the first epoch beginning 10 consecutive min of sleep stage 2 or deeper
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(interrupted by no more than 2 min of wakefulness or Stage 1); wake after sleep onset (WASO),
defined as the number of minutes of wakefulness recorded between sleep onset and final
awakening; total sleep time (TST), defined as the total number of minutes of objective sleep
(NREM stages 1 through 4 and REM) during the night; and sleep efficiency (SE), defined as
100 times TST divided by TIB. The PSQ contained various questions concerning the previous
night’s sleep. The present study focuses on three measures from the PSQ—slept as much as
needed?, slept soundly?, and well rested?—each response being expressed as a numerical value
on a 0-100 mm visual analogue scale (VAS), with higher numbers representing better
perceived sleep.

On nights 3-5 of each condition, subjects were free to rise out of bed at the moment of their
choice (whenever you feel you have slept enough and want to get up). Upon the subject
announcing over the continuously monitored intercom that she or he wanted to get up, the lights
were switched on by the technician, who then arranged for their sleep electrodes to be removed
and the subject’s “day” to start. The post-sleep questionnaire was completed immediately, and
breakfast was given 1 h later. The requested rise-time was recorded and comprised that night’s
rise-time for TIB determinations. Subjects were continuously monitored by closed-circuit TV
and audio, as well as by personal contact with the monitoring technicians. This ensured the
comfort and well-being of the subject, as well as strict protocol compliance, including the
avoidance of daytime naps.

Following our standard laboratory procedures (Monk et al., 1995), core body temperature was
measured continuously by means of a Yellow Springs Instruments thermistor inserted 10-15
cm into the rectum. The thermistor was connected to a computer via a long cord, allowing
freedom of movement throughout the apartment. Missing readings, due to bowel movements
and showers, were interpolated. The computer recorded rectal temperature every minute around
the clock and alerted technicians to probe slippage. This minimized the loss of data to <5%.

The DLMO was used as a secondary measure of circadian phase. Each evening, commencing
1 h after dinner, a total of eight saliva samples were collected at 30 min intervals to assess
melatonin concentration. The last sample was collected 90 min before bedtime. This reduced
collection schedule was used to lessen subject burden and study cost, as it was not known
whether useful estimates of circadian phase could be obtained. A standardized procedure was
enforced, mostly following methods described in Voultsios et al. (1997).

Four times per day, each participant was subjected to a computerized mood and performance
assessment battery (Monk et al., 1997). The tests were given in the following order:

1. Nine visual analogue scales yielding scores of global vigor (alertness) and global
affect (mood) (2 min).

2. Purdue pegboard measuring manual dexterity speed separately in left and right hands,
with the two scores being averaged (~5 min).

3. Serial four-choice task requiring key press to homologous signals on the screen (~10
min).

4. Stop-signal task, requiring inhibition of a response when a tone sounded (~10 min).

In the afternoon test session, a fifth test was added, the Mackworth Clock Visual Vigilance
Task (~20 min). This task required the detection of an infrequent “double jump” in a pointer
clicking around a circle.
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Data Analysis

The first 48 h (including two nights) of each five-day/night session were considered as baseline
and/or adaptation and were not included in the present analysis. This left three comparable 72
h periods in which only the three bedtimes were specified by the experimenter: control (HBT),
earlier (HBT — 2 h), and later (HBT + 2 h). Rise-times during this 72 h were always self-
selected (see above). Each 72 h period included three nights of both PSG variables (TIB, SL,
TST, SE, and WASO) and PSQ variables (i.e., slept as much as needed?, slept soundly?, and
well rested?). Both PSG and PSQ variables were averaged across the three nights for each
subject-session. Performance and mood variables were taken from the final two full days of
each 120 h session (i.e., only after the first shifted night had been slept). Because the day
following night 2 occurred before any change in bedtime, and because subjects went home
immediately after night 5, alertness, mood, and performance analyses were taken from the days
following nights 3 and 4, rather than from the three nights of the sleep measures. For simplicity
of presentation, all data were averaged to yield a single value of the given variable for that 72
h period for a given bedtime condition. A repeated-measures ANOVA comparing earlier,
control, and later bedtime conditions for the PSG and PSQ sleep variables, and for the
performance, mood, and alertness variables, was then applied, and the results reported.

To derive the circadian temperature rhythm endpoints, each subject’s ~4000 min time series,
starting at noon on the day before night 3 and covering the three non-baseline nights and
intervening days, was considered as the temperature time series for that subject-condition,
averaging into 10 min time bins. A separate cosinor analysis was applied to each subject’s
temperature time-series for each bedtime condition. A mixed-model, repeated-measures
ANOVA was used to fit 12 and 24 h sine and cosine curves to each individual’s temperature
time series under each of the three conditions (earlier, control, and later bedtimes). These
analyses use an adaptation of SAS Proc Mixed (details of which can be found at
http://www.stat.cmu.edu/~hseltman/SASMixed/primer.pdf). Each individual’s fitted curve
was then used to estimate the subject’s circadian amplitude (maximum value minus minimum
value [Tamp]) and phase (time of the minimum value [Tmin]) for each of the three conditions
(earlier, control, and later bedtime). Fitted curves that failed to account for more than 50% of
the variance (R? < 0. 5) were not incorporated into the calculation of the amplitude and phase
estimates. Only the eight subjects with good fits for all three conditions were included in the
analysis. Mean values of phase (Tmin) and amplitude (Tamp) in the earlier, control, and
later bedtime conditions were then reported and statistical significance determined by repeated-
measures ANOVA. While it was recognized that our estimate of phase by Tmin was not the
true estimate of the circadian pacemaker phase, which would only be obtained using a formal
unmasking protocol (see discussion), we felt that using a Tmin value from a sinusoidal fit to
three successive cycles allowed a useful, albeit inexact, measure of circadian phase from which
phase angles could be calculated.

There were two sets of phase angle analyses, one between bedtime and Tmin (PA-B), the other
between Tmin and rise-time (PA-R). Considering only the eight subjects with good estimates
of phase (see above), the phase angle between bedtime and Tmin, (PA-B) for each subject-run,
was calculated as the number of minutes that elapsed between bedtime and the clock time of
Tmin for that subject-run (all Tmin times occurred after bedtime). Similarly, the phase angle
between Tmin and rise-time for each subject-run (PA-R) was calculated as the number of
minutes that elapsed between Tmin and rise-time for that subject-run (all Tmin times occurred
before rise-time). PA-B and PA-R values were then correlated with measures of TIB, TST,
and SE from the PSG, and with measures of slept as much as needed?, slept soundly?, and
well rested? from the PSQ, using the non-parametric Spearman’s rho statistic. These
correlations were calculated using all 24 subject-runs (eight subjects with good circadian phase
estimates x three runs) as well as using only using the eight control condition subject-runs.
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To derive the melatonin-based circadian phase estimate, the timing of the DLMO was
calculated using a simple algorithm on each of the three evenings for a given subject. A
threshold value of 3.0 pg/ml was used, following procedures developed by other investigators
(Gooneratne et al., 2003). However, as noted below, little useful circadian phase information
was obtained from the melatonin analysis.

Effect of Bedtime Condition on Sleep

The effects of the bedtime changes on sleep are summarized in Table 1, which presents the
averages of values for the last three nights of each run. Included are the results of both the PSG
analyses and the PSQ questionnaire ratings (for which the sample size was reduced to nine in
some cases). The PSG results indicated that subjects spent more TIB under the earlier than
later bedtime condition, with the control condition intermediate. Also, there was more TST
with the earlier bedtime condition. The increase in TST may have been achieved at the cost
of a decrease in SE and increase in WASO, although other factors may have also have played
arole. There was no effect of condition on SL. The later bedtime condition was found to be
significantly superior in measures of slept as much as needed? and slept soundly?, but not in
well rested?, from subjects’ ratings of their sleep using the PSQ.

Effects of Bedtime Condition on Alertness, Mood, and Performance

The results of alertness, mood, and performance analyses are given in Table 2. No significant
effect of bedtime condition was detected on daytime alertness, as measured by global vigor,
or on mood, as measured by global affect (p > 0.10). For the performance measures, there was
a striking similarity between the earlier and later bedtime conditions, although in all but the
vigilance test, the control condition, which was always the first condition experienced by
subjects, showed worse performance than the other two. This was probably because of practice
effects, resulting in a significant repeated-measures ANOVA (in the dexterity, inhibition, and
four-choice tasks [p < 0.01 or better]), but with the earlier and later bedtime conditions
essentially identical, and better than the control condition.

Effect of Bedtime Condition on Circadian Rhythms

Two of the ten subjects failed to have all three time series (earlier, control, later) show reliable
24 + 12 h cosinor fits (R? > 0.50), and were thus excluded from the circadian temperature
rhythm analysis. In the remaining eight subjects, with regard to circadian phase, there was a
reliable difference in the timing of the fitted Tmin between the three conditions, being 01:53
h for the earlier, 02:44 h for the control, and 03:57 h for the later bedtime conditions (F(2,14)
=18.41, p < 0.001). Thus, the temperature rhythm shifted, on average, 51 min earlier in the
earlier bedtime condition and 73 min later in the later bedtime condition, compared to
control bedtime condition, even though the bedtime, and thus the onset of darkness, had been
shifted by 120 mins in each direction. This analysis, though, includes the masking effect of the
change in bedtime, and was averaged across the three days. There was no consistent difference
between the conditions in the fitted amplitude (earlier =0.91°C, control =0.83°C, later =0.87°
C;F(2,14)=1.18,p=0.33).

Because of problems with sample collection, transportation, and/or storage, melatonin assays
were only possible for seven of the ten subjects. As expected, given the limited time frame
during which saliva collection was possible (i.e., eight samplings starting 5 h before and ending
1.5 h before actual bedtime), there were many subject-evenings in which no discernable DLMO
could be identified. From the data that were available, there appeared to be no clear change in
phase detected in DLMO when the three conditions were compared; thus, no conclusion could
be reached.

Chronobiol Int. Author manuscript; available in PMC 2010 January 25.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 8

Phase Angle and Bedtime Condition

The phase angle between the actual bedtime and Tmin (PA-B) was calculated for each of the
24 subject-runs. Mean values for the three conditions are plotted in the upper panel of Figure
1. The horizontal line at 258 min represents the mean PA-B value we found in a previous
investigation of 22 young male adults living under a normal nychthemeral routine (Monk et
al., 1995). Under the control bedtime condition, the phase angle was smaller than that typical
of younger adults. Under the earlier bedtime condition, the phase angle was more like that of
younger adults, and under the later bedtime condition, the phase angle was even smaller. When
all 24 subject-runs were considered, significant positive correlations appeared between PA-B
and TIB (rho = 0.833, p < 0.001) and between PA-B and TST (rho = 0.488, p < 0.02). In
contrast, significant negative correlations appeared between PA-B and SE (rho = —0.662, p <
0.001) as well as between PA-B and slept soundly? (rho = —0.452, p < 0.05) from the PSQ;
the other PSQ measures showed non-significant negative correlations. When only the
control condition was considered, the n was substantially reduced to eight. However, a positive
correlation was nonetheless detected between PA-B and TIB (rho = 0.833, p < 0.001), though
not between PA-B and TST (rho < 0.1, n.s.). In contrast, negative correlations appeared for SE
(rho=—-0.662, p <0.001) and (not significantly) for measures of slept as much as needed? (rho
=-0.405, p =0.32) and slept soundly? (rho = —0.524, p = 0.18) from the PSQ. Thus, in general,
the more time that elapsed between bedtime and Tmin, the longer the sleep duration (TST) and
greater the time spent in bed (TIB), but the lower the sleep efficiency (SE) and the worse the
subjective sleep rating of slept soundly?.

In a similar fashion, the phase angle between actual bedtime and Tmin and actual rise-time
(PA-R) was calculated for each of the 24 subject-runs. Mean values for the three conditions
are plotted in the lower panel of Figure 1. The horizontal line at 214 min represents the mean
PA-R value found previously in a study of 22 young male adults living under a normal
nychthemeral routine (Monk et al., 1995). Essentially, the mean values of PA-R under the three
conditions were very similar, about 230 min, being only slightly longer than that found
previously in the young male adults. Similarly, in contrast to the PA-B analyses, there were
no significant correlations between PA-R and any of the sleep measures derived from either
PSG or PSQ. This was true both for all 24 subject-sessions considered together and also when
only the control bedtime condition was considered separately (p > 0.10 all cases). Thus, it
would appear the phase angle between Tmin and rise-time was a much less potent predictor of
sleep than was the phase angle between bedtime and Tmin.

DISCUSSION

The primary hypotheses to be tested by the study were that TIB and TST would be longer in
the earlier bedtime condition and shorter in the later bedtime condition, as compared to
control. These hypotheses were confirmed. However, by additionally considering sleep
efficiency and WASO, we were able to determine that these improvements that occurred under
the earlier condition were achieved at a certain cost. Although by putting a senior to bed 2 h
earlier than normal one might allow them almost 0.5 h more TST, this increase might be won
at the cost of an almost 5% decrease in SE, and more than a 30 min increase in WASO.
Moreover, the results of the analyses on the PSQ variables (see Table 1) indicated that it was
the later, rather than the earlier, bedtime condition that resulted in superior post-sleep
subjective ratings by the subject. This is important, because some experts in geriatric sleep
(e.g., Hoch et al., 2001) believe that it is preserving higher levels of sleep efficiency that should
be the goal of a senior seeking to preserve good sleep and health into later life. In such a view,
the sleep efficiency goal is more important than the actual duration goal (i.e., number of minutes
of sleep obtained). Such an approach ties into behavioral treatments of insomnia that often
specifically seek to increase SE by reducing TIB. Sleep restriction is a major component of
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Cognitive Behavioral Treatment for Insomnia (CBT-I) (see Hoelscher & Edinger, 1988;Morin
et al., 1993). Sleep restriction requires patients to limit the time spent in bed while awake and
thus favors sleep consolidation (Spielman et al., 1987). Thus, according to this approach, the
later bedtime condition with its associated average sleep efficiency of 83.9% would be
preferable to the earlier bedtime condition with its associated average sleep efficiency of
74.0%, even though almost 50 min less actual sleep was then being obtained. Supportive
evidence for sleep efficiency being preferable to more minutes of sleep came from the PSQ
ratings by the subjects themselves, for whom the later bedtime condition produced the highest
VAS ratings of slept as much as needed? and slept soundly?.

Higher sleep efficiency may also be important for the continued well-being of the individual.
In a study of 185 healthy older adults, Dew and colleagues (2003) have shown that after
controlling for age, sex, and baseline medical burden, individuals with SE < 80% were at 1.93
greater risk of death during a 4-19 yr follow-up compared to better sleepers.

In contrast to the above discussion, an alternative approach would be more concerned about
seniors getting enough sleep per se, and would thus concentrate on the total minutes of sleep
obtained each night. This approach would favor the earlier over the later bedtime condition,
as the earlier condition gives the subject more than 6 h of sleep, which some have posited as
the minimum core amount of sleep needed for full functioning (Horne, 1988). However, it
should be noted that there was apparently no increase in daytime alertness or performance
consequent upon the increased sleep obtained in the earlier condition (see Table 2).

A second finding of interest with regard to the PSG monitoring studies was the comparatively
short durations of sleep obtained the last three nights of the control bedtime condition. Under
this condition, subjects went to bed at their habitual bedtime and were free to sleep for as long
as they liked. The present protocol was unusual in that subjects were in temporal isolation
without knowledge of clock time, and were entirely free to determine, on a night-by-night
basis, their own rise-times during the 72 h in question. Arguably, under this condition, they
could be regarded as essentially “sleep satiated.” Even so, an average of only 5.9 h of sleep
was obtained. Moreover, even under the earlier bedtime condition, when more sleep was
obtained, the duration of sleep only increased to 6.25 h. Thus, non-pharmacological
manipulations that seek to increase the sleep duration of seniors to the 7.5-8 h range may be
doomed to failure. Even under optimal circadian conditions, healthy seniors over the age of 70
yrs may be physically unable to attain the amount of sleep seen in younger adulthood.

A third finding of interest with regard to the PSG sleep monitoring studies was the absence of
any worsening of SL under the earlier bedtime condition (earlier: 29 min vs. control: 27 min),
when subjects were put to bed at almost exactly during the “forbidden zone” for sleep.
Historically, a major consistent finding with regard to the interaction between the circadian
pacemaker and sleep period onset is that sleep is very difficult to obtain about 2—3 h before the
individual’s habitual bedtime. This has been referred to as a “forbidden zone” for sleep (Dijk
& Czeisler, 1994; Lavie & Scherson, 1981; Richardson et al., 1982). Thus, for example, in
studies involving ultra-short daylengths (90 or 20 min), very little sleep is usually obtained in
the ultra-short “night,” coinciding with the time span of about 2-3 h before habitual bedtime.
Thus, in the present study, one might expect rather long SL when bedtime is moved earlier by
2 h. The absence of any such effect may be attributed to the age of our subjects. In an earlier
“90 minute day” (60 min awake, 30 min for sleep) study involving seniors (Buysse et al.,
2005), we showed an age-related decrease in the amplitude of the circadian rhythm in sleep
propensity relative to that of younger adults. Monk and Kupfer (2000) have posited that age-
related attenuation of circadian rhythms may occur in rhythms, such as subjective alertness
and sleep propensity, which are “downstream” from the circadian pacemaker.
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Because no bright light levels were experienced, and the change in bedtime was only 2 h, we
expected the circadian pacemaker to remain largely unchanged under the three bedtime
conditions (earlier, control, and later). However, there were statistically reliable, albeit <2 h,
differences observed in circadian phase when we calculated the phase of the final three
circadian cycles of rectal temperature. It should be remembered, though, that such estimates
also included the masking effects of sleep on temperature, the timing of which was delayed or
advanced by 2 h. Thus, in terms of the phase of the circadian pacemaker itself, it may well be
that both phase changes were overestimated in the cosinor analysis of the temperature rhythm.
Only by keeping subjects awake for at least 24 h in an “unmasking protocol” could circadian
phase be accurately determined from the temperature rhythm—a procedure clearly ruled out
in the current experiment. Thus, it should be recognized that all of the present discussions of
circadian phase, including phase angles, are from an inexact measure, because of the known
nonlinear interaction between sleep-dependent and circadian-dependent thermoregulatory
mechanisms that cannot be unmasked using mathematical procedures. Although very recent
research has thus favored melatonin as the “gold standard” circadian marker (hence its
attempted application in this study), it is noteworthy that much of the advance in our knowledge
of human circadian rhythms over the last half-century has derived from studying circadian
rectal temperature rhythms in subjects living on nychthemeral routines. Circadian phase and
phase angle results are thus presented here with the caveat that they may be inexact. The notion
that circadian phase differences were overestimated by the temperature rhythm analysis was
to some extent borne out by the DLMO findings. These findings, although very incomplete,
found no clear evidence for a phase advance in the earlier bedtime condition, or phase delay
in the later bedtime condition. Estimating pacemaker phase by salivary DLMO avoids the
effects of masking, but it suffers from the absence of sample collection during sleep. Our
DLMO results were often inconclusive because of sampling limitations. Clearly, future
experiments should plan to have a much longer evening saliva collection interval, or,
preferably, 24 h blood collections, and collect right up until bedtime.

The analysis of phase angle differences between bedtime and Tmin (PA-B) and rise-time and
Tmin (PA-R) revealed some insights into the mechanism by which gains in TIB and TST, and
losses in SE, might have occurred by moving bedtime 2 h earlier. It would appear that subjects
chose to wake at approximately the same phase angle between Tmin and rise-time, whatever
the bedtime condition, thus allowing extra TIB and TST under the earlier condition when more
time became available for sleep. Under the later bedtime condition, the relatively constant
phase angle with rise-time, combined with a 2 h delay in bedtime, led to a compression of the
sleep episode, with a consequent reduction in WASO and increase in SE. Thus, the present
effects would appear to represent a combination of circadian and homeostatic influences.
Further research is needed to determine whether equivalent effects occur in younger adults,
and if they are the same in men and women (Tonetti et al., 2008), and whether these results
can be verified in a larger sample of seniors. The issue of sleep quality and quantity, especially
in seniors, has attracted even greater attention because of the increasing proportion today of
elderly persons, well beyond the age of 65 yrs, who in many countries continue to remain in
the workforce and to adhere to various diverse work schedules (see, e.g., Bohle et al., 2008;
Costa & Di Milia, 2008; Folkard, 2008).

CONCLUSION

Advancing the bedtime of seniors by 2 h can increase the amount of sleep obtained but will
decrease their SE. Delaying the bedtime of seniors by 2 h can increase their SE and improve
subjective sleep quality, but will result in less overall sleep being obtained. Even under optimal
circadian and/or behavioral conditions, healthy seniors appear to be only able to achieve about
6.25 h of actual, PSG-documented, sleep.

Chronobiol Int. Author manuscript; available in PMC 2010 January 25.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 11

Acknowledgments

Special thanks are owed to Melissa Clark, Joette Zarotney, and Gail Oterson, for subject recruitment and to Margaret
Rosenberg for data analysis. Gratitude is also owed to our subjects for their gracious cooperation in a challenging
protocol. Support for this work was provided by National Institute on Aging grants AG-13396 and AG-020677, NASA
grant NNJO4HF76G, and CTSA grant RR-024153.

The views expressed are not necessarily those of the University of Pittsburgh or the National Institute on Aging.

REFERENCES

Bliwise DL. Sleep in normal aging and dementia. Sleep 1993;16:40-81. [PubMed: 8456235]

Bohle P, Di Milia L, Fletcher A, Rajaratnam S. Introduction: Aging and the multifaceted influences on
adaptation to working time. Chronobiol. Int 2008;25:155-164. [PubMed: 18484358]

Buysse DJ, Browman KE, Monk TH, Reynolds CF, Fasiczka AL, Kupfer DJ. Napping and 24-hour sleep/
wake patterns in healthy elderly and young adults. J. Am. Geriatr. Soc 1992;40:779-786. [PubMed:
1634721]

Buysse DJ, Monk TH, Carrier J, Begley A. Circadian patterns of sleep, sleepiness, and performance in
older and younger adults. Sleep 2005;28:1365-1376. [PubMed: 16335481]

Campbell SS, Terman M, Lewy AJ, Dijk DJ, Eastman ClI, Boulos Z. Light treatment for sleep disorders:
Consensus report V. Age related disturbances. J. Biol. Rhythms 1995;10:151-154. [PubMed:
7632988]

Costa G, Di Milia L. Aging and shift work: A complex problem to face. Chronobiol. Int 2008;25:165—
182. [PubMed: 18484359]

Czeisler CA, Allan JS, Strogatz SH, Ronda JM, Sanchez R, Rios CD, Freitag WO, Richardson GS,
Kronauer RE. Bright light resets the human circadian pacemaker independent of the timing of the
sleep-wake cycle. Science 1986;233:667-670. [PubMed: 3726555]

Czeisler CA, Dumont M, Duffy JF, Steinberg JD, Richardson GS, Brown EN, Sanchez R, Rios CD,
Ronda JM. Association of sleep-wake habits in older people with changes in output of circadian
pacemaker. Lancet 1992;340:933-936. [PubMed: 1357348]

Dardente H, Cermakian N. Molecular circadian rhythms in central and peripheral clocks in mammals.
Chronobiol. Int 2007;24:195-213. [PubMed: 17453843]

Dew MA, Hoch CC, Buysse DJ, Monk TH, Begley AE, Houck PR, Hall M, Kupfer DJ, Reynolds CF.
Healthy older adults’ sleep predicts all-cause mortality at 4 to 19 years of follow-up. Psychosom.
Med 2003;65:63-73. [PubMed: 12554816]

Dijk DJ, Czeisler CA. Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate
sleep and wakefulness in humans. Neurosci. Lett 1994;166:63-68. [PubMed: 8190360]

Duffy JF, Zeitzer JM, Rimmer DW, Klerman EB, Dijk DJ, Czeisler CA. Peak of circadian melatonin
rhythm occurs later within the sleep of older subjects. Am. J. Physiol. Endocrinol. Metab
2002;282:E297-E303. [PubMed: 11788360]

Folkard S. Shift work, safety, and aging. Chronobiol. Int 2008;25:183-196. [PubMed: 18484360]

Gooneratne NS, Metlay JP, Guo W, Pack FM, Kapoor S, Pack Al. The validity and feasibility of saliva
melatonin assessment in the elderly. J. Pineal Res 2003;34:88-94. [PubMed: 12562499]

Hoch CC, Reynolds CF, Buysse DJ, Monk TH, Nowell P, Begley AE, Hall F, Dew MA. Protecting sleep
quality in later life: A pilot study of bed restriction and sleep hygiene. J. Gerontol.: Psychol. Sci
2001;56B

Hoelscher TJ, Edinger JD. Treatment of sleep-maintenance insomnia in older adults: sleep period
reduction, sleep education, and modified stimulus control. Psychol. Aging 1988;3:258-263.
[PubMed: 3268267]

Horne, J. Why we sleep: The functions of sleep in humans and other mammals. New York: Oxford
University Press; 1988. p. 319

Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human
circadian rhythms. Int. J. Chronobiol 1976;4:97-110. [PubMed: 1027738]

Lavie P, Scherson A. Ultrashort sleep-waking schedule, 1. Evidence of ultradian rhythmicity in
‘sleepability’. Electroencephalogr. Clin. Neurophysiol 1981;52:163-174. [PubMed: 6167426]

Chronobiol Int. Author manuscript; available in PMC 2010 January 25.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Monk et al.

Page 12

Monk TH. Aging human circadian rhythms: Conventional wisdom may not always be right. J. Biol.
Rhythms 2005;20:366—374. [PubMed: 16077155]

Monk TH, Kupfer DJ. Circadian rhythms in healthy aging: Effects downstream from the pacemaker.
Chronabiol. Int 2000;17:355-368. [PubMed: 10841210]

Monk TH, Reynolds CF, Buysse DJ, Hoch CC, Jarrett DB, Jennings JR, Kupfer DJ. Circadian
characteristics of healthy 80-year-olds and their relationship to objectively recorded sleep. J.
Gerontol.: Med. Sci 1991;46:M171-M175.

Monk TH, Reynolds CF, Kupfer DJ, Buysse DJ, Coble PA, Hayes AJ, Machen MA, Petrie SR, Ritenour
AM. The Pittsburgh Sleep Diary. J. Sleep Res 1994;3:111-120.

Monk TH, Buysse DJ, Reynolds CF, Kupfer DJ, Houck PR. Circadian temperature rhythms of older
people. Exp. Gerontol 1995;30:455-474. [PubMed: 8557094]

Monk TH, Buysse DJ, Reynolds CF, Berga SL, Jarrett DB, Begley AE, Kupfer DJ. Circadian rhythms
in human performance and mood under constant conditions. J. Sleep Res 1997;6:9-18. [PubMed:
9125694]

Monk TH, Thompson WK, Buysse DJ, Hall M, Nofzinger EA, Reynolds CF. Sleep in healthy seniors:
A diary study of the relation between bedtime and the amount of sleep obtained. J. Sleep Res
2006;15:256-260. [PubMed: 16911027]

Monk TH, Begley AE, Billy BD, Fletcher ME, Germain A, Mazumdar S, Moul DE, Shear MK, Thompson
WK, Zarotney JR. Sleep and circadian rhythms of spousally bereaved seniors. Chronobiol. Int
2008;25:83-98. [PubMed: 18293151]

Morin CM, Kowatch RA, Barry T, Walton E. Cognitive-behavior therapy for late-life insomnia. J.
Consult. Clin. Psychol 1993;61:137-146. [PubMed: 8450099]

Portaluppi F, Touitou Y, Smolensky MH. Ethical and methodological standards for laboratory and
medical biological rhythm research. Chronobiol. Int 2008;25:999-1016. [PubMed: 19005901]

Prinz PN. Age impairments in sleep, metabolic and immune functions. Exp. Gerontol 2004;39:1739-
1743. [PubMed: 15582290]

Rechtschaffen, A.; Kales, A. A manual of standardized terminology, techniques and scoring system for
sleep stages of human subjects. Washington DC: NIH Publication 204. U.S. Government Printing
Office Department of Health Education and Welfare; 1968.

Richardson GS, Carskadon MA, Orav EJ, Dement WC. Circadian variation of sleep tendency in elderly
and young adult subjects. Sleep 1982;5:5S82-S94. [PubMed: 7156658]

Sack RL, Auckley D, Auger RR, Carskadon MA, Wright KP, Vitiello MV, Zhdanova IV. Circadian
rhythm sleep disorders: Part |1, advanced sleep phase disorder, delayed sleep phase disorder, free-
running disorder, and irregular sleep-wake rhythm. Sleep 2007;30:1484-1501. [PubMed: 18041481]

Spielman AJ, Saskin P, Thorpy MJ. Treatment of chronic insomnia by restriction of time in bed. Sleep
1987;10:45-56. [PubMed: 3563247]

Suhner AG, Murphy PJ, Campbell SS. Failure of timed bright light exposure to alleviate age-related sleep
maintenance insomnia. J. Am. Geriatr. Soc 2002;50:617-623. [PubMed: 11982660]

Tonetti L, Fabbri M, Natale V. Sex differences in sleep-time preferences and sleep need: A cross-sectional
survey among ltalian pre-adolescents, adolescents, and adults. Chronobiol. Int 2008;25:745-759.
[PubMed: 18780201]

Voultsios A, Kennaway DJ, Dawson D. Salivary melatonin as a circadian phase marker: Validation and
comparison to plasma melatonin. J. Biol. Rhythms 1997;12:457-466. [PubMed: 9376644]

Chronobiol Int. Author manuscript; available in PMC 2010 January 25.



Monk et al. Page 13

PHASE ANGLE WITH BEDTIME (n=8)
350

300 -

250 -

200 -

150 A

100 A

50 1

MINUTES BETWEEN BEDTIME AND Tmin

ADVANCE CONTROL DELAY
CONDITION

PHASE ANGLE WITH RISE-TIME (n=8)
350

300

250 1

200 1

150

100 1

MINUTES BETWEEN Tmin AND RISE-TIME

ADVANCE CONTROL DELAY
CONDITION

FIGURE 1.
Mean (+ standard error of the mean) values of PA-B and PA-R. The horizontal line represents
PA-B and PA-R values found previously in young male adults (Monk et al., 1995).
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