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Abstract

Background: Exonuclease 1 (EXO1) and Flap endonuclease 1 (FEN1) are members of the RAD2 family of structure-specific
nucleases. Genetic analysis has identified roles for EXO1 and FEN1 in replication, recombination, DNA repair and
maintenance of telomeres. Telomeres are composed of G-rich repeats that readily form G4 DNA. We recently showed that
human EXO1 and FEN1 exhibit distinct activities on G4 DNA substrates representative of intermediates in immunoglobulin
class switch recombination.

Methodology/Principal Findings: We have now compared activities of these enzymes on telomeric substrates bearing G4
DNA, identifying non-overlapping functions that provide mechanistic insight into the distinct telomeric phenotypes caused
by their deficiencies. We show that hFEN1 but not hEXO1 cleaves substrates bearing telomeric G4 DNA 59-flaps, consistent
with the requirement for FEN1 in telomeric lagging strand replication. Both hEXO1 and hFEN1 are active on substrates
bearing telomeric G4 DNA tails, resembling uncapped telomeres. Notably, hEXO1 but not hFEN1 is active on transcribed
telomeric G-loops.

Conclusion/Significance: Our results suggest that EXO1 may act at transcription-induced telomeric structures to promote
telomere recombination while FEN1 has a dominant role in lagging strand replication at telomeres. Both enzymes can
create ssDNA at uncapped telomere ends thereby contributing to recombination.
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Introduction

Exonuclease 1 (EXO1) and Flap endonuclease 1 (FEN1) belong

to the RAD2 family of structure-specific nucleases. They share a

core nuclease domain that is remarkably conserved from yeast to

mammals [1], and display both 59-39 exonuclease activity and 59

flap endonuclease activity in vitro [2,3]. EXO1 has roles in

mismatch repair and recombination [4]; and FEN1 functions in

Okazaki fragment maturation, maintenance of simple repeats and

prevention of strand slippage [5]. FEN1 but not EXO1 is critical in

telomeric lagging strand DNA synthesis [6–8], while both EXO1

and FEN1 contribute to recombination-dependent telomere

maintenance in yeast and human cells [9–14]. Ablation of Fen1

but not Exo1 is lethal in mice [15,16]. S. cerevisiae tolerates ablation

of either Exo1 or Rad27 (the FEN1 homolog), but ablation of both

is lethal [17]. Overexpression of Exo1 will partially rescue some

deficiencies of rad27 strains [18], suggesting that these two factors

share some overlapping functions.

Telomeres in nearly all eukaryotes are composed of G-rich

repeats; in mammals, the telomeric repeat is TTAGGG. G-rich

telomeric repeats readily form G4 DNA, a four-stranded structure

stabilized by G-quartets, planar arrays of four guanines [19,20].

G4 DNA structures are implicated as targets in telomere

maintenance, and helicases that unwind G4 DNA are closely

associated with telomere stability. These include S. cerevisiae Sgs1

and human WRN and BLM, members of the RecQ family, which

unwind G4 DNA with 39-59 polarity, recognizing the G4 structure

through their highly conserved RQC domain [21–25]; and XPD-

family helicases such as S. cerevisiae Srs2, nematode DOG-1 and

mammalian FANCJ and RTEL1, which unwind DNA with 59-39

polarity [26–29]. Deficiency in RTEL1, which is functionally

equivalent to Srs2 [30], results in a telomeric fragility phenotype

similar to that caused by deficiency of BLM [31]. WRN helicase is

essential for efficient replication of telomere lagging strands [32];

and BLM helicase represses telomere fragility [31] and associates

with telomeres in telomerase-deficient cells [33]. FEN1 and EXO1

interact both physically and functionally with WRN and BLM

helicases [34–38], which may promote function in telomere

maintenance.

Like the telomeres, the immunoglobulin (Ig) heavy chain switch

regions are composed of G-rich repeats with considerable potential

to form G4 DNA. The Ig switch regions are targets for class switch

recombination, a process of DNA deletion that enables a B cell to

juxtapose a new constant region to the expressed variable region

[39,40]. EXO1 is necessary for efficient class switch recombination

[41], and we recently showed that human EXO1 (hEXO1) and

human FEN1 (hFEN1) exhibit distinct activities on substrates

representing switch recombination intermediates [42]. Ig class
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switch recombination is induced by transcription; and hEXO1 but

not hFEN1 excised characteristic G-loop structures formed by

transcribed switch region substrates [43]. Those experiments

identified a property of EXO1 that could contribute to its function

not only at the Ig switch regions, but also at other transcribed

genomic domains with potential to form G4 DNA.

Those results prompted us to examine the biochemical activities

of EXO1 and FEN1 that might contribute to telomere maintenance

or instability, using substrates that recapitulate structures predicted

to form upon telomere replication, uncapping, recombination or

transcription. We show that hFEN1 but not hEXO1 cleaves 59 flaps

containing telomeric G4 DNA, or other G4 DNA. This is consistent

with the importance of FEN1 and not EXO1 in telomere lagging

strand replication, but provides a surprising exception to the

documented inactivity of FEN1 at other structured 59 flaps in vitro

[44,45]. We demonstrate that hEXO1 and hFEN1 both exhibit

robust exonucleolytic activity on both strands of substrates with G-

rich 39 telomeric tails, enabling either enzyme to expose a single-

stranded region for recombination, or to participate in removal or

formation of a G-rich tail. We show that hEXO1 but not hFEN1

excises G-loops formed at transcribed telomeric repeats, suggesting a

mechanism by which telomeric transcription could promote

recombination to maintain telomere length in the absence of

telomerase. These results define new activities for these enzymes,

and provide mechanistic understanding of how deficiencies in these

enzymes cause distinct telomeric phenotypes.

Results

hFEN1, but Not hEXO1, Cleaves Telomeric 59 G4 Flaps,
Possible Intermediates in Lagging Strand Replication

The canonical activity of FEN1 is endonucleolytic excision of a

59 flap from a duplex substrate, which represents the intermediate

in processing Okazaki fragments during lagging strand replication

[5]. During telomeric lagging strand replication, a 59 flap may

become structured as G4 DNA. A variety of 59 flap structures have

been shown to inhibit FEN1 activity in vitro [45]. This raised the

question of whether the presence of G4 DNA at a 59 flap would

affect cleavage by EXO1 or FEN1. To address this, we assayed

cleavage of two duplex substrates bearing 59 flaps, one carrying

telomeric G4 DNA, the other unstructured (Fig. 1A). hFEN1

displayed robust flap endonuclease activity on the substrate

bearing a 59 telomeric G4 DNA flap (70% cleavage at 4.5 nM

enzyme), while hEXO1 was inactive on this substrate (Fig. 1B, C,

left). Both enzymes were active on the substrate bearing an

unstructured 59 flap, although hFEN1 was somewhat more active

than hEXO1. hFEN1 activity at a 59 G4 DNA flap was

comparable to its activity on an unstructured 59 flap (Fig. 1B, C,

right). Thus, unlike other structures, 59 G4 DNA does not inhibit

hFEN1 flap endonuclease activity; but 59 G4 DNA does inhibit

hEXO1 flap endonuclease activity.

39 G4 Telomeric Tails Inhibit Flap Cleavage by hEXO1 but
Not hFEN1

The novel activity of FEN1 at a 59 G4 DNA flap prompted us to

test activities of hEXO1 or hFEN1 at unstructured 59 flaps on

substrates bearing either a 39 telomeric G4 DNA tail or an

unstructured tail (Fig. 2A). hEXO1 exhibited essentially no flap

endonucleolytic activity and very modest exonucleolytic activity on

the G4 DNA substrate (Fig. 2B, C, left). This was somewhat

surprising, because hEXO1 typically exhibits both endonuclease and

exonuclease activities at 59 flaps [42,46]. Thus, a 39 tail may inhibit

activity of hEXO1 at a 59 flap. In contrast, hFEN1 exhibited very

robust flap endonuclease activity on the substrate with a G4 DNA

tail (more than 80% of this substrate cleaved at 4.5 nM hFEN1;

Fig. 2B, C, left). hFEN1 was somewhat less active on the substrate

with an unstructured 39 tail (60% cleavage at 4.5 nM hFEN1;

Fig. 2B, C, right), but was comparably active on this substrate as on

a substrate carrying no tail (Figs. 1C and 2C). These results show

that a 39 tail can inhibit hEXO1, but not hFEN1; and suggest that a

39 G4 DNA tail may even stimulate hFEN1.

Nontelomeric and Telomeric 59 or 39 G4 DNA Flaps
Comparably Affect hEXO1 and hFEN1 Flap Endonuclease
Activities

The results in Figs. 1 show that telomeric G4 DNA inhibits the

flap endonuclease activity of hEXO1 but not hFEN1. To ask if this

Figure 1. hFEN1, but not hEXO1, cleaves 59 telomeric G4 DNA.
(A) Diagram of substrates bearing a G4 or unstructured 59 flaps. Lengths
of oligonucleotides, flaps and duplex regions are indicated; asterisks
denotes 59 end-label. (B) Products of digestion of 59 flap substrates
shown in Panel A by hEXO1 (0, 1.2, 2.4 and 3.6 nM) and hFEN1 (0, 4.5,
9.0 and 18 nM). Arrows indicate undigested (60 nt or 36 nt) 59-labeled
DNA substrate, products of flap endonuclease digestion, and 1 nt
product of exonuclease digestion. Heterogenous flap cleavage products
like those evident here are characteristic of hFEN1 activity [65]. (C)
Quantitation of flap cleavage activity of hEXO1 (0, 1.2, 2.4 and 3.6 nM;
diamonds) and hFEN1 (0, 4.5, 9 and 18 nM; squares) on substrates
shown in Panel A.
doi:10.1371/journal.pone.0008908.g001

EXO1/FEN1 at Telomeric G4 DNA
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is specific for telomeric sequences, we assayed substrates of similar

structures but bearing G4 DNA of identical length but formed

from the synthetic, nontelomeric sequence, CCTGGGCTAGG-

GATCGGGACCGGG, within the 59-flap or 39 tail (Fig. 3A).

hFEN1 was very active on both substrates, and hEXO1 was

inactive (Fig. 3B, C). Thus, the effect of G4 structures on the flap

endonuclease activities of these enzymes is general, and not

specific to telomeric G4 DNA.

hEXO1 and hFEN1 Excise from a Nick on a Strand Bearing
a 39-G4 DNA Telomeric Tail

Both EXO1 and FEN1 can excise from nicks in blunt-ended

duplex substrates [42,47], but whether a G4 DNA tail affects

excision has not been tested. To do so, we assayed activities of

these two enzymes on a nicked DNA duplex bearing a 24 nt 39

(TTAGGG)4 tail (Fig. 4A), mimicking a structure that may form in

vivo at an uncapped telomeric end. The 39 tail spontaneously forms

intramolecular G4 DNA in our standard assay conditions (Fig. 1A).

Both a duplex bearing a 39-polyA tail and a blunt duplex were

included as controls, in order to discriminate between the effects of

the G4 structure and a disordered tail. hEXO1 was active on a

substrate bearing a G4 tail, but comparably active on a substrate

bearing a 39-polyA tail and slightly more active on a control blunt-

ended duplex (Fig. 4B, C). hFEN1 was equally active on all three

substrates (Fig. 4D, E). Thus, both enzymes can initiate at a nick to

degrade the G-rich strand of DNA carrying a telomeric overhang.

This activity could expose the C-rich strand for recombination,

but also has the potential to destabilize the telomere by removing

the G-rich tail.

Figure 2. A 39 G4 DNA tail inhibits flap endonuclease activity
of hEXO1 but not hFEN1. (A) Diagram of substrates bearing a 59
flap and 39 telomeric G4 DNA or polyA tails. Lengths of oligonucle-
otides, flaps, duplex regions and 39 tails are indicated; asterisks
denote 59 end-label. (B) Products of digestion of substrates shown in
Panel A by hEXO1 (0, 1.2, 2.4 and 3.6 nM) and hFEN1 (0, 4.5, 9.0 and
18 nM). Arrows indicate 60 nt 59-labeled DNA substrate, 16 nt flap
cleavage product, and 1 nt exonucleolytic cleavage product. (C)
Quantitation of flap cleavage activity of hEXO1 (0, 0.6, 1.2 and 2.4 nM;
diamonds) and hFEN1 (0, 4.5, 9 and 18 nM; squares) on substrates
shown in Panel A.
doi:10.1371/journal.pone.0008908.g002

Figure 3. hFEN1, but not hEXO1, cleaves 59 nontelomeric G4
DNA flaps and 59 flaps adjacent to 39 nontelomeric G4 DNA
tails. (A) Diagram of substrates bearing 59 or 39 nontelomeric G4 DNA
tails. Lengths of oligonucleotides, flaps, duplex regions and 39 tails are
indicated; asterisk denotes 59 end-label. (B) Products of digestion of
substrates shown in Panel A by hEXO1 (0, 1.2, 2.4 and 3.6 nM) and
hFEN1 (4.5, 9.0 and 18.0 nM). Arrows indicate 60 nt undigested 59-
labeled DNA substrates, products of flap endonuclease digestion, and
1 nt product of exonuclease digestion. (C) Quantitation of flap cleavage
activity of hEXO1 (0, 0.6, 1.2 and 2.4 nM; diamonds) and hFEN1 (0, 4.5,
and 9.0 nM; squares) on substrates shown in Panel A.
doi:10.1371/journal.pone.0008908.g003

EXO1/FEN1 at Telomeric G4 DNA
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A Telomeric Tail, but Not a polyA Tail, Stimulates hEXO1
and hFEN1 Excision on the Opposite Strand

We then compared the ability of hEXO1 or hFEN1 to create

single-stranded regions on DNA duplex substrates on the strand

opposite a telomeric tail. Substrates were internally labeled by 39-

filling to enable assays of 59-39 exonucleolytic digestion initiating

opposite the structured end (Fig. 5A). hEXO1 proved to be

considerably more active on the substrate bearing a 39 telomeric

tail than on the substrates bearing a polyA tail or a blunt end

(Fig. 5B, upper), while hFEN1 displayed robust exonucleolytic

activity on the substrate bearing a 39 telomeric tail, but little

activity on the other substrates (Fig. 5B, lower). The activities of

hEXO1 and hFEN1 on the substrate bearing a 39 telomeric tail

were comparable: 50% of the substrate was digested by

approximately 3 nM enzyme. Thus, a G4 DNA telomeric tail,

but not a polyA tail or blunt end, can stimulate 59-39 excision by

either hEXO1 or hFEN1 on the opposite strand.

We also compared digestion of these same substrates initiated by

hEXO1 and hFEN1 at an internal nick (Fig. 5C). hEXO1 was

most active on the blunt duplex substrate, but less active on the

substrates bearing polyA tail or telomeric tail (Fig. 5D, upper). A

telomeric tail appeared to inhibit excision from a nick on the

opposite strand on duplex DNA, even though separated from the

nick by 26 base pairs. hFEN1 was less active than hEXO1 on these

substrates, but was approximately twice as active on the substrate

bearing the telomeric tail than on the blunt-ended or polyA-tailed

substrate (Fig. 5D, lower).

Transcribed Telomere Repeats Are Excised by hEXO1 but
Not hFEN1

Telomeric repeats are transcribed in vivo, and the G-rich strand is

the non-template strand [48,49]. Transcription of telomeres and

other G-rich sequences produces characteristic structures, called G-

loops, which contain a stable RNA/DNA hybrid on the C-rich

template strand, and G4 DNA interspersed with single-stranded

regions on the G-rich nontemplate strand [43,50]. We tested activity

of hEXO1 and hFEN1 on G-loops formed by transcribed telomeric

sequences formed in the pTELN plasmid, which bears 800 bp of

TTAGGG human telomeric repeat downstream of a T7 promoter

(Fig. 6A). pTELN was transcribed, free transcript removed by

Figure 4. hEXO1 and hFEN1 excise from a nick on a strand bearing a 39 telomeric tail. (A) Diagram of duplex substrates bearing an internal
nick adjacent to a 59 end-labeled 39-G4 DNA (TTAGGG)4 tail, 39 poly(A)24 tail, or blunt end. The length of the labeled oligonucleotide is indicated;
asterisks, end-label. (B) Products of digestion of each substrate by hEXO1 (0, 0.6, 1.2 and 2.4 nM). Arrows indicate 42 or 18 nt undigested 59-lableled
DNA substrate and 1 nt excision product. (C) Quantitation of hEXO1 excision of blunt-ended duplex substrates (squares), substrates bearing 39 G4
DNA overhangs (diamonds) and substrates bearing poly(A)24 tails (triangles). (D) Products of digestion by hFEN1 (0, 4.5, 9.0 and 18 nM). Notations as
in panel B. (E) Quantitation of hFEN1 excision of blunt-ended duplex substrates (squares), substrates bearing 39 G4 DNA overhangs (diamonds) and
substrates bearing polyA tails (triangles).
doi:10.1371/journal.pone.0008908.g004

EXO1/FEN1 at Telomeric G4 DNA
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RNaseA treatment, and DNA nicked. We then compared digestion

by hEXO1 and hFEN1 of substrates that had been transcribed and

nicked substrates, transcribed but not nicked, nicked but not

transcribed, and the supercoiled template DNA. Digestion was

quantitated by monitoring loss of one of the PvuII sites that occurs

as a consequence of excision from the nick, and which results in

production of a 3.8 kb PvuII fragment. hEXO1 proved to be quite

active on the transcribed, nicked telomeric substrates: approximately

80% of the substrate was excised by 2.4 nM hEXO1 (Fig. 6B,

upper; Fig. 6C), comparable to hEXO1 activity at transcribed Ig

switch regions [42]. hEXO1 was also somewhat active on the nicked

substrate, consistent with its documented activity on nicked DNA in

mismatch repair. hEXO1 was not active either on the supercoiled

template, or on transcribed, unnicked DNA. In contrast, hFEN1

showed no activity on any of the substrates (Fig. 6B lower; Fig. 6C).

These results identify EXO1 as a candidate activity for resection of

DNA at transcribed telomeres.

Discussion

We have shown that hEXO1 and hFEN1 exhibit both shared

and distinct biochemical activities on telomeric substrates. These

activities correlate with the roles of EXO1 and FEN1 in telomere

maintenance, as determined by genetic analysis, and thus provide

mechanistic insight into the distinct telomeric phenotypes caused

by deficiencies in these enzymes. Notably, distinct activities of each

enzyme depended upon a G4 structure, supporting the importance

of G4 DNA recognition in telomere maintenance.

FEN1 May Process G4 Structures Formed during Lagging
Strand Replication

hFEN1 but not hEXO1 displayed robust endonuclease activity

on substrates bearing telomeric or nontelomeric 59 G4 DNA flaps,

representing intermediates in lagging strand replication. This

contrasts with the comparable activities of these enzymes at

unstructured 59 flaps [42]. hFEN1 activity on these structures

constitutes an exception to the documented inhibition of FEN1 in

vitro by other 59-structures, such as ds DNA and hairpins formed

by triplet repeats [44,45]. Moreover, while either a G4 DNA tail

or unstructured tail inhibited endonucleolytic cleavage by hEXO1,

the 59 flap endonuclease activity of hFEN1 was not impaired by

proximity of a 39 tail.

G4 DNA structures may create blocks to replication at

telomeres [31]. The ability of FEN1 but not EXO1 to cleave a

flap containing G4 DNA would then explain both the instability of

Figure 5. A telomeric tail stimulates hEXO1 and hFEN1 excision on the opposite strand. (A) Diagram of duplex substrates for assay of
excision opposite a G4 DNA (TTAGGG)4 tail, a polyA24 tail, or a blunt end. Sizes of 39-labeled oligonucleotides are indicated; asterisks, end-label. (B)
Quantitation of hEXO1 (0, 0.6, 1.2 and 2.4 nM, above) or hFEN1 (0, 4.5, 9.0 and 18 nM, below) excision of substrates diagrammed in panel A. G4 DNA
tails, triangles; 39 poly(A)24 tails, squares and blunt ends, circles. (C) Diagram of duplex substrates for assay of excision at a nick on the strand opposite
a G4 DNA (TTAGGG)4 tail, a 39-poly(A)24 tail, or a blunt end, and 39 end-labeled on the nicked strand distal to the tail. Sizes of 39-labeled
oligonucleotides are indicated; asterisks, end-label. (D) Quantitation of hEXO1 (0, 0.6, 1.2 and 2.4 nM, above) or hFEN1 (0, 4.5, 9.0 and 18 nM, below)
excision of substrates diagrammed in panel C. Notations as in panel B.
doi:10.1371/journal.pone.0008908.g005

EXO1/FEN1 at Telomeric G4 DNA
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telomeric lagging strands that occurs in the absence of FEN1, and

the inability of Exo1 overexpression to rescue this instability in S.

cerevisiae [6–8]. In human cells, telomere lagging strand instability

is observed in the absence of FEN1 [8], and also in the absence of

the RecQ family helicase, WRN [32]. WRN has robust G4 DNA

unwinding activity [23], and interacts with and stimulates FEN1

[34,51,52]. Like most RecQ family helicases, WRN contains a

high affinity G4 DNA binding domain, the RQC domain [53],

which could promote FEN1 recognition of G4 DNA in vivo.

Alternatively, FEN1 may itself specifically recognize G4 structures,

a possibility supported both by the robust activity of hFEN1 on 59

flaps containing G4 DNA, and by the ability of a G4 39 tail, but

not a polyA tail or blunt end, to stimulate hFEN1 exonucleolytic

activity.

Figure 6. Transcribed telomere repeats are excised by hEXO1 but not hFEN1. (A) pTELN telomeric substrates. T7 promoter (PT7); 800 human
(TTAGGG) telomeric repeat (dark fill); RNA transcript (dashed line); and PvuII cleavage sites (Pv; arrows) are indicated. (B) Products of PvuII digests of
pTELN substrates, which had been transcribed or nicked, as indicated, following digestion with hEXO1 (above, 0.6, 1.2, 2.4 and 4.8 nM) or hFEN1
(below, 0. 4.5, 9 and 18 nM). Fragments were phosphor-imaged and quantitated following transfer and indirect labeling with a probe to the T7
promoter. Arrows denote the 3.8 kb full-length plasmid, and the 2.5 kb PvuII product. (C) Quantitation of products of excision of transcribed, nicked
pTELN (diamonds), transcribed, pTELN (squares), nicked pTELN (triangles) and supercoiled pTELN (open circles) by 0, 1.2, 2.4 and 3.6 nM hEXO1 (left)
and by 0, 4.5, 9 and 18 nM hFEN1 (right). Open circles and squares are overlapping for hEXO1.
doi:10.1371/journal.pone.0008908.g006

EXO1/FEN1 at Telomeric G4 DNA
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FEN1 and EXO1 Activities at Telomeric G4 DNA Tails
Both hEXO1 and hFEN1 were able to excise substrates bearing

39 telomeric tails, which resemble uncapped telomeres. This

activity could expose the C-rich strand for recombination, or

remove the G-rich tail and thereby destabilize the telomere.

Stabilization of telomeres that occurs upon ablation of Exo1 in

telomerase-deficient mice [54] may be one manifestation of this

activity.

hFEN1 and hEXO1 were also very active at the 59 end of the

strand opposite a telomeric tail, where hFEN1 in particular was

stimulated by G4 DNA. In vivo, excision from this end could lead

to an increase in the length of a 39 telomeric tail, at the expense of

duplex DNA. The roles of FEN1 and EXO1 in telomerase-

deficient cells have been ascribed to functions in recombination,

including exposing single-stranded DNA or resolving structures

produced by branch migration. Our results identify another

possible function, in exposing G-rich regions for 39 tail formation.

Telomere Transcription May Enable EXO1 to Create
Substrates for Recombination

In vivo, telomeres are transcribed from promoters in subtelo-

meric regions [49,55]. Transcription of G-rich telomeric sequenc-

es results in formation of characteristic G-loop structures, which

contain a stable RNA/DNA hybrid on the C-rich template strand

and G4 DNA interspersed with single-stranded regions on the G-

rich strand [43]. hEXO1 (but not hFEN1) excised telomeric G-

loops, in a reaction that parallels excision of G-loops formed

within transcribed Ig switch regions [42]. While the function of

telomeric transcription is not yet understood, it has been shown to

be more active in cells that lack telomerase and depend upon

recombination for telomere maintenance [56]. Our results suggest

that one function of telomere transcription may be to promote

formation of recombinogenic structures that are substrates for

EXO1. Because telomere transcription initiates in subtelomeric

regions, promoter-proximal sequences will be enriched among

these substrates, conferring the potential to transfer long regions of

sequence to the recipient telomere.

G4 DNA as a Target of FEN1 and EXO1
The results documented here show that both FEN1 and EXO1

must be included on the growing list of critical DNA maintenance

and repair factors that are active at G4 DNA. This list also

includes BLM, WRN, Sgs1 and related RecQ family helicases

[21,22,24,32,57,58]; and XPD-family helicases such as FANCJ,

RTEL1, DOG-1 and Srs2 [26–29]. hFEN1 and hEXO1 activities

were stimulated by both telomeric and nontelomeric sequences, so

both enzymes could act upon G4 DNA that formed outside the

telomeric regions. This may explain why G-rich ribosomal DNA

repeats [59] and the G-rich minisatellites CEB1 and MS32 [60,61]

are unstable in S. cerevisiae rad27 strains which lack the FEN1

homolog. The evidence that robust activity of hFEN1 was evident

on structures on which hEXO1 exhibited limited or no activity

suggests that EXO1 might not be able to compensate for FEN1 to

maintain stability of genomic regions with high potential for G4

DNA formation.

The G4 DNA signature motif, and consequently potential for

G4 DNA formation, is unevenly distributed and also selected in

the human genome, characterizing not just specialized domains

like the telomeres, ribosomal DNA and Ig switch regions, but also

promoters and specific functional classes of genes [62–64]. The

ability of G4 structures to stimulate FEN1 and EXO1 not only

identifies these enzymes as key to stability of regions bearing the

G4 motif, but also raises the further possibility that the G4 motif

may confer special localized properties in replication or recom-

bination.

Materials and Methods

DNA Substrates
Oligonucleotides were 59 end-labeled with c32P-dATP using T4

polynucleotide kinase (NEB) or 39-labeled by filling with Exo2

Klenow polymerase (NEB); and free nucleotides removed using a

G50 spin column (GE). Synthetic oligonucleotide substrates

(below) were generated by heating oligonucleotides at equimolar

concentrations at 90uC in TE containing 40 mM KCl (which

promotes G4 DNA formation), followed by slow cooling and

overnight incubation at room temperature. Annealed substrates

were resolved on an 8% nondenaturing polyacrylamide gel

containing 10 mM KCl, eluted, and stored in TE containing

10 mM KCl. Formation of G4 structures was confirmed by

analysis of labeled substrates on native gels containing 10 mM

KCl, where more than 90% of the label migrated with retarded

mobility, diagnostic of G4 DNA (Figure S1).

Substrates bearing a 59 telomeric or nontelomeric G4 flap

were generated by annealing either 59-labeled 59-(TTAGGG)4AT-

CATGGCTTGCGATACTTTCCCCGTCTAGTCGCTA-39 or

59- CCTGGGCTAGGGATCGGGACCGGGATCATGGCTT-

GCGATACTTTCCCCGTCTAGTCGCTA-39 respectively, to

59-TAGCGACTAGACGGGGAAAGCCGAATTTCTAGAAT-

CGAAAGCTTGCTAGCAATTCGGCGA-39 and 59-TCGCC-

GAATTGCTAGCAAGCTTTCGATTCTAGAAATTCGG-39.

Substrates bearing a 39 unstructured flap were generated by

annealing the latter two oligonucleotides to 59 end-labeled 59-

ATCATGGCTTGCGATACTTTCCCCGTCTAGTCGCTA-39.

Substrates bearing a 39 G4 telomeric, polyA or nontelomeric tail

were generated by annealing the latter two oligonucleotides to

59-ATCATGGCTTGCGATACTTTCCCCGTCTAGTCGCT-

A(TTAGGG)4-39, 59-ATCATGGCTTGCGATACTTTCCCC-

GTCTAGTCGCTA(A)24-39 or 59-ATCATGGCTTGCGATA-

CTTTCCCCGTCTAGTCGCTACCTGGGCTAGGGATCG-

GGACCGGG-39, respectively.

Blunt-ended substrates bearing an internal nick were generated

by annealing 59-GTAGAGGATCTAAAAGACTT-39 and 59

end-labeled 59-CGTCCGAAAGTTGCTGAACT-39 to 59-

AGTTCAGCAACTTTCGGACGAAGTCTTTTAGATCCTC-

TAC-39. Substrates bearing an internal nick on the same strand

as a telomeric or polyA tail were generated by annealing 59-

TAGCGACTAGACGGGGAAAGTATCGCAAGCCATGAT-39

to 59- ATCATGGCTTGCGATACT-39 and 59 end-labeled 59-

TTCCCCGTCTAGTCGCTA(TTAGGG)4-39 or 59-TTCCCC-

GTCTAGTCGCT(A)24-39, respectively.

Substrates for assaying excision from the 59 end opposite a 39

telomeric or polyA tail or blunt end were generated by annealing 59-

GAGGTCACTCCAGTGAATTCGAG-39 to 59-GGAAAGTCA-

CGACCTAGACACTGCGAGCTCGAATTCACTGGAGTGAC-

CTC(TTAGGG)4-39, 59-GGAAAGTCACGACCTAGACACTG-

CGAGCTCGAATTCACTGGAGTGACCTC(A)24-39, or 59-GG-

AAAGTCACGACCTAGACACTGCGAGCTCGAATTCACT-

GGAGTGACCTC-39, respectively; 39-labeling by filling with

a-32P-dCTP and 0.33 mM cold dTTP; and annealing 59-GC-

AGTGTCTAGGTCGTGACTTT-39.

Substrates for assaying excision from a nick on the strand opposite a

39 telomeric tail, polyA tail or blunt end were generated by annealing

59-GCAGTGTCTAGGTCGTGACTTT-39 to 59-GGAAAGTCA-

CGACCTAGACACTGCGAGCTCGAATTCACTGGAGTGACC-

TC(TTAGGG)4-39, 59-GGAAAGTCACGACCTAGACACTGCG-

AGCTCGAATTCACTGGAGTGACCTC(A)24-39, or 59-GGAA-
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AGTCACGACCTAGACACTGCGAGCTCGAATTCACTGGAG-

TGACCTC-39, respectively; labeling the 39 end with a-32P-dCTP; and

annealing 59-GAGGTCACTCCAGTGAATTCGAG-39.

Plasmid substrate pTELN consists of 800 bp of telomere repeat

cloned into the Xba1 and BamH1 sites of pBluescript (KS+),

downstream of the T7 promoter [43]. Quikchange mutagenesis

(Stratagene) generated an Nb.BbvC1 nickase site 131 bp upstream

of the promoter and 101 bp from one of two PvuII sites. PvuII

cleavage of intact 3.8 kb pTelN produces two fragments, 2.5 kb

and 1.3 kb in length. Exonucleolytic digestion from the 59-nick

destroys the promoter-proximal PvuII site, so the fraction of 3.8 kb

molecules produced upon PvuII digestion provides a measure of

exonucleolytic activity [42].

Enzymes and Enzyme Assays
hEXO1 was expressed from a baculovirus vector in sf9 insect

cells and purified as described [42], and hFEN1 was obtained

commercially (Trevigen). Activity assays were carried out in 20 ml

containing indicated amounts of enzyme and 5 nM DNA

substrate; in 30 mM HEPES, pH 7.6, 40 mM KCl, 8 mM

MgCl2, 0.1 mg/ml BSA and 1 mM DTT for hEXO1, in

manufacturer’s buffer supplemented with 40 mM KCl to maintain

stability of G4 structures. Products of digestion of labeled synthetic

oligonucleotides were denatured by heating at 95uC for 10 min in

0.5 volume of 95% formamide/20 mM EDTA at pH 8.0, and a

5 ml aliquot resolved by denaturing gel electrophoresis on 8 M

urea, 12% or 20% (for exonuclease assays) polyacrylamide gels.

Products of digestion of plasmid substrates were resolved by native

agarose gel electrophoresis and quantified by indirect end-labeling

after transfer to a nylon membrane and hybridization to a labeled

probe complementary to the T7 promoter [42]. Gels were scanned

with a STORM Phosphorimager (Amersham) and label quanti-

tated with Image Quant software (Amersham).

Supporting Information

Figure S1 Structure formation by substrates. (A) Substrates

diagrammed on left were analyzed by electrophoresis on a native

gel containing 10 mM KCl. Substrates were 39 end-labeled either

opposite the tail or at the nick; asterisk denotes end-label.

Retarded mobility on a native gel containing 10 mM KCl is

diagnostic of G4 DNA formation by substrates b and e (arrow). (B)

Substrates diagrammed on left (asterisk denotes 59-end-label) were

gel purified, and structure formation confirmed by electrophoresis

on a native gel containing 10 mM KCl. Substrates bearing an

unstructured 59-flap (a) migrated more rapidly than substrates

containing telomeric G4 DNA 59 flap (b) or 39 tail (c). These

substrates (indicated by arrows) were used for subsequent assays.

Found at: doi:10.1371/journal.pone.0008908.s001 (0.12 MB

PDF)
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