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A rich literature dating back to the early twentieth century has characterized the cognitive
morbidity associated with the epilepsies and the association of this morbidity with the cause,
course, and treatment of the disorder. Critical reviews over the decades have cataloged the
links between cognitive disorders and specific clinical features of the epilepsies including their
etiology; seizure frequency and severity; complications of the disorder (e.g. status epilepticus);
antiseizure medications; and electroencephalographic abnormalities, such as the type,
frequency, and distribution of interictal epileptiform and slow wave activity.1–6

The understanding of the neuropsychological consequences of the epilepsies evolved in concert
with advancements in the wider worlds of cognitive psychology and epilepsy. First, early
studies were typically but not exclusively limited to the evaluation of intelligence. Assessment
of higher cognitive functions was in its formative years7 and with the introduction of the Binet-
Simon scales, and especially their adaption for use in the United States (eg, the early Vineland
translation and the later Stanford-Binet revision), characterization of intellectual status in
epilepsy followed quickly.8 As a deeper understanding of human cognition developed, and
newer tests and measures became available to assess those concepts, appreciation of the
cognitive correlates of epilepsy expanded apace. Second, much of the early literature came
from very limited segments of the population of people with epilepsy, typically from
specialized institutions (or colonies) serving the more complicated and severely affected
individuals.3 Over time more representative portions of the population were sought out and
investigated, which yielded a less biased but still imperfect characterization of the relationship
between epilepsy and intelligence and broader cognitive status.2,9,10 The focus of research has
continued to be on persons with epilepsy presenting to specialized tertiary care medical centers,
although more representative population-based studies of cognition are available, particularly
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among children with epilepsy.11–14 Third, classification and taxonomy of the epilepsies
developed from early rudimentary systems to the evolving and increasingly sophisticated
international classification of epileptic seizures and syndromes.15,16 The neuropsychological
features of these syndromes and their primary cognitive signatures have developed
accordingly.6,11,17–20 Finally, as medical technology evolved patients with epilepsy have been
studied with increasing sophistication to understand the underlying neurobiology of cognitive
impairment in epilepsy, a primary focus of this article.

A critical and fundamental feature of the neuropsychology of epilepsy literature is that
throughout its history a primary focus has been the relationship of cognition and cognitive
disorders to core clinical features of the epilepsies including but not limited to the age of onset
of epilepsy, etiology, seizure type and syndrome, medications, duration of epilepsy, and
electroencephalographic features.21–26 Unequivocal associations between these clinical
characteristics and neuropsychological impairments have been reported and repeatedly
replicated through the decades, but the neurobiologic mechanisms through which they exert
their effects have been investigated less intensively. A new literature is now under way, one
linking cognitive abnormalities directly to indices of structural, functional, metabolic, and other
neurobiological markers of cerebral integrity, independent of their association with clinical
epilepsy characteristics. These trends are reviewed in the material to follow. The initial focus
is on temporal lobe epilepsy (TLE) as a model with which to address the core points, because
this form of localization-related epilepsy has been very carefully studied from both a cognitive
and imaging standpoint. Some pertinent historical issues are touched on first, followed by more
detailed reviews of the cognitive and neuroimaging abnormalities that have been found in TLE,
followed by an overview of studies examining direct structure-function relationships in TLE
and other epilepsies.

THE UNIQUE CONTRIBUTION OF TLE
Psychomotor epilepsy or TLE has provided an especially important window into the
neuropsychology of epilepsy. The term “psychomotor epilepsy” was used beginning in the
1930s to describe relatively poorly understood spells that some had called psychic equivalents.
27,28 The early electroencephalographic features were characterized in the context of clinical
attacks wherein “….the patient, though he may perform apparently conscious acts, is not
subject to command; he may exhibit involuntary tonic movements; he may display
psychomotor disturbances….and on recovery he has complete amnesia for the events which
occurred in the attack.”27,29,30 These seizures were later found to be associated with an anterior
temporal lobe spike focus,30,31 and consideration of epilepsy surgery for these “nonlesional”
patients developed early on in Chicago32 and Montreal.33

Early surgical centers routinely incorporated cognitive assessments in their evaluations, which
were performed under the supervision of Donald Hebb34 and Brenda Milner35,36 at the
Montreal Neurological Institute, Ward Halstead37 at the University of Illinois, and Victor
Meyer at the Maudsley Hospital.38,39 The neuropsychology of epilepsy benefitted enormously
from these early opportunities to assess patients before and after surgery and to correlate
cognitive changes with detailed preoperative histories, well-characterized surgical resections,
careful neuropathologic examinations of resected tissue, and eventually quantitative
neuroimaging.5

THE PALM DESERT CONFERENCES ON EPILEPSY SURGERYAND THE
NEUROPSYCHOLOGY OF EPILEPSY

Important events for the neuropsychology of TLE were the Palm Desert Conferences on
Epilepsy Surgery.40 Before these international conferences there were varying opinions
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regarding the operational definition of surgical candidacy. Various reasonable criteria were
proposed, including seizure frequency and severity, the number of failed medications, or the
degree of social and occupational disability; but consensus remained to be achieved. At the
second Palm Desert Conference a focus was placed on “surgically remediable syndromes,”
among which mesial TLE (mTLE) was prominent.40 If a syndrome was surgically curable, it
should be identified and treated with minimal delay.41

This conceptualization had an important impact not only on the thinking regarding optimal
patient selection and surgical timing, but it also facilitated increasingly careful characterization
of mTLE.42 At that time details regarding the neuropsychological features of mTLE were few
in number and the primary cognitive correlates were viewed as largely linked to material-
specific memory impairment demonstrated either through formal cognitive assessment or the
Wada Test. A stated contraindication to the syndrome of mTLE was the presence of generalized
cognitive compromise, all of this was a reasonable early characterization.41 For
neuropsychologists who saw a steady stream of surgical candidates with well characterized
mTLE, however, the neuropsychological correlates were viewed as considerably more
complex. Memory asymmetry was indeed seen in a proportion of patients, an asymmetry linked
to the degree of neuronal loss and sclerosis in the affected hippocampus,43 but this pattern often
occurred in the context of more distributed cognitive impairment. Formal investigations of the
ability of neuropsychological tests to localize and lateralize the ictalonset area revealed variable
discriminatory power44 and these results were viewed by some as indicative of the limitations
of neuropsychological assessment. The material to follow, however, provides an overview of
the distributed nature of cognitive abnormality in mTLE in the context of the distributed nature
of identified structural abnormalities in mTLE, and their important associations.

THE DISTRIBUTED NATURE OF COGNITIVE IMPAIRMENT IN MTLE
By definition the syndrome of mTLE is a disorder of childhood-adolescent onset.45 A core
finding, clear from some of the earliest cognitive studies and routinely reported through the
decades, is that an early age of onset of recurrent seizures is associated with a pernicious impact
on a broad array of cognitive functions. This effect was reported as early as 192446 and
subsequently confirmed in studies of adult patients with diverse seizure types,10,47–50 and even
reported in neuropsychological studies of younger patients with complex partial and other types
of seizures.51–53

When the comprehensive neuropsychological status of patients with mTLE with confirmed
hippocampal sclerosis was examined compared with healthy controls or patients with other
TLE syndromes, such as so-called “MRI-negative TLE,” mTLE patients exhibited a pattern
of distributed cognitive impairment affecting not only memory, but also intelligence quotient
(IQ), executive functions, language, sensorimotor, and other abilities (Fig. 1).54–57

This average profile of distributed neuropsychological impairment in mTLE, obtained in the
context of a focal epileptogenic lesion whose resection results in excellent outcome, was
unexpected. The testable hypothesis was that just as memory impairment was related to
neuropathology in the hippocampus, perhaps the more widespread neuropsychological
abnormalities might be secondary to more diffusely existing neuroanatomic abnormality that
could be detected by quantitative neuronimaging techniques, and that individual variability in
neuropsychological abnormalities might be associated with individual patterns of anatomic
abnormality.54
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THE DISTRIBUTED NATURE OF ANATOMIC ABNORMALITIES IN CHRONIC
TLE

The cumulative neuroimaging literature, focusing here on structural neuroimaging, has shown
that anatomic abnormalities in mTLE can be extensive. For reasons that remain to be
understood, mTLE seems to be associated with abnormalities in surprisingly diverse neuronal
systems, a pattern consistent with the generalized and distributed average neuropsychologic
profile of TLE (see Fig. 1).

Initial quantitative MRI volumetric and voxel-based morphometry (VBM) studies identified
atrophy of the hippocampus,58–61 along with reports of abnormalities in related structures
including entorhinal cortex,60–63 fornix,64 parahippocampal gyrus,61 amygdala,60,61 basal
ganglia,65,66 and thalamus.65,67,68 More distant extrahippocampal temporal lobe58,69–72 and
extratemporal lobe regions69,73 were implicated including the lateral temporal cortex, frontal
lobe, and the cerebellum.74,75 With this degree of distributed atrophy, it is not surprising that
reductions in overall total cerebral tissue volume were reported.56,69,70,76–78

With few exceptions68,79 most of the early volumetric investigations examined one or a limited
number of structures rather than characterizing a broad and diverse range of regions as to the
presence and degree of abnormality. Examination of several regions in the same patient group
facilitated appreciation of the distribution and relative degree of structural burden carried by
many patients.68,79 In that regard, a very helpful summary of the presence and distribution of
structural abnormality associated with TLE is provided by Keller and Roberts.80 In their review
they surveyed 26 brain regions examined in VBM investigations of TLE compared with healthy
controls. Their summary (Fig. 2) demonstrates the proportion of studies revealing
abnormalities in mesial, extramesial temporal lobe, subcortical, and extratemporal lobe cortical
regions. The presence and distribution of these abnormalities would suggest that cognitive
abnormalities might extend beyond memory to involve diverse cognitive abilities.

DISTRIBUTED ABNORMALITIES IN CORTICAL SURFACE FEATURES IN TLE
Another example of the potential structural consequences of mTLE is provided by quantitative
characterization of the cortical mantle, including indices of gyrification, cortical depth, and
surface area. These indices provide important information concerning normal and abnormal
brain development, the effects of normal aging, and disease impact.

Lee and colleagues70 were among the first to examine cortical surface features (sulcal
curvature) in unilateral TLE, the bulk of evidence awaiting the development of more
sophisticated image processing systems. Accumulating evidence has shown that patients with
unilateral TLE exhibit bilateral and diffuse abnormalities in sulcal and gyral curvature, cortical
depth, and cortical complexity.56,81–84

Oyegbile and colleagues56 examined cortical surface features in an initial cohort of 96 patients
with TLE and 82 healthy controls. They found patients with unilateral TLE to exhibit
abnormalities in whole-brain gyral and sulcal curvature with increased surface cerebrospinal
fluid (CSF) volume. These cortical surface feature abnormalities were generalized in nature
and evident both contralateral and ipsilateral to the side of temporal lobe seizure onset.

Lin and colleagues85 examined cortical thickness and cortical complexity in an extremely
carefully defined patient cohort. Their cohort of patients exhibited at least three ictally
monitored seizures demonstrating unilateral temporal lobe onset, hippocampal sclerosis
demonstrated by histopathology, and class 1 outcome 2 years following surgery. Comparing
15 left and 15 right mTLE patients with 19 healthy controls, they found both left and right
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mTLE groups to have regions with up to 30% bilateral decrease in average cortical thickness,
with significant thinning of the bilateral frontal poles, frontal operculum, orbitofrontal, lateral
temporal, and occipital regions, right angular gyrus, and primary sensorimortor cortex
surrounding the central sulcus (Fig. 3). Examining cortical complexity, the left TLE group
showed significantly reduced complexity across all left and right hemisphere lobes except the
right frontal lobe. The right TLE group exhibited significantly reduced cortical complexity
across all lobes except the right frontal and parietal lobes. A very diffuse and bilateral pattern
of abnormality was therefore evident in the cortical mantle in patients with unilateral mTLE.

Subsequent studies have elaborated and extended these findings. Bernhardt and colleagues83

examined 110 patients with TLE (56 left, 54 right) and 45 controls, and Fig. 4 summarizes the
findings. Thinning was evident in bilateral frontocentral (superior, middle, and medial frontal
gyrus; precentral gyrus; paracentral lobule); cingulate; and contralateral medial
occipitotemporal regions. The most severe frontal thinning occurred in the ipsilateral precentral
regions. In addition, there was severe cortical thinning in the hippocampus and
parahippocampal regions ipsilateral to side of seizure onset. Contralateral to the seizure focus,
there was cortical thinning in the medial occipitotemporal gyrus. In right TLE the severity of
atrophy was similar and the pattern resembled that found in left TLE, but less widespread.

McDonald and colleagues82 compared 21 patients with TLE with 21 healthy controls. Bilateral
cortical thinning (5%–15%) was reported in the lateral temporal lobes (Heschl’s gyrus) and
frontal lobes (precentral, paracentral, pars opercularis). Unilateral cortical thinning was evident
in the left superior temporal gyrus and sulcus and medial orbital cortex; and the right middle
temporal gyrus and lateral orbitofrontal cortex. If analyses were restricted to mTLE patients,
then the parietal cortex was also affected.

Mueller and colleagues84 used 4-Tesla MRI and examined 35 controls and 15 patients with
mTLE and 16 non-mTLE patients. Both groups exhibited widespread temporal and
extratemporal cortical thinning. The mTLE group showed significant thinning in ipsilateral
temporal lobe (entorhinal cortex, parahippocampal fusiform gyrus, temporopolar–anterior
superior temporal region, retrosplenial region) and bilateral precentral-postcentral regions,
superior frontal, transverse temporal, precuneus, and prestriate regions.

In summary, widespread temporal and extratemporal lobe abnormalities in cortical surface
features seem present, both contralateral and ipsilateral to the side of seizure onset, in mTLE
in particular and TLE more generally.

DISTRIBUTED ABNORMALITIES IN WHITE MATTER AND WHITE MATTER
TRACTS IN TLE

In addition to gray matter abnormalities, a decrease in white matter volume is present in chronic
TLE. Traditional volumetric studies have demonstrated distributed cerebral white matter
abnormalities in patients with unilateral TLE, with abnormalities evident both contralateral
and ipsilateral to the side of seizure onset, affecting temporal and extratemporal regions.86

Whole-brain VBM analyses have also demonstrated temporal and extratemporal abnormalities,
although the findings are much less extensive and consistent when compared with gray matter
VBM studies. McMillan and coworkers87 found that left TLE patients had reduced white matter
volume in the left temporal lobe, corpus callosum, and bilateral prefrontal cortex. In patients
with right TLE, only right temporal lobe and fornix showed decreased volume. Bernasconi and
colleagues88 found that both right and left TLE individuals had reduced white matter volume
in the temporal lobes, ipsilateral to side of seizure onset and the body of the corpus callosum.
The right TLE individuals had additional white matter reduction in the postcentral regions.
Their study did not, however, reveal frontal lobe white matter abnormalities.
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Although these white matter volumetric studies further elucidate the widespread structural
abnormalities in TLE, they do not provide measures of specific white matter tract coherence
or the overall integrity of networks connecting different brain regions. Recent compelling
evidence from functional imaging, lesional, and behavioral studies suggest that widespread
and coordinated networks are required for complex cognitive function.89 These distributed
networks are linked by projection, association, and commissural white matter fiber tracts that
connect cortical-subcortical, cortical-cortical, and interhemispheric regions.90

In macaque monkeys, interrupting major afferent pathways from the basal forebrain to the
temporal lobe, without removal of the medial temporal structures, produces severe amnesia.
91 In addition, simply disconnecting the parietal lobe from the frontal lobe functionally, as can
be done by white matter stimulation during surgery, leads to profound neglect in humans.92 In
certain cases, loss or disruption of cerebral connections can produce a greater magnitude of
deficits than localized lesions, suggesting the importance of an integrated structural network
in normal cognitive functions. This concept has led to a unifying hypothesis that disconnection
between important cortical and subcortical regions impairs information transfer and contributes
to cognitive impairments.93 Indeed, such disconnection models can now be tested, using
quantitative imaging techniques, such as diffusion tensor imaging (DTI), to interrogate the
integrity of white matter tracts.94

In DTI, the primary measure of white matter integrity is fractional anisotropy (FA), which is
determined by the directional magnitude of water diffusion in three-dimensional space.95

Tightly packed white matter fascicles provide structural coherence, which results in water
diffusion in a preferred direction (high FA). In contrast, white matter fascicles that have poor
structural organizations allow water to diffuse more randomly (low FA). Other measures of
white matter integrity include mean diffusivity (MD) or apparent diffusion coefficient, which
calculates bulk water diffusion characteristic in the intracellular and extracellular water
compartments.96 Using these water diffusion parameters, studies have evaluated the coherence
of specific white matter tracts and whole-brain white matter connectivity.

Initial DTI studies used a region of interest approach to investigate specific white matter tracts
in the limbic network. One of the first DTI tractography studies evaluated the integrity of fornix
and cingulum in patients with mTLE. In these fiber tracts, Concha and colleagues97 observed
diffusion abnormalities ipsilateral and contralateral to the side of seizure onset. Postulating a
more diffuse epileptogenic network in TLE, other investigations have extended this initial
finding to frontal-temporal (uncinate fasciculus and arcuate fasciculus),98–100 temporal-
occipital (inferior longitudinal fasciculus),101 frontal-occipital (inferior frontal occipital
fasciculus),101 and interhemispheric (corpus callosum) connections.102–104 Parallel to the gray
matter region of interest studies, these DTI studies have also shown extensive bilateral
abnormalities in cortical-cortical, cortical-subcortical, and interhemispheric connections,
despite unilateral seizure onset.

More recently, whole-brain voxelwise analysis techniques of DTI data have been developed.
These analyses allow mapping of white matter profiles and delineate systemic differences
between TLE patients and healthy individuals, without a priori bias for specific tracts or brain
regions. DTI data have poor anatomic resolution, which makes spatial matching across multiple
subjects particularly challenging. Two methods have been developed to overcome these
technical difficulties: VBM and tract-based spatial statistics. In patients with mTLE, both
methods revealed extensive bilateral white matter diffusion abnormalities, particularly in the
temporal and frontal lobes ipsilateral to the side of seizure onset.105–107 Tract-based spatial
statistics seemed to be more a sensitive method by detecting more extensive white matter
changes when compared with traditional VBM methods in the same patient population.106
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TLE: A LOCALIZATION-RELATED DISORDER?
The essential theme is that although the primary epileptic zone may be contained within the
confines of the hippocampus and temporal lobe, considerable anatomic abnormality exists
outside this region affecting a myriad of cortical, subcortical, and cerebellar regions and their
direct and indirect connectivity. Importantly, the sum of these distributed structural
abnormalities, not to mention associated abnormalities in other aspects of brain integrity, such
as metabolism and blood flow, may result in a cumulative cognitive and behavioral burden that
may be substantial on average, but with a mosaic that may be highly individualized depending
on the underlying architecture of a given patient’s structural and functional pathology.

LINKING DISTRIBUTED COGNITIVE IMPAIRMENTS WITH DISTRIBUTED
NEUROIMAGING ABNORMALITIES:THE MOSAIC OF STRUCTURE-
FUNCTION RELATIONSHIPS IN CHRONIC TLE

A developing literature has begun to characterize the links between cognition and the diverse
regions of anatomic abnormality in TLE. This section touches on representative examples of
these links. Although the focus is on associations between cognition and structural
abnormalities, additional investigations albeit smaller in number have examined associations
between cognition and behavior with other measures of brain integrity (eg, metabolism,
functional MRI [fMRI] activation), and a few representative examples of those studies are
included.

Hippocampus
Early studies demonstrated the expected relationship between memory performance and
hippocampal pathology characterized by neuronal loss and sclerosis.108 Subsequent studies
demonstrated a link between hippocampal volumes and memory performance before epilepsy
surgery, and preoperative left hippocampal volumes were also predictive of the risk of
preoperative to postoperative memory change.58,109,110 Abnormalities in left hippocampal
volume have also been shown to be associated with some language-based abilities including
confrontation naming111 and fluency.112

Thalamus
The degree to which the thalamus is affected in chronic mTLE is increasingly recognized and
there is now a demonstrated link between atrophy of the thalamus and performance on measures
of memory and intelligence in TLE.113,114 In addition, prior fluorodeoxyglucose positron
emission tomography research demonstrated that verbal memory was affected in the context
of ipsilateral thalamic hypometabolism in patients with left TLE.115

Basal Ganglia
Negative symptoms including affective flattening, alogia and avolition, anergia, apathy,
anhedonia, and loss of social drive have been reported in patients with TLE.116,117 These
patients also exhibit cognitive and psychosocial correlates that are not seen in patients with
TLE without negative symptoms, but neuroimaging correlations with cortical regions were
nonspecific and limited only to increased total CSF.116,117 Geary and coworkers118

hypothesized that basal ganglia and anterior cingulate regions of interest play a role in the
expression of negative symptoms in epilepsy and compared a matched group of TLE patients
with and without negative symptoms with healthy controls (N = 22 per group). They found
that TLE patients with negative symptoms exhibited significantly reduced volumes in the
putamen and globus pallidus, that these volumetric abnormalities were independent of self-
reported depression, and that there were specific significant relationships between alogia with
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volumes of the putamen and globus pallidus, and affective flattening with volume of the
putamen.118

Frontal Lobe
There has been considerable interest in the neural basis of reported impairments in executive
function among patients with TLE and their relevance to “secondary” frontal lobe or
frontostriatal pathology. Keller and colleagues119 examined prefrontal and hippocampal
volume using sterology and VBM in 30 controls and 26 left and 17 right TLE patients.
Assessment of executive functions included evaluation of response inhibition, working
memory, and lexical fluency. They found volume reduction of the ipsilateral hippocampus as
expected, but also volume reduction in regions of the prefrontal cortex. In addition, there were
significant associations between prefrontal cortex and executive function including working
memory with all prefrontal regions examined except right dorsal prefrontal cortex; lexical
fluency with left dorsal prefrontal cortex, whole left prefrontal cortex, and left hippocampus;
and response inhibition with left ventral prefrontal cortex). Along related lines, an earlier
positron emission tomography investigation of patients with TLE showed that extension of
hypometabolism into the ipsilateral frontal lobe was associated with cognitive consequences.
120

Examining 36 patients with unilateral mTLE using VBM, Bonilha and colleagues121 addressed
the extrahippocampal correlates of memory performance. In addition to the contributions of
hippocampus, entorhinal, and perirhinal cortices to general and verbal memory, they found
that atrophy of the cingulate and orbitofrontal cortex was also associated with disrupted
memory performance.

Temporal Lobe
In addition to the investigations of memory and the integrity of the hippocampus reviewed
previously, there have been several investigations of temporal lobe structure and memory for
unfamiliar and familiar faces.122,123 These studies include bilateral investigation of T2
relaxation time in hippocampus, amygdala, and fusiform gyrus, showing that worse immediate
but not delayed memory was correlated with greater differences in T2 values between left and
right fusiform gyrus and hippocampus. Griffith and colleagues124 examined the relationship
between [18F] fluorodeoxyglucose positron emission tomography and performance on a task
of famous face recognition, naming, and generation of semantic information in 12 patients with
TLE. Strong relationships between all aspects of the Famous Faces Task and the left temporal
pole were revealed, whereas Famous Faces Task correlations with the right temporal pole were
not significant. These findings indicated that the left temporal pole was associated with lexical
and semantic retrieval of knowledge of famous persons in patients with TLE.

Cerebellum
The traditional view of cerebellar function is that it contributes primarily to movement and
motor control; however, converging animal and human studies indicate that the cerebellum
contributes to a variety of higher cognitive abilities, including specific types of memory.125,
126 Human memory is composed of multiple systems, each mediating specific forms of learning
and each dependent on different neuronal networks for efficient operation.127,128 A clear
behavioral and anatomic distinction exists between the conscious recollection of facts and
events (explicit or declarative memory) versus memories that are inaccessible to conscious
recollection but that are expressed through changes in skills, habits, and other forms of simple
associative learning (implicit or procedural memory).127,128 Classical conditioning, a
fundamental form of implicit associative learning, is one type of procedural memory, and
conditioning of the eyeblink response is the most commonly investigated conditioning
paradigm. The neural circuitry underlying this associative learning has been well characterized
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and shown to be dependent on the cerebellum.129 There is now evidence that cerebellar atrophy
in TLE is associated with compromised classical eyeblink conditioning.130

Cortical Surface Features
Several studies have demonstrated distributed abnormalities in the cortical mantle of patients
with unilateral TLE. Only one investigation has examined the association of cognition with
cortical surface features (gyral and sulcal curvature, cortical area, and thickness).56 Among
TLE patients, measures of cortical curvature (gyral and sulcal) were significantly associated
with performance IQ, verbal and visual memory, simple and complex psychomotor processing,
and speeded fine motor dexterity. Total surface area was associated only with verbal IQ.

Amygdala
Abnormalities of the amygdala have been shown to have a relationship with psychopathology
both in children131 and adults with epilepsy.132 In addition, early onset right mTLE has been
shown to be associated with poor facial recognition133 or for facial emotional processing to be
affected following right anterior temporal lobectomy.134

CSF
Links between measures of CSF and cognition are uncommon but robust. Indices of total CSF
have been associated with measures of cognition including total impairment index.135,136 Total
CSF has also been found to be related to measures of negative symptoms (eg, apathy,
anhedonia) but not positive symptoms (eg, hallucinations) or depression in TLE.117

Cerebrum Volume
Investigating 28 adult patients with lateralized TLE, Baxendale and coworkers137 found 15 to
exhibit extrahippocampal abnormalities on quantitative MRI analysis. Thirteen of the patient
group overall had global or bilateral memory impairment. Bilateral memory deficits were
significantly associated with both the presence of cerebral abnormalities and poor postoperative
seizure control (P<.05). They concluded that disproportions in the regional distribution of gray
and white matter in patients with hippocampal sclerosis may form the structural basis of global
memory disturbance in patients with TLE.

White Matter Volumes: Cerebrum
Traditional volumetric measures of cerebral white matter volume have been found to have
significant associations with multiple cognitive domains including nonverbal intelligence,
memory, executive function, and psychomotor processing speed.138 In addition, total cerebral
white matter volumes have been shown to be associated with reaction time and mental scanning
efficiency.139

White Matter Volume: Corpus Callosum
Volume of the corpus callosum has been found to be reduced in TLE, particularly those with
childhood onset.77,140 Volume of the corpus callosum was found to be significantly related to
measures of nonverbal problem solving, immediate memory, complex psychomotor
processing, and speeded fine motor dexterity.140

White Matter Microstructure: DTI
Recent studies have examined relationships between specific white matter regions or tracts and
aspects of cognition and behavior. Flugel and colleagues141 evaluated diffusion characteristics
of TLE patients with (N = 18) and without (N = 20) interictal psychosis and correlated diffusion
measures with neuropsychological test scores. The investigators sampled frontal and temporal
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white matter regions and found that TLE patients with interictal psychosis had greater white
matter compromise, as measured by FA, in these brain regions. Further, FA reductions were
correlated with cognitive dysfunction and increased negative symptoms. Diehl and
colleagues142 compared the integrity of the uncinate fasciculus, an important frontotemporal
white matter tract, between healthy controls (N = 10) and patients with lateralized TLE (N =
28). They demonstrated that TLE patients have bilateral uncinate fasciculus diffusion
abnormalities. In patients with left TLE, the integrity of the left uncinate fasciculus was related
to verbal memory performances, whereas the integrity of the right uncinate fasciculus was
associated with visual memory scores. McDonald and colleagues143 examined the relationship
between cognitive performances and the integrity of several white matter tracts including the
uncinate fasciculus, arcuate fasciculus, fornix, parahippocampal cingulum, inferior
frontooccipital fasciculus, and corticospinal tract in 17 patients with TLE and 17 healthy
controls. Verbal memory and language performances were correlated with MD and FA values
of multiple cortical-to-cortical association tracts and limbic projection tracts, particularly in
the left hemisphere. Further, cognitive performance was related to anatomic derangements in
connections that were germane to the specific cognitive task, such as the relationship between
arcuate fasciculus and language scores. These studies demonstrated a clear association between
abnormal white matter connections and adverse cognitive outcomes and supported the
disconnection model of cognitive dysfunction in patients with TLE.

Multimodality Imaging
Several studies have used fMRI to examine language reorganization in TLE and found that
patients with left TLE have a greater propensity for bilateral language representation.144,145 It
was unclear, however, whether such functional reorganization was associated with structural
asymmetry in the language network. Recent investigations have combined fMRI and DTI
tractography to answer this question.146 In these studies, patients underwent fMRI tasks, such
as reading comprehension and verb generation, to activate language areas in the inferior frontal
and superior temporal lobes. DTI tractography was then used to delineate the structural
connections between fMRI-defined language areas. Using this combined imaging technique,
Powell and colleagues147 found that left TLE patients had reduced left hemisphere and
increased right hemisphere white matter connections, when compared with controls and right
TLE patients. Further, a greater degree of lateralization to the left hemisphere was correlated
with greater decline in naming function after a dominant hemisphere temporal lobe surgery.
148 The abnormal structural lateralization found in DTI was congruent with fMRI activation
patterns and established the important relationship between structure and function in brain
regions salient for language processing.

There is no question that anatomic abnormalities in TLE are distributed in nature throughout
the brain and have clinical relevance through their association with cognition or behavior. The
unique and nonoverlapping associations between specific cognitive abilities and anatomic
areas remain to be further determined.

THE LIMITATIONS OF MODAL COGNITIVE PROFILES
Modal or average cognitive profiles clearly help to convey a sense of the overall cognitive
burden associated with TLE, an average burden that seems surprisingly onerous. Similarly,
modal or average neuroimaging profiles convey a similar impression regarding the
neuroanatomic burden. The symmetry between these modal cognitive and neuroimaging
profiles helps to make the cognitive pathology understandable. Although helpful, these average
profiles are just that, averages, and may not be particularly representative of individual patients.
There is considerable variability across patients in their patterns of both cognitive and structural
abnormalities and the authors have argued that one way to understand this variability is through
the study of so-called “cognitive phenotypes.”149–151
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Using cluster analysis and analyzing age- and education-adjusted cognitive domain scores, the
authors identified three neuropsychological profile types in adult TLE (Fig. 5). One group was
characterized by relatively preserved mentation (47% of sample); a second group demonstrated
more generally affected mentation but with particular memory impairment (24% of sample);
and a third group exhibited diffuse cognitive impairment with especially impaired memory,
executive function, and motor-psychomotor processing speed (29% of sample).149

Within the context of an average profile of generally affected mentation (see Fig. 1), discrete
underlying cognitive profile types could be identified. In addition, these groups exhibited
varying cognitive prognoses over a subsequent 4-year interval. Most interestingly, these groups
also had distinct patterns of associated underlying neuroanatomic abnormality.

Specifically, depicted in the accompanying figures and bar graphs are patterns of anatomic
abnormality associated with these cognitive phenotypes. Abnormalities in cortical thickness
are evident across the cognitive phenotypes detected bilaterally in several areas (Fig. 6),
unilaterally in others (Fig. 7), along with volumetric abnormalities in subcortical structures and
cerebellum (Fig. 8), and targeted white matter tracts (corpus callosum) (Fig. 9). The link
between cognitive profile and corresponding neuroanatomic abnormality is telling and speaks
to the anatomic reality of identified neuropsychological profiles in TLE.150 Buried within
modal profiles of both cognition and anatomic abnormality are groups that vary substantially
in their cognitive and associated anatomic status.

IS TLE UNIQUE?
The evidence presented indicates that patients with chronic TLE often exhibit cognitive and
quantitative neuroimaging abnormalities that extend beyond the primary zone of seizure onset
with significant associations between specific “extratemporal” structural abnormalities and
cognitive impairments. These patterns may have their origin in considerable part from the
effects of epilepsy and its causes on neurodevelopment as well as progressive abnormalities
in a subset of patients. There is suggestive evidence that similar patterns may be evident in
other epilepsy syndromes (eg, juvenile myoclonic epilepsy). Early neuropsychological
investigations reported impairments in higher level executive functions consistent with the
primary thalamofrontal pathophysiology of juvenile myoclonic epilepsy.152–154 Some recent
reports suggest more distributed neuropsychologic impairment,155 findings that become
understandable in the context of recently reported widely distributed cortical thinning in
juvenile myoclonic epilepsy (Fig. 10).156 The degree to which extrathalamofrontal
abnormalities are linked to distributed neuropsychologic impairments and the presence and
characteristics of phenotypes of structure-function abnormalities remain to be investigated in
this and other epilepsy syndromes.

It is hypothesized that within most if not all epilepsy syndromes there exists a distribution of
cognitive phenotypes that are linked to structural, metabolic, and other neuroimaging features.
These structural abnormalities will lend shape to the patients’ neuropsychologic profile. In
addition to these structural abnormalities with associated neurobehavioral consequences will
be the added the perhaps more variable influence of factors such as antiseizure medications
and their particular adverse cognitive profiles,21 variations in epileptiform and other waveform
abnormalities,157–160 complications of the disorder,25 and postictal effects. In addition,
familial susceptibilities and other factors will influence cognitive status.161,162

EPILEPSYAND COGNITION: BRIDGING THE OLD AND NEW LITERATURES
This article describes a developing architecture of cognitive impairment in the epilepsies,
moving from the long established traditional focus on the relationship between
neuropsychological status and clinical epilepsy characteristics (eg, seizure frequency, seizure
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severity, duration of epilepsy, age of onset, etiology, medications), to one focusing on
interrelationships between underlying anatomic, metabolic, and other neurobiologic correlates
of the epilepsies with critical cognitive and behavioral functions. This is a paradigm shift that
has a strong influence on the understanding of the neuropsychology of epilepsy. The older
literature, however, is reliable, well understood, and clinically meaningful. Is there some way
to understand the intersection of the cognition and clinical seizure feature and the cognition
and neuroanatomy literatures (Fig. 11), and are there methods that might help inform the
understanding of the neuroanatomic pathways through which clinical seizure features exert
their impact on cognition in epilepsy?

In a first step to address this issue, the authors tested a mediator-moderator model to determine
how overall cognitive impairment, total CSF, and duration of epilepsy were associated and
whether duration of epilepsy affected cognition directly or through a structural neuroimaging
marker (brain atrophy reflected in total CSF) (Fig. 12). It was found that total CSF mediated
the relationship between duration of epilepsy and cognitive impairment.136 That is, the longer
the duration of epilepsy, the more abnormal the total CSF, with resulting greater cognitive
impairment. The impact of duration of epilepsy on cognition was mediated by the degree of
overall brain atrophy reflected in total CSF. This represents a crude initial approach to a
complex problem, but this statistical approach may have some use in understanding these
complex relationships and the move toward a more unified understanding of the
neuropsychologic consequences of the epilepsies.

CONCLUSION
The landscape of cognitive impairment is clearly in transition from a long-standing focus on
the relationship between cognitive function and clinical epilepsy features to one linking
cognitive impairment to a multitude of neuroimaging parameters. Whether it will be possible
to derive a broad understanding of cognition, clinical epilepsy features and neuroimaging
markers remains to be determined. This represents an interesting research challenge for the
future.
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Fig. 1.
Mean adjusted (age, gender, education) z scores for patients with TLE compared with healthy
control subjects. (From Oyegbile TO, Dow C, Jones J, et al. The nature and course of
neuropsychological morbidity in chronic temporal lobe epilepsy. Neurology 2004;62:1736–
42.)
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Fig. 2.
Twenty-six brain regions found to be significantly reduced in volume in patients with TLE
relative to healthy controls. The results are presented ipsilateral and contralateral to the
epileptogenic focus. MTL, medial temporal lobe; TL, temporal lobe. (From Keller SS, Roberts
N. Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the
literature. Epilepsia 2008;49:741–57.)
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Fig. 3.
Cortical thickness maps: regional reduction in mTLE groups. (From Lin JJ, Salamon N, Lee
AD, et al. Reduced neocortical thickness and complexity mapped in mesial temporal lobe
epilepsy with hippocampal sclerosis. Cereb Cortex 2007;17:2007–18.)
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Fig. 4.
Atrophy in TLE. Significant atrophy in TLE (A). Proportions of atrophic patients (B). (From
Bernhardt BC, Worsley KJ, Besson P, et al. Mapping limbic network organization in temporal
lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal
connectivity and cortical atrophy. Neuroimage 2008;42:515–24.)
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Fig. 5.
Cognitive Phenotypes in TLE. (From Hermann B, Seidenberg M, Lee EJ, et al. Cognitive
phenotypes in temporal lobe epilepsy. J Int Neuropsychol Soc 2007;13:12–20.)
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Fig. 6.
Bilateral reductions in cortical thickness across cognitive phenotypes. (From Dabbs K, Jones
J, Seidenberg M, et al. Neuroanatomical correlates of cognitive phenotypes in temporal lobe
epilepsy. Epilepsy Behav 2009;15(4):445–51.)
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Fig. 7.
Unilateral reductions in cortical thickness across cognitive phenotypes. (From Dabbs K, Jones
J, Seidenberg M, et al. Neuroanatomical correlates of cognitive phenotypes in temporal lobe
epilepsy. Epilepsy Behav 2009;15(4):445–51.)
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Fig. 8.
Volumetric reductions in subcortical and cerebellar regions across cognitive phenotypes.
(From Dabbs K, Jones J, Seidenberg M, et al. Neuroanatomical correlates of cognitive
phenotypes in temporal lobe epilepsy. Epilepsy Behav 2009;15(4):445–51.)
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Fig. 9.
Volumetric reductions of the corpus callosum across cognitive phenotypes. (From Dabbs K,
Jones J, Seidenberg M, et al. Neuroanatomical correlates of cognitive phenotypes in temporal
lobe epilepsy. Epilepsy Behav 2009;15(4):445–51.)
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Fig. 10.
Group and individual analyses of cortical thickness. (A) Absolute differences in cortical
thickness (in millimeters) between idiopathic generalized epilepsy (IGE) patients and controls.
(B) Areas of significant cortical thinning in IGE compared with controls. Peak positions and
resolution elements (ie, resels) of significant clusters after random field theory (rft) correction
are shown (cluster threshold t ≤ −3.2, cluster extent threshold 0.8 resels). (C) Individual
analysis. At each vertex, the corresponding proportion of atrophic patients with a thickness z-
score of ≤ −2 SD with respect to healthy controls is shown. Only fractions above 10% are
displayed. In controls, no vertex displayed a prevalence of atrophy above 10%. Individual
analysis showed widespread atrophy in more than 10% of patients; up to 40% of them had
atrophy localized in the same areas detected by the group analysis. (From Bernhardt BC, Rozen
DA, Worsley KJ, et al. Thalamo-cortical network pathology in idiopathic generalized epilepsy:
insights from MRI-based morphometric correlation analysis. Neuroimage 2009;46:373–81.)
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Fig. 11.
The intersection of imaging, cognition, and clinical epilepsy characteristics. (From Oyegbile
TO, Bhattacharya A, Seidenberg M, et al. Quantitative MRI biomarkers of cognitive morbidity
in temporal lobe epilepsy. Epilepsia 2006;47:143–52.)
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Fig. 12.
Quantitative MRI biomarkers of cognitive morbidity in temporal lobe epilepsy. (From
Oyegbile TO, Bhattacharya A, Seidenberg M, et al. Epilepsia 2006;47(1):143–52.)
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