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Abstract

Background—With increasing research on system integration for image-guided therapy (IGT),
there has been a strong demand for standardized communication among devices and software to share
data such as target positions, images and device status.

Method—We propose a new, open, simple and extensible network communication protocol for
IGT, named OpenlGTLink, to transfer transform, image and status messages. We conducted
performance tests and use-case evaluations in five clinical and engineering scenarios.

Results—The protocol was able to transfer position data with submillisecond latency up to 1024
fps and images with latency of <10 ms at 32 fps. The use-case tests demonstrated that the protocol
is feasible for integrating devices and software.

Copyright © 2009 John Wiley & Sons, Ltd.
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Conclusion—The protocol proved capable of handling data required in the IGT setting with
sufficient time resolution and latency. The protocol not only improves the interoperability of devices
and software but also promotes transitions of research prototypes to clinical applications..

Keywords
image-guided therapy; surgical navigation; network communication protocol

Introduction

Standardization of communication among devices and software in the operating room (OR)
environment is a common issue in image-guided therapy (IGT) (1). Today it is quite common
to locate surgical tools relative to the patient’s body by using position and orientation tracking
systems with optical (2), electromagnetic (3) or ultrasonic (4,5) sensors, or to acquire images
using real-time ultrasound, computed tomography or magnetic resonance imaging (MRI). This
localization and image information is transferred from acquisition devices to navigation
software for visualization and guidance. In addition, with increasing research on robotic
devices that support image-guided interventions, there has been a strong demand for
communication standards among these devices and navigation software to allow sharing of
information such as target positions, images and device status.

There have been sporadic efforts to standardize the interconnections between medical devices
and computers. The ISO 11 073/IEEE 1073 Standard for Medical Device Communication
(6) defines transportation profile (IEEE 1073.3.1) and physical layer (IEEE 1073.4.1) to allow
plug-and-play operation for bedside device communication. CANOpen (EN 50 325-4) (7),
which is an application layer for Controller-Area Network (CAN) (ISO 118 988) (8), has also
been used. In addition to those standards in physical and transportation layers of device
connections, Massachusetts General Hospital and the CIMIT are leading an initiative called
Medical Device Plug-and-Play (MD PnP) to facilitate interoperability among a number of
medical devices in the OR (9).

With the increasing number of IGT applications and the availability of Ethernet in the IGT
environment, standardization of information and communication technology is more important
than ever (1). In particular, Ethernet is becoming a frequent choice for communication between
devices and computers in the clinical research setting because of its availability, flexibility and
bandwidth. Most modern personal computers have Ethernet interfaces and run operating
systems supporting the TCP/IP model, which is the foundation of most network applications.
DICOM (10) is a well-known standard for the transfer of image data through TCP/IP networks,
as well as archiving the image data in storage or a database, and has been playing an important
role in IGT. Recently, the DICOM Working Group 24 has been compiling surgical workflow
models to determine the standard for integrating information about patient equipment and
procedure (11). Despite the availability of DICOM in hospital networks, it has not been
practical in IGT applications involving real-time imaging applications, e.g. ultrasound-guided
interventions. This is due in part to the fact that DICOM contains large amounts of redundant
information that make data packets unfeasibly large for sequential image transfer at sub-second
frame rates, and most DICOM implementations are not tuned for real-time applications.
Furthermore, there is no standard protocol for transferring synchronized image and tracking
data through a single connection.

To address this gap in the standards, IGT system vendors have created proprietary research
interfaces for their own products. For example, BrainLAB’s interface, VectorVision Link
(VVLink) (12-14), allows for output of multiple images, tools, labelled points and streaming
bitmaps into the host system. Medtronic’s StealthStation product and Intuitive Surgical’s
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DaVinci® robot contain network interfaces similar to those used in research projects (15,16).
A perennial problem of proprietary interfaces is that those protocols or libraries are designed
only for specific hardware/software, forcing academic researchers to negotiate access
privileges and then customize their software to particular imaging and tracking devices. This
prevents modularity and flexibility, and replacing a piece of the system requires massive
overhaul of the communication software and often renegotiating access rights to proprietary
interfaces. Making matters worse, vendor-provided protocols often cause issues of license
incompatibility between the commercial and research software. Thus, several groups have
experimented with standardized network communication between IGT devices and software.
Schorr et al. proposed an application of the common object request broker architecture
(CORBA) framework to IGT (17). Defined by the Object Management Group consortium,
CORBA is a remote procedure call standard to achieve independence of programming
languages and operating systems (OSs). CORBA lends itself to IGT, where multiple devices
and software exchange various types of data over local networks. Von Spiczak et al. proposed
middle-ware for device connectivity, based on the OpenTracker library (18,19). Due to its
modular design, this library allows users to add a module for a specific device, after which
they can connect the device to any software to transfer coordinate and/or image data. The
connection structure can be configured simply by editing a configuration file described in
extended markup language (XML), and modules are available for multiple commercial
tracking systems and imaging scanners. While both CORBA and OpenTracker were extremely
important initiatives, they failed to achieve the status of de facto standard in the IGT field,
primarily because of overgeneralization, overabstraction and limited portability. Complicated
specifications and libraries tend to force developers to spend considerable effort on
understanding communication mechanisms that are not essential for their operation. No less
important, they are decidedly inconvenient in multiplatform development, which is inherent
in IGT. A wide variety of operating systems and CPU architectures, from embedded systems
to high-performance computers, are used in IGT, and it is impractical to support all of them
with a single library, due to differences in their application programming interfaces (APIs) and
processing capabilities. As a consequence, we must deal with an ever-growing maze of vendor-
specific or application-specific communication libraries and protocols, resulting in a complete
lack of interoperability.

In this paper, we propose an extensible yet simple and easy-to-implement network protocol
that allows for exchanging tracking data, images and device control/monitoring information
among tracking devices, imaging scanners and systems software. We also describe several use-
case scenarios, including an ultrasound navigation system, integration of tracking devices and
navigation software, integration of research software and a commercial navigation system, an
MRI-compatible robot system for prostate intervention, and a neurosurgical manipulator
system.

OpenlGTLink Protocol

We defined an open, simple and extensible peer-to-peer network protocol for IGT called
OpenlGTLink. This protocol emerged through a collaboration of academic, clinical and
industrial partners in developing an integrated robotic system for MRI-guided prostate
interventions (20). The OpenlGTLink protocol was designed for use in the Application Layer
on the TCP/IP stack, while allowing developers to implement it for other network models, such
as the User Datagram Protocol.

The OpenlGTLink protocol itself does not include mechanisms to establish and manage a
session. A message, the minimum data unit of this protocol, contains all information necessary
for interpretation by the receiver. The message begins with a 58-byte header section, which is
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common to all types of data, followed by a body section. The format of the body section varies
by data type, specified in the header section. Since any compatible receiver can interpret the
header section, which contains the size and data type of the body, every receiver can gracefully
handle any message, even those with unknown data type. Therefore, this two-section structure
allows developers to define their own data type while maintaining compatibility with other
software that cannot interpret their user-defined data types. This simple message mechanism
eases the development of OpenlGTLink interfaces and improves compatibility. Details of
standard data types are described in the following sections. Further information is available in
the web page provided by the National Alliance for Medical Image Computing (21).

General header

The header contains generic information about the message, including the type of the data, a
field called ‘Device Name’, a time stamp and the size of the data section. The ‘Device Name’
identifies the source of the data and is useful in sending multi-channel data through a single
connection. For example, optical or electromagnetic tracking devices may track multiple
objects and report the position of each object in a separate message. All numerical values
(integers and floating and fixed points) are stored in big-endian (or network) byte order:

»  Version number (2 bytes): The version number of the OpenlGTLink protocol used
(all data structures described in this paper were defined as Version 1).

» Data type name (12 bytes): The OpenlGTLink protocol defines five default types,
which are frequently used in most IGT use-case scenarios: ‘IMAGE’, ‘POSITION’,
‘TRANSFORM?’, ‘STATUS’ and ‘CAPABILITY’, the details of which are described
in the next section. The application developers may define their own data types with
names in addition to the default types, as demonstrated in the ‘Use-cases’ section. It
is recommended to use names starting with “*’ to differentiate the name space for
user-defined types from the default name space. In the OpenlGTLink protocol, usually
the sender pushes data to the receiver, but the sender can also request the receiver to
send data back. These requests are issued as messages with special data types with
null-body section: ‘GET_IMAGE’, ‘GET_POSITION’, ‘GET_TRANS’,
‘GET_STATUS’, and ‘GET_CAPABIL’. Developers can also define an application-
specific format for their data type and associate it with a type name specified here in
the message header. This practice, however, is not encouraged because it acts against
portability.

»  Device name (20 bytes): Name of the source device.

»  Time stamp (8 bytes): This field informs the receiver of the time when the data were
generated. The data are represented in seconds as a 64-bit fixed point number relative
to 00 : 00 : 00 1 January 1970 UTC. The integer part is in the first 32 bits (Unix-style
time-stamp) and the fraction part in the last 32 bits. In the fraction part, the non-
significant low order can be set to 0 (developers may opt out of using this field by
filling it with 0).

» Body size (8 bytes): The size of the message body attached to this header in 64-bit
unsigned integer.

*  CRC (8 bytes): The 64-bit cycle redundancy check for the body section. This is used
to verify the integrity of data and detect system faults. This feature may be helpful
when the protocol is integrated in devices requiring Food and Drug administration
(FDA) or other regulatory approval for clinical use. Note that the CRC does not
include the header section, relying on the CRC in the lower layers of the network
protocol stack, e.g. TCP/IP.
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The body structure varies by the data type being sent in the message as follows. All numerical
values are stored in big-endian (network) byte order except image pixel values. Floating-point
values are encoded in IEEE 754.

IMAGE—The IMAGE format in the OpenlGTLink protocol supports 2D or 3D images with
metric information, including image matrix size, voxel size, coordinate system type, position
and orientation. The body section of the IMAGE data consists of two parts: image header, to
transfer the metric information; and image body, to transfer the array of pixel or voxel values.
The data type of pixel or voxel can be either scalar or vector, and numerical values can be 8-,
16- or 32-bit integers or 32- or 64-bit floating points. The pixel values can be either big-endian
or little-endian, since the sender software can specify the byte order in the image header. The
format also supports ‘partial image transfer’, in which a region of the image is transferred
instead of the whole image. This mechanism is suitable for real-time applications, in which
images are updated region by region. The subvolume must be box-shaped and defined by six
parameters, consisting of the indices for the corner voxel of the subvolume and the matrix size
of the subvolume (Figure 1). The indices begin at 0, similar to the conventional zero-based
array indices in the C/C++ programming languages.

The position, orientation and pixel size are represented in the top three rows of a 4 x 4 matrix
defined by:

ri 2 N3 pPx
p=| ™ T2 T2 Py |_ t s np
| o2 o opy | L0 0 01
0 0O 0 1 (1)

where the upper left 3 x 3 matrix represents rotation and the upper right 3 x 1 column vector
represents transformation (centre position of the image). The matrix is equivalent to the
conjunction of normal column vectors for directions of voxel arrays in i, j and k indices, which
are denoted as t, s, and n in equation (1). The position and orientation vectors can be described
in either a left posterior superior (LPS) or right anterior superior (RAS) coordinate system,
depending on the coordinate system specified, also in this data format. The LPS is a right-
handed coordinate system used in the DICOM standard, while the RAS is more common in
neuroimaging research and is used in open-source surgical navigation software, such as the 3D
Slicer (22,23).

POSITION—The POSITION data type is used to transfer position and orientation

information. The data are a combination of three-dimensional (3D) vector for the position and
quaternion for the orientation. Although equivalent position and orientation can be described
with the TRANSFORM data type, the POSITION data type has the advantage of smaller data
size (19%). It is therefore more suitable for pushing high frame-rate data from tracking devices.

TRANSFORM—The TRANSFORM data type is used to transfer a homogeneous linear
transformation in 4 x 4 matrix form. One such matrix is shown in equation (1). Note that if a
device is sending only translation and rotation, then TRANSFORM is equivalent to
POSITION. But TRANSFORM can also be used to transfer affine transformations or simple
scaling. Like IMAGE and POSITION, TRANSFORM carries information about the coordinate
system used.

STATUS—The STATUS data type is used to notify the receiver about the current status of
the sender. The data consist of status code in a 16-bit unsigned integer, subcode in a 64-bit
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integer, error name in a 20 byte-length character string, and a status message. The length of
the status message is determined by the size information in the general header. The status code
is defined as a part of the OpenlGTLink protocol specification listed in Table 1. The subcode
is device-specific and is defined by developers. In addition, developers can build their own
error name/code into the status message and additional optional description in the following
data field.

CAPABILITY—The CAPABILITY data type lists the names of message types that the
receiver can interpret. Although the OpenlGTLink protocol guarantees that any receiver can
at least skip messages with unknown type and continue to interpret the following messages, it
is a good idea to get the capability information at system start-up to ensure application-level
compatibility of the various devices. In a CAPABILITY message type, each message type
name comes with a format version number. If the receiver can interpret multiple versions for
a certain message type, they should be listed as independent types.

User-defined data types

The OpenlGTLink protcol allows developers to define their own message types. As long as
the general header has correct information about the size of the data body, it retains
compatibility with any software compliant with the OpenlGTLink protocol because the
receiver can skip data that it cannot interpret. The OpenlGTLink protocol specification
recommends that the developer adds an asterisk (*) at the beginning of the type name in the
general header, to avoid future conflicts with standard types and also to make it easier to
distinguish between standard and user-defined message types.

The OpenlIGTLink library

To provide a reference implementation of OpenlGTLink interface, we developed the
OpenlGTLink Library (21). The library is a free open-source software (FOSS) distributed
under a BSD-style open-source license, placing no restrictions on use. The library consists of
three components, as seen in Figure 2:

1. A C-based library defining structures and utility functions to serialize data into
OpenlGTLink Message. This library is useful in developing embedded systems or
software for platforms where a modern C++ compiler is not available.

2. Asetof high-level C++ classes wrapping the C-based library that provide a safer and
more convenient way to implement OpenlGTLink messaging function into software.
Developers can define their own message types by inheriting the base message class
defined in the library.

3. Asetof multi-platform C++ classes to handle sockets and threads. The multi-platform
socket and thread classes are currently compatible with 32-bit Windows, Linux/UNIX
and Mac OS X platforms.

Performance Evaluations

Experimental methods

We conducted experiments to evaluate the performance of the OpenlGTLink protocol and the
library implementation. The objective of the study was to determine the capability of the
protocol in terms of frame rate and latency of data transfer, to anticipate its possible
applications. In the experiments, two Linux-based workstations were used:

*  Host 1, Dell Precision 470; CPU, Intel Xeon (dual core/64 bit) 2.8 GHz; memory, 4
GB; OS, Fedora Core 6 (Dell Inc., Round Rock, TX, USA).
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*  Host 2, SunJava Worksation W2100z; CPU, Dual AMD Opteron 246; memory, 2
GB; OS, Fedora Core 2 (Sun Microsystems Inc, CA, USA).

Both Linux kernels were compiled with timer clock resolution of 1 KHz. The hosts were
connected to a gigabit switch (Linksys SD2008, Cisco Systems Inc, Irvine, CA, USA) with
category 5e cables. To measure the latency of data transfers between the two hosts, the system
clocks of those hosts were synchronized using PTPd (24), the software-only implementation
of the precision time protocol (PTP). The PTP is a time-transfer protocol defined in IEEE
Standard 1588 — 2002 for precise time synchronization over networks (25) and is used as a key
technology of LAN eXtensions for Instrumentation (LXI), which is a standard for connecting
test and measurement instruments. Compared with other time protocols, such as network time
protocol (NTP), PTP is more specialized for local systems that require high-accuracy time
synchronization. According to the literature (24), the synchronization accuracy of PTPd under
ideal conditions is on the order of 10 ps, which is sufficient for our evaluation. In the PTPd
protocol, the most stable and accurate clock is selected as a master clock among the connected
devices, based on the best master clock algorithm (BMCA) and used as the reference time.
Clock servoing is performed to adjust the tick rate of the other slave clocks, so that the master-
to-slave delay is minimized without resetting the clocks. During our experiments, the clock
synchronization was performed every 500 ms as a background process, and clock difference
of the hosts was monitored. It was reported that the PTPd’s CPU utilization is below 1% on a
66 MHz m68Kk processor (24); thus, resource consumption by clock synchronization was
negligible. In all experiments we examined data transfer from host 1 to host 2 and vice versa,
to account for differences in performance between the hosts. We evaluated the performance
of data transfer using the OpenlGTLink library under typical conditions. Three sets of
experiments were performed:

Tracking data transfer—First we evaluated the latency and CPU load during tracking data
transfer, varying the frame rate. The latency was defined as the time between the start of
generating dummy tracking data at the sender host and the end of deserialization of
OpenlGTLink message at the receiver host. The time point to start serialization of the message
was implemented in the time-stamp field of the OpenlGTLink messages at the sender host and
transferred to the receiver host, where the time-stamp was compared with the time point to
finish deserialization. The frame rate of the tracking data was 2" frames/s (fps), where n varied
in the range 1 — 10, based on the fact that the frame rate of tracking devices is in the range 40
— 375 Hz and that of the sensor feedback of real-time robot controlling is usually on the order
of KHz. The number of channels varied in the range 1 — 16.

Image transfer—Second, we evaluated the latency and CPU load in image data transfer,
varying the data size of images. The image sizes were defined by 2" bytes, where n was varied
in the range 12 — 20 with a single channel. The frame rate was fixed at 32 fps (2° fps), which
was near the typical frame rate of real-time ultrasound imaging and standard video frame rates.
In this experiment, a series of dummy images were generated prior to the experiment and stored
inamemory pool. The latency was defined as the time between the start of copying the dummy
image into the OpenlGTLink message from the memory pool and the end of deserialization of
the message at the receiver host.

Simultaneous tracking and image data transfer—The last experiment was to evaluate
simultaneous transfer of tracking and image data. The objective was to demonstrate how image
data transfer interferes with tracking data transfer. It is critical to keep latency of the tracking
data transfer below a certain threshold in the clinical situation, where different types of data

are transferred simultaneously through a single connection. In this experiment, each image was
split into multiple messages and transferred part by part. The frame rate and the size of frames
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were varied by 2" fps and 4096/2" KB, respectively, so that the bandwidth was fixed at 4096
KB/s. The frame rate of tracking data transfer was fixed at 100 fps.

All time measurements were performed using the gettimeofday() function defined in 4.3 BSD
UNIX and a part of Standard POSIX 1003.1 — 2001. Although the function has a resolution of
1 ps, the precision of time measurement depended on the accuracy of clock synchronization
between the sender and receiver hosts.

All measurement started after the synchronization error was converged (Figure 3). The mean
and standard deviation (SD) of time synchronization error between two hosts was 12.3 + 11.8
Ks throughout the experiments. Table 2 and Figure 4A show the latency and CPU loads,
respectively, during tracking data transfer. For tracking data, the latencies were evaluated from
500 samples for each condition. To obtain the CPU loads, the user and system times are
measured on both the sender and the receiver while performing the data transfer for 1000 s for
each condition. The level of CPU load strongly depends on the number of channels and the
role of the host, as shown in Figure 4A. The result of image data transfer is shown in Table 3
and Figure 4B.

For imaging data, the latencies were evaluated based on 100 samples for each condition. In
addition, the latencies of the simultaneous data transfer are shown in Table 4 and Table 5. The
latency of the image data was approximately proportional to the size of the message.

To demonstrate the extensibility and feasibility of the proposed method in integration of an
image-guided therapy system, we have evaluated the OpenlGTLink protocol in several clinical
and engineering use-case scenarios. The hypothesis here is that the open and simple protocol
allows the developers to perform multivendor and multiplatform integration of image-guided
therapy systems. We describe integration of: (a) an ultrasound navigation system; (b) tracking
devices and navigation software; (c) a research software and commercial navigation system;
and (d) an MRI-compatible robot system for prostate intervention.

Ultrasound navigation system

We utilized the OpenlGTLink protocol to incorporate intraoperative ultrasound (US) imaging
into an existing CT-based navigation system for needle biopsies (26). The challenge for this
application was integration of the imaging device and navigation software, which run on
different computer platforms. This multiplatform integration was required by constraints of
this particular application; the US imaging device must have a small physical footprint to keep
the navigation system’s physical obtrusiveness to a minimum in the cramped clinical
environment. Thus, we chose the Terason T2000 portable US system (Teratech Corp.,
Burlington, MA, USA), in which APIs are available only for the Microsoft Windows platform;
our navigation software, which was developed using Image-Guided Surgery Toolkit (IGSTK)
(27), runs on a Linux-based system. Instead of incorporating the US image acquisition into our
navigation software, we extended it using a client—server architecture, where the navigation
software (server) receives US images from the client that runs on a Windows-based system.
To minimize the lag between image acquisition and display, the two computers were connected
via a dedicated local network. Figure 5 shows the hardware components of the extended
navigation system. The architecture that decouples US acquisition from the main navigation
system allows switching US systems to another system without modifying the navigation
system.
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Tracking devices and navigation software integration

To utilize various types of tracking devices, including encoded mechanical arms, optical
tracking systems and electromagnetic tracking (28) from surgical navigation software in image-
guided therapy, we implemented a client—server architecture for tracking devices and
navigation software integration, using free open-source image-processing and visualization
software, 3D Slicer (22) and IGSTK, which provides a high-level interface to commonly used
optical and electromagnetic tracking devices. The rationale underlying this integration is that
the OpenlGTLink protocol enabled us to develop a navigation system that does not require
modification of software to support various tracking devices. Since there is no common API
that can be used to communicate with tracking devices, it has been the application developer’s
responsibility to establish communication between navigation software and tracking devices,
which is a tedious task. In our architecture, 3D Slicer works as a server to receive tracking data
from an IGSTK-based client program, which acquires-measurement values from a tracking
device through a network using the OpenlGTLink protocol. The server and client can run on
the same computer as separate processes or on different computer systems connected via a
network. Therefore the OpenlGTLink protocol provides a method to decouple the device-
dependent software from the navigation software. This decoupling approach enables the
navigation system to support tracking devices that will be added to the toolkit in the future
without requiring any modification of its original implementation.

Research software integrated with commercial navigation system

We connected 3D Slicer to a commercial neurosurgical navigation system (VectorVision
Cranial Navigation, BrainLAB AG, Feldkirchen, Germany), using the OpenlGTLink protocol
to transfer image and tracking data from the commercial system to 3D Slicer during a clinical
case. The idea behind this work is to take advantage of advanced image processing and
visualization, which are not commercially available, from external research navigation
software (e.g. 3D Slicer) and reliable surgical navigation features from an approved
commercial navigation system (e.g. BrainLAB), in order to investigate new technologies
without interfering with the existing clinical procedure. A key challenge in this work is that
the BrainLAB system does not contain an OpenlGTLink layer. Instead it provides access using
its internal VectorVision Link (VVLink) interface (29). In order to establish communication
between the two systems, we developed bridge software that receives images and tracking data
from the BrainLAB system using VVLink, converts them into OpenlGTLink messages, and
sends them to 3D Slicer over the network. The bridge/proxy module is implemented within
Yale University’s Biolmage Suite image analysis software suit (30), which already
incorporates a VVLink interface. The integrated system has started to be tested in clinical cases
to investigate new visualization techniques, which is not available in commercial systems
(Figure 6). Despite the need for a ‘double-hop’ network connection, we have been able to
maintain real-time tool tracking performance across the combined systems, demonstrating the
feasibility of using a proxy system to translate from the proprietary protocol to OpenlGTLink,
hence allowing for the interfacing of two unmodified systems (3D Slicer, BrainLAB
VVCranial). This approach should be generalized to other commercial navigation systems,
where a proxy server could be implemented to translate its internal research interface to
OpenlGTLink, to simplify the task on the research end enormously.

MRI-compatible robot system for prostate intervention

We have integrated an MRI-compatible needle placement manipulator (20) with navigation
software and an MRI scanner using the OpenlGTLink protocol. The goal of this work is to
provide a ‘closed-loop’ therapy, where the robot’s action is immediately captured in semi-real-
time MRI, and instantaneous feedback is provided to a physician who decides about the next
action. The software system consists of three major components: (a) a control unit for the needle
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placement robot; (b) a closed-bore whole-body 3T MRI scanner (GE Excite HD 3T, GE
Healthcare, Chalfont St. Giles, UK); and (c) commercial navigation software for prostate
intervention (RadVision, Acoustic MedSystems, Champaign, IL, USA) or free open-source
software, 3D Slicer, as a user interface for the entire system (Figure 7). Both navigation
software packages display preoperative 3D images for planning and intraoperative semi-real-
time MR images for guiding the procedure, so that the physician can interactively specify the
target points on the preoperative image set. We used 3D Slicer for prototyping the system,
while we developed RadVision for future commercialization. The advantage of RadVision is
that the software is integrated with intraoperative dosimetry calculation, which have been used
in clinical cases of MRI-guided prostate brachytherapy. The current position of the needle is
indicated on the 3D view of 3D Slicer. All components were connected to one another via
100Base-TEthernet. TheOpenlGTLink protocol is used to exchange various types of data,
including commands to the robot and scanner, semi-real-time images and positional data. The
positions of the target lesion are specified on the navigation software and transferred to the
robot control unit. While the robot control unit is driving the needle towards the target, the
needle position is calculated from the optical encoders and sent back to the navigation software
every 100 ms. The navigation software calculates the imaging plane that intersects the needle’s
axis and transfers it to the scanner, which in turn acquires semi-real-time images in that plane.

Neurosurgical manipulator system

We developed an open software platform for a neurosurgical manipulator system using
OpenlGTLink protocol (Figure 8) (31). The manipulator system has a master—slave
configuration, under which the slave manipulator follows the motion of the master manipulator,
which is operated by the surgeon. The slave’s end-effector position is measured in two ways
for safety: by encoders implemented in the slave manipulator, and by an optical tracking device
(Optotrak, Northern Digital Inc., Canada). Therefore, the system consists of four software
components: (a) a master manipulator controller; (b) a slave manipulator controller; (c) an
optical tracking interface; and (d) navigation software (3D Slicer). We used the OpenlGTLink
protocol to transfer the position data from (a) to (b) to notify the slave of the current position
of the master manipulator, and from (c) to (d) to visualize the 3D model of the surgical tool
overlaid with a 3D brain model created from MR images. Our initial trial demonstrated that
the tracking data were successfully obtained every 100 ms from the optical tracking, and the
3D model of the surgical tool was displayed at the current position of the virtual space overlaid
with the brain model, on the 3D Slicer. The tool model moves as the user operates the master
manipulator, allowing interactive operation of the slave manipulator using the 3D Slicer as a
console.

Discussion

We have designed an open, simple, and extensible network communication protocol that can
be used to transfer data required in the IGT setting, e.g. tracking and image data, device control/
monitoring information, among the devices and software. The simple protocol allows
developers to implement interfaces easily for their software and hardware, while allowing
definition of application-specific data types. We have also developed a multi-platform open
library as a reference implementation of the protocol, with the associated interface for the 3D
Slicer, thereby aiding developers in the implementation and testing of OpenlGTLink with
navigation software.

Our study showed that the protocol is capable of handling 1 KHz multi-channel tracking data,
which is generally required for sensor feedback for real-time robot control. In realistic
conditions, however, the latency may be prolonged by other processes, such as navigation
software running on the same host. At the same time, the stability of interval and latency of
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data transfer are also affected by other network activity and an OS’s timer resolution, which
is typically 10 ms and can be configured up to 1 ms in recent Linux and Microsoft Windows
OSs (32). Therefore, it seems prudent to use real-time communication techniques and real-
time operating systems in a high-performance critical clinical application that requires accurate
interval and latency for position data feedback. This is desirable, for example, in controlling
robots compensating for organ motion (33) or delivering conformal radiotherapy to mobile
targets. In some real-time applications, it is also important to monitor the time-stamp in tracking
data messages. Since time-stamp is usually checked by a computer different from the one that
issued the time-stamp, clock synchronization between those two computers is crucial. In this
study PTP was used for this purpose, where the synchronization error was kept within 12.3 +
11.8 ps throughout the experiment. Although the time for convergence in the experiment (10
— 20 min) was too long for the clinical setting, the method is still feasible in most clinical
applications that require clock synchronization with errors on the order of milliseconds, which
can be achieved within 10 s from the start of synchronization.

We found that the latency of the tracking data transfer was in the order of sub-milliseconds,
with frame rate of <1024 fps. The CPU load depended on the number of channels and frame
rates, and the 16-channel tracking data transfer with frame rate of 1024 consumed less than
30% of the CPU load. Such performance is adequate for most IGT applications, for which the
frame rate of optical tracking data is typically <100 fps. In the imaging data transfer, larger
latencies were recorded, due to the larger size of the data (1 MB/message) compared with the
tracking data (106 bytes/message). In fact, the latency of image data transfer increased with
the size of the image data. The latency of image data transfer becomes more critical in
transferring multiple types of data through a single connection simultaneously, because image
transfer may block transfers of other types of data. Our study of simultaneous data transfer
suggests that large bodies of data should be split into multiple messages, so as not to block
other data that need to be transferred more quickly. Our experiments also revealed that in most
cases receiving a message consumes more CPU time than sending it. This is partly because the
OpenlGTLink message contains character strings to specify data type and device name, which
requires the receiver to perform string comparison, a generally CPU-intensive function. This
is the price we pay for having eliminated ‘sessions’, whereas every message self-contains the
information necessary for parsing it.

Our experience with several clinical and engineering use-case scenarios revealed that a
standardized communication protocol has other important roles besides providing improved
interoperability for IGT. First, such protocols enable smooth transitions from prototyping to
product phases. In contemporary IGT systems, where numerous hardware and software
components are integrated, each component is developed independently. With a standardized
communication protocol, developers can easily replace each of components from one
developmental phase of prototype to another. The proposed protocol was initially designed
through discussion of the development of an MRI-compatible robot for prostate interventions
under a research partnership among academic and industrial sites (20), where the plan is to
utilize academic research to transition to a commercial product. Second, as we investigated in
this paper, standardizing this protocol is critical for linking clinical cases and scientific
research. There has been the issue of sharing clinical data between proprietary software for
clinical routines and research software for scientific data analysis. In terms of patient safety,
proprietary software approved by the FDA or other regulatory agencies is preferable, but this
usually limits access to image and other types of data from clinical cases to research purposes.
Adding an open-protocol interface to the proprietary software allows researchers to access
clinical data from their research software, promoting clinical research. It is our hope that
research groups that have substantial experience with one particular commercial system that
does not implement OpenlGTLink directly (or even the vendors themselves) will write and
make available such bridge/proxy software for a given system, and that the rest of the research
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community can simply interface to such systems using OpenlGTLink. Third, it has been
proposed to record vital signs, images and device-monitoring information during clinical cases
for later review (34). The standardized communication protocol allows the introduction of a
comprehensive recording system that can store every message passed through the network and
replay them after a clinical case.

In conclusion, we have proposed an open, simple and extensible network communication
protocol specialized for IGT. We developed the library as a reference implementation for this
protocol and the interface module for surgical navigation software as a research platform.
Image and tracking data transfers were evaluated, and the protocol proved capable of handling
data required in the IGT setting with sufficient time resolution and latency. The protocol helps
not only to improve the interoperability of IGT devices and software but also to promote rapid
and safe transition of research results to clinical use and commercial utilization.
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Figure 1.

Parameters to support partial 3D volume update. The outer cube denotes the entire range of
the 3D image, and the inner cube denotes the partial 3D image that is contained in the message
as a byte array
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Figure 2.
The structure of the OpenlGTLink Library (left) and an example code to send TRANSFORM
data using the C++ message class and socket class (right). At the lowest level, the messages
are defined as C structures with several supporting functions for message serialization. On top
of the C structures and function, C++ message classes are built to provide an easier, safer and
more extensible way to access to OpenlGTLink messages. As shown in the example code, the
message classes have several access functions to set parameters for both message header and
body, and a function to serialize the message and body. Besides message classes, multi-
platform C++ socket and thread classes are provided to support writing platform-independent
application codes

f/ Create and open a socket
igtl::ClientSocket::Pointer socket;
socket = igtl::ClientSocket::New();
socket->ConnectToServer(hostname, port);

/ Create a TRANSFORM meesage
igtl: :TransformMessage: (Pointer transMsg;
transMsg = igtl::TransformMessage: :New();
transMsg->»SetDeviceName( " Tracker");
transMsg->SetMatrix(matrix);

f/ Serialize the message
transMsg->Pack();

/ Send the message
socket-»Send(transMsg-»>GetPackPointer(),
transMsg-»GetPacksize());

! Close the socket
socket->CloseSocket();
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The convergence of time offset between two hosts during time synchronization by PTPd
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Figure 4.

(A) CPU loads during tracking data transfer are compared among 1-, 8- and 16-channel
tracking. Comparison is also made between sender and receiver. (B) CPU loads during the
image data transfer are compared between sender and receiver
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Figure 5.
CT navigation system with ultrasound (US) image acquisition: (a) workstation for navigation
system; (b) tracking device; (c) US Scanner; (d) US probe; (e) abdominal phantom
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Overview (left) and system diagram (right) of VectorVision -3D Slicer integration in the
operating room. VectorVision provides basic navigation features, including tool tracking and
image display, while 3D Slicer provides advanced image processing. The surgeons can check
both the VectorVision console and the 3D Slicer user interface on dedicated displays during

surgery
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Figure 7.
A robot for transperineal prostate biopsy and treatment (left) and its system configuration

(right). Pneumatic actuators and optical encoders allow the robot to be operated inside a closed-
bore 3T MRI scanner
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Figure 8.

The optical tracking device and surgical navigation software 3D Slicer were integrated into
the master—slave surgical manipulator system developed at Nagoya Institute of Technology,
Japan. The OpenlGTLink protocol was used for communication between the tracking device
and navigation software. The position of the end-effector was tracked by the optical tracking
system and transferred to the surgical navigation software. The end-effector was displayed as
a 3D model with a patient model, which was created from pre-operative images
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Device status defined in OpenlGTLink protocol

Table 1

Code Description

0 Invalid packet

1 OK

2 Unknown error

3 Panic

4 Not found

5 Access denied

6 Busy

7 Time out

8 Overflow

9 Checksum error

10 Configuration error
11 Resource error

12 Unknown instruction
13 Device not ready
14 Manual mode

15 Device disabled

16 Device not present
17 Unknown device
18 Hardware failure
19 Shutdown in progress
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Table 2

Mean, standard deviation (SD) and maximum latency of the tracking data transfer

Frame rate (fps) Mean (ms) SD (ms) Maximum (ms)
128 0.36 0.01 0.47
512 0.36 0.02 0.52
1024 0.45 0.07 0.83

The table shows only the result from 16-channel tracking, which is the worst case among the conditions we tested in terms of latency
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Table 3

Mean, SD and maximum latency of the image data transfer for image sizes 128, 256 and 512 KB

Image size (KB) Mean (ms) SD (ms) Maximum (ms)
128 3.94 0.01 5.16
256 7.68 0.01 8.96
512 15.51 0.03 17.93

Int J Med Robot. Author manuscript; available in PMC 2010 January 25.

Page 24



1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

1duosnue Joyiny vd-HIN

Tokuda et al.

Table 4

Page 25

Latencies of the tracking data transfers during simultaneous data transfer with image transfer frame rates of 2,
16, and 32 fps, to demonstrate how imaging data transfer affects the tracking data transfer performed in the same
OpenlGTLink connection. The size rate of image data transfer was fixed at 4096 KB/s

Frame rate (fps)/image

size (KB) Mean (ms) SD (ms) Maximum (ms)
2/2048 3.42 10.15 66.19
16/256 0.51 1.40 7.84
32/128 0.31 0.78 4.01
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Table 5
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Latency of image data transfers during simultaneous data transfer with image transfer frame rates of 2, 16, and

32 fps in the same experiment as Table 4

Frame rate (fps)/image

size (KB) Mean (ms) SD (ms) Maximum (ms)
2/2048 66.23 0.27 67.37
16/256 7.71 0.12 8.70
32/128 3.93 0.07 4.37
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