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Multisite covalent modification of proteins is omnipresent in
eukaryotic cells. A well-known example is the mitogen-activated
protein kinase (MAPK) cascade where, in each layer of the cascade,
a protein is phosphorylated at two sites. It has long been known
that the response of a MAPK pathway strongly depends on
whether the enzymes that modify the protein act processively
or distributively. A distributive mechanism, in which the enzyme
molecules have to release the substrate molecules in between
the modification of the two sites, can generate an ultrasensitive
response and lead to hysteresis and bistability. We study by Green’s
Function Reaction Dynamics (GFRD), a stochastic scheme that
makes it possible to simulate biochemical networks at the particle
level in time and space, a dual phosphorylation cycle in which the
enzymes act according to a distributive mechanism. We find that
the response of this network can differ dramatically from that pre-
dicted by a mean-field analysis based on the chemical rate equa-
tions. In particular, rapid rebindings of the enzyme molecules to
the substrate molecules after modification of the first site can
markedly speed up the response and lead to loss of ultrasensitivity
and bistability. In essence, rapid enzyme-substrate rebindings can
turn a distributive mechanism into a processive mechanism. We
argue that slow ADP release by the enzymes can protect the
system against these rapid rebindings, thus enabling ultrasensitiv-
ity and bistability.

MAP kinase ∣ Multisite phosphorylation ∣ Reaction diffusion ∣ Simulation

MAPK cascades are ubiquitous in eukaryotic cells. They are
involved in cell differentiation, cell proliferation, and apo-

ptosis (1). MAPK pathways exhibit very rich dynamics. It has
been predicted mathematically and shown experimentally that
they can generate an ultrasensitive response (2–4) and exhibit
bistability via positive feedback (5). It has also been predicted
that they can generate oscillations (6, 7, 8), amplify weak but
attenuate strong signals (9), and give rise to bistability due to en-
zyme sequestration (10, 11). MAPK pathways are, indeed, impor-
tant for cell signalling, and for this reason they have been studied
extensively, both theoretically (2, 3, 6–19) and experimentally (2,
4, 5, 7, 16, 20–22). However, with the exceptions of refs. 7, 9, 11,
15, and 19, the pathway is commonly modeled by using chemical
rate equations (2, 3, 6, 8, 10, 12–14, 16, 17). This is a mean-field
description, in which it is assumed that the system is well-stirred
and that fluctuations can be neglected. Here, we perform parti-
cle-based simulations of one layer of the MAPK cascade using
our recently developed GFRD algorithm (23, 24). Our simu-
lations reveal that spatio-temporal correlations between the en-
zyme and substrate molecules that are ignored in the commonly
employed mean-field analyses can have a dramatic effect on the
nature of the response. They can not only speed up the response,
but also lead to loss of ultrasensitivity and bistability.

The response time, the sharpness of the input-output relation,
and bistability are key functional characteristics of signal trans-
duction pathways. The response time does not only determine
how fast a cell can respond to a changing environment, but
has also been implicated to underlie many cellular decisions.

For example, processes such as cell proliferation and differentia-
tion, selection of Tcells, apoptosis, and cell-cycle progression are
believed to be regulated by the duration of the signal (15, 22,
25–27). The sharpness of the input-output relation, or the gain,
is a key property of any signal transduction pathway because it
directly affects the signal-to-noise ratio. Bistability can lead to
a very sharp, all-or-none response (5), buffer the cell against fluc-
tuations in an input signal, and makes it possible to lock the cell in
a given state. Indeed, bistability or, more in general, multistability
plays a central role in cell differentiation (28, 29). It is thus im-
portant to understand the mechanisms that underlie bistability,
the gain and the response time of MAPK pathways.

A MAPK cascade consists of three layers where, in each layer,
a kinase activates the kinase of the next layer. Importantly, full
activation of the kinase requires that it becomes doubly phos-
phorylated (Fig. 1). This is regulated via a dual phosphorylation
cycle in which the upstream kinase and a phosphatase control the
phosphorylation state of the two sites of the kinase in an antag-
onistic manner. A key question is whether the enzymes that
modify the kinase act in a processive or in a distributive manner
(2–4). In a distributive mechanism, the enzyme has to release the
substrate after it has modified the first site, before it can rebind
and modify the second site. In contrast, in a processive mecha-
nism, the enzyme remains bound to the substrate in between
the modification of the two sites. Whereas a processive mecha-
nism requires only a single enzyme-substrate encounter for the
modification of both sites, a distributive mechanism requires at
least two enzyme-substrate encounters.

Mean-field analyses based on the chemical rate equations have
revealed that whether the enzymes act according to a processive
or a distributive mechanism has important functional conse-
quences for the response of a MAPK pathway. A distributive
mechanism can generate an ultrasensitive response because
the concentration of the fully-activated kinase depends quadrat-
ically on the upstream kinase concentration (2–4). Moreover, if
the enzymes are present in limiting amounts, enzyme sequestra-
tion can lead to bistable behavior if they act distributively (10).
These mean-field analyses, however, assume that at each instant
the molecules are uniformly distributed in space. Here, we show
using particle-based simulations that spatio-temporal correla-
tions between the enzyme and the substrate molecules can
strongly affect the response of a MAPK pathway.
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We perform particle-based simulations of one layer of a
MAPK pathway in which the enzymes act according to a distrib-
utive mechanism. The simulations reveal that after an enzyme
molecule has dissociated from a substrate molecule upon phos-
phorylation of the first site, it can rebind to the same substrate
molecule to modify its second site before another enzyme mole-
cule binds to it. Importantly, the probability-per-unit amount of
time that such a rebinding event occurs does not depend upon the
enzyme concentration. As a result, enzyme-substrate rebindings
can effectively turn a distributive mechanism into a processive
one even though modification of both sites of a substrate mole-
cule involves at least two collisions with an enzyme molecule. In-
deed, a distributive mechanism not only requires a two-collision
mechanism; it also requires that the rates at which they occur
depend upon the concentration.

Enzyme-substrate rebindings have important functional con-
sequences. Because they can effectively turn a distributive mech-
anism into a processive one, ultrasensitivity and bistability can be
lost. We also investigate, in-depth, the scenarios in which
rebindings become important. Enzyme-substrate rebindings be-
come more likely when the enzymes are reactivated more rapidly
after substrate modification, and when their diffusion constants
decrease. Because enzyme-substrate rebindings are faster than
random enzyme-substrate encounters, this observation leads to
the counterintuitive prediction that slower diffusion can lead
to a faster response.

Biological systems that exhibit macroscopic concentration
gradients or spatio-temporal oscillations, which have recently
been studied extensively, are typically considered to be reaction-
diffusion problems. The MAPK system is spatially uniform at
cellular length scales. Yet, its macroscopic behavior, such as
the presence of bistability, cannot be described by a mean-field
analysis that ignores spatio-temporal fluctuations at molecular
length scales (30). It is well-known that spatio-temporal correla-
tions at molecular length scales can renormalise rate constants
(31, 32). However, we believe that our results are the first to show
that spatio-temporal correlations at molecular length scales can
also qualitatively change the average, macroscopic behavior of a
biological system that is uniform at cellular length scales. This
underscores the importance of particle-based modelling of biolo-
gical systems in time and space.

Model
Dual Phosphorylation Cycle. We consider one layer of the MAPK
pathway, consisting of one dual modification cycle, as shown in
Fig. 1. Phosphorylation and dephosphorylation proceed via
Michaelis–Menten kinetics and according to an ordered, distribu-
tive mechanism. Importantly, we assume that the enzymes are
inactive after they have released their modified substrate; before

they can catalyse the next reaction they first have to relax back to
the active state. The inactive state could reflect that the enzyme is
in an inactive conformational state after it has released its prod-
uct. For the kinase, it could also reflect that after it has released
its substrate ADP is bound; only when ADP has been released
and ATP has been bound does the enzyme become active again.
As we will discuss in detail below, the timescale for reactivation,
τrel, plays a key role in the dynamics of the system.

This model is described by the following reactions:

KK þ K ⇌
k1

k2
KK − K→

k3KK� þ Kp; [1]

KK þ Kp ⇌
k4

k5
KK − Kp→

k6KK� þ Kpp; [2]

P þ Kpp ⇌
k1

k2
P − Kpp→

k3
P� þ Kp; [3]

P þ Kp ⇌
k4

k5
P − Kp→

k6
P� þ K; [4]

KK�→
k7KK; and P�→

k7 P: [5]

The first two reactions describe the phosphorylation of the kinase
of interest, MAPK (K), by the upstream kinase, MAPKK (KK),
whereas Eqs. 3 and 4 describe its dephosphorylation by the
phosphatase (P). The inactive state of the enzymes after they
have released their product is denoted by the superscript *,
and the relaxation towards the active state is described by the last
two equations. For simplicity, we assume that reactivation can be
described as a simple unimolecular reaction with a time scale
τrel ≃ 1∕k7. We also assume that the system is symmetric, meaning
that the rate constants for the phosphorylation reactions are
equal to the corresponding rate constants for the dephosphoryla-
tion reactions. We will systematically vary the relaxation time τrel,
the concentration, and the diffusion constant of the particles, D
(see below). For the other parameter values, we have taken ty-
pical values from the literature (see Methods).

GFRD. We will compare the predictions of a mean-field model
based on the chemical rate equations (10) with those of a model
in which the particles are explicitly described in time and space. In
this particle-based model it is assumed that the molecules are
spherical in shape, have a diameter σ, and move by diffusion with
a diffusion constant D. Moreover, two reaction partners can react
with each other with an intrinsic rate ka ¼ k1 or k4 once they are
in contact, and two associated species can dissociate with an in-
trinsic dissociation rate kd ¼ k2 or k5, respectively.

One algorithm to simulate this model would be Brownian
Dynamics. However, because the concentrations are fairly low,
much computational time would be wasted on propagating the
reactants towards one another. We present and apply an en-
hanced version of our recently developed GFRD algorithm,
which uses Green’s functions to concatenate the propagation
of the particles in space with the chemical reactions between
them, allowing for an event-driven algorithm (23, 24) (see Meth-
ods). Whereas the particle-based reaction-diffusion model pre-
sented here is based on assumptions as discussed above, the
new GFRD algorithm, in contrast to Brownian Dynamics, is
an exact scheme for simulating such models.

Results
Rebindings. To understand the response of the dual phos-
phorylation cycle, it is instructive to consider the distribution
of association times for a bimolecular reaction. We consider a
simple bimolecular reaction, Aþ B⇌C, where one A molecule
can react with one of N B molecules to form a C molecule in

Fig. 1. Dual phosphorylation cycle of one layer of the MAPK cascade. MAPK
(K) is activated via double phosphorylation by the kinase MAPKK (KK) of the
upstream layer and deactivated via dephosphorylation by a phosphatase (P).
It is assumed that the enzymes KK and P act distributively and become
inactive (KK� and P�) immediately after the substrate has been modified,
relaxing back to the active state with a characteristic time scale τrel.
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a volume V . A model in which it is assumed that the particles are
uniformly distributed in space at all times, be it a mean-field con-
tinuum or a stochastic, discrete model, predicts that this distribu-
tion is exponential (Fig. 2). In contrast, in a spatially-resolved
model, the distribution of association times is algebraic on short
times and exponential only at later times (32).

The difference between the well-stirred model and the spa-
tially-resolved model is due to rebindings. In a well-stirred model,
the propensity that, after a dissociation event, the A molecule re-
acts with a B molecule only depends on the total density of B
molecules, and not on their positions; in a spatially-resolved
model this would amount to putting the dissociated B particle
to a random position in the cell. Because the total density of
B is constant, the association propensity is constant in time, lead-
ing to an exponential waiting-time distribution in the well-stirred
model. In the spatially-resolved model the situation is markedly
different. The B molecule that has just dissociated from the A
molecule is in close proximity to the A molecule. As a conse-
quence, it can rapidly rebind to the A molecule before it diffuses
away from it into the bulk. Such rebindings lead to the algebraic
decay of the association-time distribution at short times. For
times shorter than the time to travel a molecular diameter,
t < τmol ≈ σ2∕D, the dissociated B particle, essentially, experi-
ences a surface of the A particle that is flat, and its rebinding dy-
namics is given by that of a one-dimensional random walker
returning to the origin, leading to the t−1∕2 decay. At times
τmol < t < τbulk, the dissociated B particle sees the entire sphere
of A, and the probability of a re-encounter event is that of a three-
dimensional random walker returning to the origin, decaying as
t−3∕2. At times t > τbulk, the dissociated B particle has diffused into
the bulk, and it has lost all memory of where it came from. The
probability that this molecule, or more likely, another Bmolecule
binds the A molecule, now becomes constant in time, leading to
an exponential waiting-time distribution at long times (32).

Fig. 2 shows that the association-time distribution depends on
the concentration for t > τbulk, but not for t < τbulk. Indeed,
whereas the encounter rate between two molecules in the bulk
depends on their concentration, the rate at which a rebinding
event occurs is independent of it. As we will show below, this
has major functional consequences for the response of the dual
phosphorylation cycle.

Rebindings Can Speed Up the Response. Fig. 3 shows the average
response time as a function of the diffusion constant for two
different values of the lifetime of the inactive state of the en-
zymes, τrel. The figure reveals that both the mean-field (ODE)
and the particle-based model predict that there is an optimal
diffusion constant that minimizes the response time. However,
in the mean-field model the optimum is barely noticeable (33).
To a good approximation, the mean-field model predicts that
the response time increases with decreasing diffusion constant
because enzyme-substrate association slows down as diffusion
becomes slower. In contrast, the particle-based model shows a
marked optimum that is most pronounced when τrel is short.
Clearly, the particle-based simulations predict that slower diffu-
sion can lead to a faster response.

The speed up of the response with slower diffusion is due to
the interplay between enzyme-substrate rebindings, and enzyme
reactivation. This interplay manifests itself in the distribution of
the second-association time, defined as the time it takes for a sub-
strate molecule that has just been phosphorylated (Kp) to bind a
kinase molecule (KK) for the phosphorylation of the second site
(Fig. 4). After a kinase molecule (KK) has phosphorylated the
first site of a substrate molecule (K), it will dissociate from it.
After dissociation, it is still in close proximity to the substrate
molecule, and it will therefore rapidly re-encounter the substrate
molecule before it diffuses away into the bulk. When the lifetime
τrel of the inactive state of the kinase molecule is short compared
to the time τmol it takes for the enzyme and substrate molecule to
diffuse away from each other, the probability that upon a re-en-
counter the enzyme molecule has become active again such that it
can actually rebind the substrate molecule, will be large. Hence,
when τrel ≤ τmol, the kinase will often rapidly rebind the substrate
molecule, leading to the characteristic algebraic decay of t−3∕2 for
τmol < t < τbulk (Fig. 4A). However, there is also a probability
that the enzyme molecule will escape into the bulk before it re-
binds the substrate molecule. If this happens, most likely, another
kinase molecule binds the substrate molecule. This scenario un-
derlies the exponential form of the second-association-time distri-
bution at longer times with the corner time τbulk ≈ 0.1–10 s. It can
now also be understood why the marked peak in the distribution
at short times (Fig. 4A) disappears when the enzymes’ reactiva-
tion time τrel becomes significantly longer than τmol (Fig. 4B):

Fig. 2. The distribution of association times for a bimolecular reaction for
different concentrations. The system consists of one A molecule that can
associate with N ¼ 10 B molecules according to the reaction Aþ B⟷

ka;kdC.
For t < τmol ≈ σ2∕D ≈ 1 μs the distribution decays as t−1∕2, for τmol < t < τbulk ≈
1 s it decays as t−3∕2, whereas for t > τbulk the distribution decays exponen-
tially. The algebraic decay is due to rebinding events in which a dissociated B
molecule rebinds the A molecule before diffusing into the bulk; this is unaf-
fected by the concentration of B, ½B�. The exponential relaxation is due to B
molecules that arrive at A from the bulk, and is a function of ½B�. The
concentration was controlled by changing the volume from V ¼ 1; 0.33
and 0.1 μm3, corresponding to ½B� ¼ N∕V ¼ 16; 48 and 160 nM, resp.
ka ¼ 0.056 nM−1 s−1, kd ¼ 1.73 s−1, D ¼ 1 μm−2 s−1 and σ ¼ 5 nm.

Fig. 3. Average response time as a function of the diffusion constant D
for τrel ¼ 10 ms (blue line) τrel ¼ 1 μs (green line), as predicted by the
particle-based model; for comparison, the predictions of the mean-field
model based on the ODE chemical rate equations are also shown (black lines).
Initially, only the phosphatases are active. At t ¼ 0 the upstream kinases are
activated, and plotted is the response time τres to reach on average 50% of
the final steady-state level of doubly phosphorylated substrate, ½Kpp�f ; this
is estimated through least-square fitting of the response ½Kpp�ðtÞ to
fðtÞ ¼ ½Kpp�f ð1 − expð− ln 2ðt∕τresÞÞÞ. The optimum in the particle-based mod-
el is due to the interplay between phosphorylation of the first site that slows
downwith decreasing diffusion constant because enzyme and substrate have
to find each other at random, and phosphorylation of the second site that
speeds up with decreasing diffusion constant because of enzyme-substrate
rebindings.
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after phosphorylation of the first site, the kinase will rapidly re-
encounter the substrate molecule many times but, because the
enzyme is most probably still inactive, it cannot rebind the sub-
strate molecule and it will therefore diffuse into the bulk. In the
SI Text we derive analytical expressions for the enzyme-substrate-
rebinding-time distributions and elucidate the different scaling
regimes that can be observed.

To understand why slower diffusion can lead to a faster re-
sponse when the lifetime of the enzymes’ inactive state is short
(Fig. 3), it is instructive to consider how the distribution of
second-association times depends on the diffusion constant.
Fig. 4A shows that the corner at τbulk shifts to longer times as
the diffusion constant is decreased. This is because the rate at
which a kinase molecule from the bulk encounters a given sub-
strate molecule is given by 1∕τbulk ¼ kD ¼ 4πσðDE þDSÞ½KK �,
where σ is the sum of the radii of the enzyme and substrate mol-
ecules and DE and DS are the diffusion constants of the enzyme
and substrate molecules, resp. Clearly, substrate phosphorylation
by kinase molecules that have to find the substrate molecules at
random slows down as the molecules move slower. However, the
figure also shows that the distribution at the corner time of τbulk
decreases in magnitude whereas the peak at τmol increases in
magnitude when diffusion becomes slower. This means that, as
the diffusion constant becomes lower, phosphorylation of the sec-
ond site is increasingly dominated by enzyme-substrate rebind-
ings rather than by random enzyme-substrate encounters. The
probability that the enzyme molecule is still in the vicinity of
the substrate molecule after it has relaxed back to the active state
increases as the diffusion constant decreases making a substrate-
rebinding event more likely. This is demonstrated quantitatively
in Fig. 4C, which shows the probability that both sites on the
substrate are phosphorylated by the same kinase molecule. As
expected, this probability not only increases with decreasing life-
time of the enzymes’ inactive state, but also with decreasing dif-
fusion constant. Because enzyme-substrate rebindings are more
rapid than random enzyme-substrate encounters, this explains
why slower diffusion can lead to a faster response.

While slower diffusion speeds up the modification of the sec-
ond site by making rapid enzyme-substrate rebindings more
likely, it also slows down the modification rate of the first site
because that is determined by the rate at which enzyme molecules
find the substrate molecules from the bulk. This is the origin of
the optimum diffusion constant that minimizes the response
time (Fig. 3).

Enzyme-Substrate Rebindings Can Weaken the Sharpness of the
Response. Fig. 5 shows the effect of enzyme-substrate rebindings
on the steady-state, input-output relation. It is seen that when the
reactivation time of the enzymes is long, τrel ¼ 10 ms, the

input-output relation is strongly sigmoidal (Fig. 5B). Moreover,
it does not depend much on the diffusion constant of the mol-
ecules, and it agrees quite well with that predicted by the
mean-field model based on the chemical rate equations (Fig. 5B).
In contrast, when τrel is short, that is τrel ¼ 1 μs, the input-output
relation markedly depends on the diffusion constant (Fig. 5A).
For large diffusion constants, the response curve agrees well with
that predicted by the mean-field model of a distributive mecha-
nism. But for lower diffusion constants, it increasingly deviates
from the mean-field prediction and it becomes significantly less
sigmoidal.

It is commonly believed that multi-site covalent modification
can lead to a sigmoidal, cooperative response when the enzymes
act distributively but not when they act processively (2, 34).
Whereas in a distributive scheme modification of n sites of a sub-
strate molecule requires at least n enzyme-substrate binding
events, in a processive scheme only one enzyme-substrate binding
event is needed. This is often presented as the explanation for
why a distributive mechanism enhances the sensitivity of the mod-
ification level to changes in enzyme concentration. However,
Fig. 5A shows that when the enzymes’ reactivation time is short
and the species’ diffusion constant is low, the input-output rela-
tion of a distributive, dual phosphorylation cycle approaches that
of a processive, dual phosphorylation cycle. This is due to en-
zyme-substrate rebindings. Even though during a rebinding tra-
jectory, the enzyme molecule is detached from the substrate
molecule and two binding events are required for full substrate
modification, the rate at which the second site is modified does
not depend on the enzyme concentration (Fig. 2). This is the prin-
cipal reason why enzyme-substrate rebindings can turn a distribu-
tive mechanism into a processive one.

Fig. 4. Distribution of times it takes for a substrate that has just been phosphorylated once (Kp) to bind a kinase molecule (KK) for different diffusion
constants. The enzyme reactivation time is (A) τrel ¼ 1 μs or (B) τrel ¼ 10 ms; in both cases τmol ≈ 1 μs and τbulk ≈ 0.1–10 s. (C) Probability that the two mod-
ification sites of a substrate molecule are phosphorylated by the same kinase molecule as a function of diffusion constant, for different enzyme reactivation
times τrel. It is seen that the probability of an enzyme-substrate rebinding event increases not only with decreasing enzyme reactivation time, but also with
decreasing diffusion constant. The latter explains why slower diffusion can lead to a faster response, as seen in Fig. 3.

Fig. 5. Steady-state input-output relations for different diffusion constants
when (A) τrel ¼ 1 μs and (B) τrel ¼ 10 ms. For comparison, we also show the
predictions of a mean-field (ODE) model of a distributive system with
D ¼ 1 μm2∕s, and that of a particle-based model of a processive system with
D ¼ 0.66 μm2∕s (only in A). Note that when the reactivation time τrel is short,
the input-output relation of a distributive system approaches that of a
processive one as the diffusion constant is lowered (A, blue lines).
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Rebindings Can Lead To Loss of Bistability. Markevich et al. have
shown that bistability can arise in a dual phosphorylation
cycle when the enzymes act distributively and are present in limit-
ing concentrations (10). The idea is that if the substrate molecules
are, for example, predominantly unphosphorylated and a sub-
strate molecule is phosphorylated to become singly phosphory-
lated, it will most likely bind a phosphatase molecule to
become unphosphorylated again, instead of a kinase molecule
to become fully phosphorylated – when most of the substrate mol-
ecules are unphosphorylated, the kinase molecules are mostly se-
questered by the unphosphorylated substrate molecules whereas
the phosphatase molecules are predominantly unbound. How-
ever, this is essentially a mean-field argument that assumes that
the substrate and enzyme molecules are randomly distributed in
space at all times. Fig. 6 shows that spatio-temporal correlations
between the enzyme and substrate molecules can have a dramatic
effect on the existence of bistability. When the enzymes’ reactiva-
tion time τrel is long, spatio-temporal correlations are not impor-
tant and the system, indeed, exhibits bistability. But when τrel is
short, the probability that a substrate molecule that has just been
phosphorylated once will be phosphorylated twice is larger than
the probability that it will be dephosphorylated again. The chance
that it will rebind the kinase molecule that has just phosphory-
lated it will, because of the close proximity of that kinase mole-
cule, be larger than the probability that it will bind a phosphatase
molecule, even though, in this state, there are many more phos-
phatase than kinase molecules to which the substrate molecule
could bind to. These rebindings, or more precisely, spatio-tem-
poral correlations between the enzyme and substrate molecules,
are the origin of the loss of bistability when τrel is short (Fig. 6).
This mechanism differs markedly from that of (11), where the
disappearance of bistability relies on the nucleation of small do-
mains of the opposite phase. In the SI Text we discuss the depen-
dence on concentration.

Discussion
Multi-site phosphorylation is omnipresent in biological systems.
Perhaps the most studied example is the dual phosphorylation
cycle of the MAPK pathway, studied here, but other well-known
examples are the Kai system (35), the cyclin-dependent kinase
inhibitor Sic1 (36), the Nuclear Factor of Activated T-cells system
(37), and the CaM kinase II system (38). Multi-site phosphoryla-

tion can lead to an ultrasensitive response (2, 3), to a threshold
response (34), to bistability (10, 38), or synchronise oscillations of
phosphorylation levels of individual protein molecules (35), pro-
vided the enzymes act via a distributive mechanism. We have stu-
died by using a particle-based model a dual phosphorylation cycle
in which the enzymes act according to a distributive mechanism.
Our results show that rapid enzyme-substrate rebindings can ef-
fectively turn a distributive mechanism into a processive one,
leading to loss of ultrasensitivity and bistability. Moreover, our
results reveal that enzyme-substrate rebindings can significantly
speed up the response, with slower diffusion leading to a faster
response. Rebindings in equilibrium systems have been predicted
to change the noise in signal detection, but not the average re-
sponse (32, 39). Our results reveal that in a non-equilibrium sys-
tem rebindings may not only modify the dynamics, but can also
drastically change the average, macroscopic behavior.

The question of whether an enzyme acts processively because
of rebindings or because it remains physically attached to the sub-
strate is biologically relevant because the importance of enzyme-
substrate rebindings strongly depends on the conditions. As our
analysis reveals, it depends on the diffusion constants of the com-
ponents, the lifetime of the inactive state of the enzymes, and on
the concentrations of the components. Moreover, it is expected to
depend on crowding, because subdiffusion due to crowding can
significantly extend the time scales over which rebindings occur
(40). All these factors may vary from one place in the cell to
another and will vary from one cell to the next. In fact, an enzyme
that operates according to a distributive mechanism in the test-
tube may act processively in the crowded environment of the
cell. Our results thus highlight the importance of studying the
response locally within the cell by using, for example, FRET.

In our model, enzyme-substrate rebindings occur on short time
scales, of up to 1–10 ms (Fig. 4), corresponding to the time for a
protein to diffuse over a few molecular diameters. This raises the
question whether we should not have taken orientational diffu-
sion into account. However, the first and second phosphorylation
site are often close to each other on the substrate, separated, for
example, by only a single amino-acid residue (41). This suggests
that enzyme-substrate rebindings can, indeed, occur without
significant orientational diffusion.

The importance of enzyme-substrate rebindings depends on
the lifetime of the inactive state of the enzymes. For a typical
protein diffusion constant of D ¼ 1–10 μm2 s−1 (42–44), the
rebinding probability drops below 10% when the enzyme reacti-
vation time becomes longer than 10 ms (Fig. 4C). Slow enzyme
reactivation may thus be critical for generating bistability and
ultrasensitivity. To our knowledge, reactivation times of enzymes
in MAPK pathways have not been measured yet. The reactivation
time of a kinase will depend sensitively on the order in which
ADP and modified substrate dissociate from it and ATP and sub-
strate bind to it. A recent study on a protein kinase revealed that
the modified substrate must dissociate from the enzyme before
the ADP, and that the ADP/ATP exchange must take place before
the enzyme can bind to the substrate again (45). Moreover, the
ADP release rate was approximately 0.2 s−1 (45). This suggests
that slow ADP release may allow for ultrasensitivity and bistabil-
ity, although more work is needed to explore these mechanisms
in depth. Concerning bistability, it is possible that bistability
requires the phosphatase to act distributively (10). Bistability
could thus be lost if the mechanism by which the phosphatase acts
changes from a distributive to a processive mechanism due to re-
bindings. To our knowledge, it is unknown what the minimum
time is to reactivate a phosphatase. Rapid phosphatase reactiva-
tion may thus lead to loss of bistability.

Finally, how could our predictions be tested experimentally? If
the enzyme of interest is a kinase, then one experiment would be
to change the lifetime of the inactive state by varying the ATP
concentration or by making mutations that change the ADP

Fig. 6. Relative Kpp concentrations as a function of the lifetime of the
inactive state of the enzyme, τrel. ½K�total ¼ ½Kpp� þ ½Kp� þ ½K� was increased
to 500 nM to bring the system to a regime where the mean-field model,
based on the chemical rate equations, predicts bistability. At each value of
τrel, the particle-based model was simulated until it reaches steady-state,
starting from four different initial conditions, ½Kpp�∕½K�total ¼ 0 (blue), 0.3
(green), 0.7 (red), and 1 (cyan). Whereas the mean-field model shows
bistability over the whole range of τrel (black dotted lines), the particle-based
model exhibits a bifurcation from mono- to bistability at t ≈ 100 μs. At this
bifurcation point, the system critically slows down, as a result of which it does
not even equilibrate after 350 s.
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release rate. Another proposal would be to study the enzyme ki-
netics as a function of the concentration of a crowding agent, such
as PEG (45). Crowding will, because of subdiffusion (40), make
enzyme-substrate rebindings more likely. Our analysis thus
predicts that an excess of PEG will turn a distributive mech-
anism into a processive one, implying that the crowded environ-
ment of the cell can qualitatively change the response of a
biological network.

Methods
GFRD. A reaction-diffusion system is a many-body problem that can not be
solved analytically. The key idea of GFRD is to decompose the many-body
problem into single and two-body problems that can be solved analytically
by using Green’s functions (23, 24). These Green’s functions are then used to
set up an event-driven algorithm that makes it possible to make large jumps
in time and space when the particles are far apart from each other. In the
original version of the algorithm, the many-body problem was solved by de-
termining at each iteration of the simulation a maximum time step such that
each particle could interact with, at most, one other particle during that time
step (23, 24). In the enhanced version of the algorithm presented here, called
eGFRD, spherical protective domains are put around single and pairs of
particles (46). This allows for an exact, asynchronous event-driven algorithm
(SI Text).

MAPKModel. Themodel of the distributive, MAP kinase dual phosphorylation
cycle is sketched in Fig. 1 and described by Eqs. 1–5. The rate constants are

k1 ¼ 0.027 nM−1 · s−1, k2 ¼ 1.35 s−1, k3 ¼ 1.5 s−1, k4 ¼ 0.056 nM−1 · s−1,
k5 ¼ 1.73 s−1, k6 ¼ 15.0 s−1, and k7 ¼ ln 2∕τrel. The protein diameter σ ¼
5 nm. k1 and k4 are the intrinsic association rates, which are the association
rates for two species in contact; k2 and k5 are the intrinsic dissociation rates
(32). Whereas in the particle-based model the diffusion of the particles is
simulated explicitly, in the mean-field model, based on the ODE chemical rate
equations, diffusion is described implicitly by renormalizing the association
and dissociation rates (32): 1∕kon ¼ 1∕ka þ 1∕kD and 1∕koff ¼ 1∕kd þ Keq∕kD,
where kon and koff are the renormalized association and dissociation rates,
resp., ka ¼ k1; k4 and kd ¼ k2; k5 are the respective intrinsic association and
dissociation rates. kD ¼ 4πσD is the diffusion-limited association rate and
Keq ¼ ka∕kd ¼ kon∕koff is the equilibrium constant. The particles were put
in a cubic volume of 1 μm3 with periodic boundary conditions. The total en-
zyme concentration ½KK� þ ½P� is 100 nM corresponding to 60 copies of mo-
lecules in the volume, and the total substrate concentration ½K� þ ½Kp�þ
½Kpp� is 200 nM or 120 copies of molecules in Figs. 3–5, and 500 nM or
300 copies of molecules in Fig 6. The processive model consists of the follow-
ing six reactions, sharing the same rate constants as the distributive model:
KK þ K⟷

k1 ;k2KK − K→
k3KK − Kp→

k6KK þ Kpp, P þ Kpp⟷
k1 ;k2P − Kpp→

k3P − Kp→
k6P þ K:
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