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Summary
Mixed effect models have become very popular, especially for the analysis of longitudinal data.
One challenge is how to build a good enough mixed effects model. In this paper, we suggest a
systematic strategy for addressing this challenge and introduce easily implemented practical
advice to build mixed effect models. A general discussion of scientific strategies motivates the
recommended five step procedure for model fitting. The need to model both the mean structure
(the fixed effects) and the covariance structure (the random effects and residual error) creates the
fundamental flexibility and complexity. Some very practical recommendations help conquer the
complexity. Centering, scaling, and full-rank coding all predictor variables radically improves the
chances of convergence, computing speed, and numerical accuracy. Applying computational and
assumption diagnostics from univariate linear models to mixed model data greatly helps detect and
solve related computational problems. Applying computational and assumption diagnostics from
univariate linear models to mixed model data can radically improve the chances of convergence,
computing speed, and numerical accuracy. The approach helps fit more general covariance
models, a crucial step in selecting a credible covariance model needed for defensible inference. A
detailed demonstration of the recommended strategy is based on data from a published study of a
randomized trial of a multicomponent intervention to prevent young adolescents' alcohol use. The
discussion highlights a need for additional covariance and inference tools for mixed models. The
discussion also highlights the need for improving how scientists and statisticians teach and review
the process of finding a good enough mixed model.
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1. Introduction
Longitudinal studies, in which outcomes are measured repeatedly over time on the same
subject, are widely conducted in various applications and often provide better insights about
the processes of interest than cross-sectional studies. Longitudinal studies allow addressing
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questions about changes over time in the response and changes in the relationship of the
response to subjects' characteristics. Mixed effects models ([1], [2]) have become very
popular for answering such questions.

In practice, when conducting analysis for longitudinal data with mixed models, investigators
need to handle a variety of modeling tasks. Most often, investigators have many potential
predictors and would like to build the “best” mixed model. In turn, problems often emerge
that must be addressed when the model does not fit. Similarly, the investigators may want to
judge the validity or reliability of a model. In practice, we agree with Box and Draper's
comment ([3]) that “Essentially, all models are wrong, but some are useful.” Therefore, we
choose to refer to one common underlying question in longitudinal data analysis: how do we
build a good enough mixed model?

We use the description “good enough” to distinguish it from the “best” model, which in turn
should be distinguished from the “correct” model. Chatfield ([4]) and Draper ([5]) provided
excellent and insightful discussions of the wider framework of finding the best and correct
models. Example concerns include the following. The correct model in the population may
be nonlinear, while the modeling process based on sample data at hand may only
accommodate linear functions. In contrast, a good enough linear model (including, for
example, polynomial terms) may adequately approximate the correct model. The correct
model for the entire population may be more complex than needed for the subpopulation
from which the sample has been drawn. In contrast, a good enough model must be drawn
from only those models estimable with the data in hand. Amongst the class of estimable
models, one may be best. In contrast, there may be many models that are close enough to the
best model to be good enough for the purposes of the analysis at hand.

Finding a good enough model follows good statistical practice and does not allow or
encourage poor data analysis. Most importantly, a good enough model must adequately
satisfy all of the assumptions underlying the model fitting process. A good enough model
does not waste any substantial amount of information available in the data. At the same
time, a good enough model does not extrapolate too far beyond the information available.
Finally, a good enough model must provide defensible inference with credible accuracy.

In the univariate and multivariate context, some strategies have been proposed to select a
good enough model ([6], [7], [8], [9]). For longitudinal data, Verbeke and Molenberghs
([10]) and Littell et al. ([11]) introduced some guidelines on building mixed models. In the
present paper, we suggest a systematic framework for building a good enough mixed model
for longitudinal data in practice, and then illustrate the strategy with analysis of real data.
Note that we do not review analytic approaches for longitudinal studies. For that
information, please refer to Verbeke and Molenberghs ([10]), Raudenbush ([12]), Collins
([13]), and Davidian ([14]). Instead, we focus on mixed effects models and give both an
overall strategic framework and practical advice for fitting these models.

The rest of the paper is organized as follows. In Section 2, we briefly introduce mixed
models. In Section 3, we give a systematic framework for building a mixed effects model. In
Section 4, we provide our practical advice for fitting mixed models so as to either avoid or
diagnose and correct problems. We illustrate the process in Section 5 with a summary of
results from a published study of alcohol use among adolescents. Finally, we close with
conclusions and a reprise of open questions.
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2. Mixed Effects Models
2.1. The Linear Mixed Model with Gaussian Errors

Using the notation of Muller and Stewart ([8]), with N independent sampling units (often
persons in practice), the linear mixed model for person i may be written as

(1)

where yi is a pi × 1 vector of observations on person i at the pi follow-up time points (the
baseline measurement is used as a covariate), Xi is a pi × q known, constant design matrix
for person i with full column rank q, while β is a q × 1 vector of unknown, constant,
population parameters (fixed effects, the same for all subjects). In addition to the fixed
effects as we see in ordinary linear models, the linear mixed effects model also includes
subject-specific random effects. Also Zi is a pi × m known, constant design matrix with rank
m for person i corresponding to the m × 1 vector of unknown random effects di, while ei is a
pi × 1 vector of unknown random errors. Gaussian di and ei are independent with mean 0
and

where (·) is the covariance operator, while Σdi(τd) and Σei(τe) are positive-definite,
symmetric m × m and pi × pi covariance matrices, respectively. Therefore the linear mixed
model (1) implies that the marginal distribution of yi is normal with mean Xiβ and variance
Σi = ZiΣdi (τd) Z′i + Σei (τe), and the conditional distribution of yi∣di is normal with mean Xiβ
+ Zidi and variance Σei(τe). We assume that Σi can be characterized by a finite set of
parameters represented by an r × 1 vector τ which consists of the unique parameters in τd
and τe.

2.2. The Generalized Linear Mixed Model
We describe a generalized linear mixed model (GLMM) with a (multivariate) normal
mixing distribution for the random effects. As noted by Tuerlinckx et al. ([15]), this is the
model most often applied in practice. For more details, see Breslow and Clayton ([16]) and
Tuerlinckx et al. ([15]). With N independent sampling units and conditionally on the random
effects di(m × 1), assume that the responses yij of yi are independent with density function
that is a member of the exponential family, i.e.,

for some functions a, b, and c. The conditional mean is E(yij∣di) = b′(θij) and conditional
variance is (yij∣di) = b″(θij)a(ϕ). Unlike the linear mixed model, the generalized linear
mixed model assumes a linear regression model on the conditional mean by a function

(2)
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where g(·) is referred to as a link function, e.g., logit link for binomial data and log link for
count data. β is a q × 1 vector of unknown fixed effect parameters, xij and zij are q × 1 and m
× 1 vectors of fixed and random effect explanatory variables. The m × 1 subject-specific
random effects di are assumed to be sampled from a multivariate normal distribution with
mean 0 and m × m covariance matrix Σdi(τd) that depends on a (r × 1) vector τd of unknown
variance components. The conditional variance can be written as (yij∣di) = ϕaij [E(yij∣di)],
where aij is a known constant.

2.3. Rationale Underlying Mixed Models
An ordinary linear model analysis assumes independence between any two observations.
However, two appealing design features, repeated measures and cluster sampling, both
create correlations among some observations and therefore require a more general model. In
longitudinal data (repeated measures over time), the assumption of independence between
two observations from different subjects typically remains valid when subjects are randomly
and individually selected from populations. In contrast, two observations from the same
subject will typically be correlated by sharing the same characteristics and therefore not
independent. In purely longitudinal studies, the subject defines the independent sampling
unit and the measurement of a particular subject at a particular time defines the
observational unit.

Cluster sampling often provides the best design for community-based and genetic research.
A study with subjects from many families and two or more subjects per family provides a
common and important example in which the family defines the independent sampling unit,
not the subject. In turn, with one measurement per subject, the subject defines the
observational unit. In a more complex design with each family member measured at two or
more times, the measurement at a single time for a single person defines the observational
unit, while the family again defines the independent sampling unit. Furthermore, in such
designs, we have observations from the same subject correlated and subjects from the same
family correlated, where subject and family are two levels of nested clusters. In Sections 3
and 4, we will focus on dealing with correlation due to one level of clustering. In Section 5,
we will discuss handling the correlation due to nested clusters with a real example.

Multivariate or mixed effects models are needed to account for the correlations among
groups of observations. Mixed effects models prove especially helpful for such data because
they allow accounting for and taking advantage of the structured patterns of correlation such
designs induce. In contrast to multivariate models, they also provide convenient modeling of
some types of missing or mis-timed data, repeated covariates, and heterogeneity between
groups. Multivariate models have advantages in ease of use, numerical stability, and
accuracy of inference (confidence intervals and hypothesis tests), at least in small samples.

Mixed effects models typically include both fixed (mean model) and random (covariance
model) effects and have become a primary method for longitudinal data analysis in order to
account for the within-subject or within-cluster correlation. Popular models include linear
mixed effects models (1) for normally distributed data, generalized linear mixed models (2)
for non-normal data (e.g., binomial, possion etc. exponential family), and nonlinear mixed
effects models for more general individual trajectories.

The coefficients for fixed effects (β) play the same role as the coefficients in ordinary
univariate regression models. They provide estimates of the average response in a group,
which is therefore a population-specific estimate (i.e., the same for all subjects in the group),
and is usually the primary interest for clinical trials and much epidemiologic and health
services research. The fixed effects can be most simply understood as defining the means for
a population and sub-groups defined by categorical variables. With continuous predictors
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such as age and weight, the fixed effects define the expected value (regression) function.
The methods and illustrations in the present paper all concentrate on the fixed effects.

Unlike ordinary regression models, in addition to the fixed effects, a mixed effects model
uses subject-specific random effects di to account for variance heterogeneity among
responses from different individuals as well as covariance pattern among responses within
an individual. The assumption of random selection of individuals from larger populations
leads to describing the subject-specific effects as random effects. Furthermore, the subject-
specific random effects are assumed to follow some distribution with a covariance structure
to account for the within-subject correlation. In some types of genetic research, especially in
breeding experiments, and other evaluations of the relative importance of sources of
variation, the random effects in the covariance model take center stage. However, even
when the covariance structure is not the primary interest, an appropriate covariance model is
essential to obtain valid inference for the fixed effects.

Mixed effects models can be viewed as a result of a two-stage analysis. For example, for a
linear mixed effects model, in the first stage, an appropriate function of predictors
approximates each observed longitudinal profile allowing subject-specific regression
coefficients:

where βi is a q × 1 vector of unknown subject-specific regression coefficients. In the second
stage, another model explains the observed variability between the subjects:

where Ki is a q × p matrix of known covariates. Note that Xi = ZiKi when we combine the
two stage models. When most variability among the measurements reflects between-subject
variability, the two-stage approach helps construct an appropriate mixed effects model. In
turn, when variability depends on predictors which change within-subject, such as time, a
valid mixed effects model requires an appropriate covariance structure for the residual in
addition to the covariance structure modeled through the random effects.

3. Overall Scientific Strategies
3.1. Overview of Strategies

In this section, we describe the framework of a systematic process for building a mixed
effects model. The overall strategies are the same as those for univariate models with
Gaussian errors described by Muller and Fetterman ([7]). One concern in the process of
model building is the type I error inflation from testing multiple models. We recommend
using either one of two approaches.

• Conduct separate exploratory and confirmatory analyses by using truly independent
multiple samples. Having data from two separate studies provides the best basis for
the approach. Alternately, the data from a single study may be randomly split into
two parts, one for exploratory analysis and another for confirmatory analysis.

• Completely specify limited tests and a testing sequence, and control type I error by
multiple comparison procedures.
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No matter which of the two overall approaches is chosen, we recommend five steps for the
model selection process.

1. Specify the maximum model to be considered.

2. Specify a criterion of goodness-of-fit of a model.

3. Specify a predictor selection strategy.

4. Conduct the analysis.

5. Evaluate the reliability of the model chosen.

Note that the five steps describe general strategies for model building and should be applied
to linear and nonlinear models including widely used univariate, multivariate, and mixed
effects models, for any type of response distribution. Muller and Fetterman ([7]) provided a
detailed exposition of the entire process in the context of univariate linear models with
Gaussian errors.

Any mixed effects model actually requires choosing two distinct models, one for the means,
and one for the covariances. We focus almost exclusively on selecting models for the fixed
effects, and hence the means of the response values. However, most of the principles apply
directly to building models of the covariance matrix as well. The dependence of accurate
inference for fixed effects on a valid covariance model implies an ideal approach of starting
from the maximum model for fixed and random effects.

3.2. Step 0: State the Scientific Goal and Model Space
Every scientific study starts with a question which implies a goal of finding new knowledge.
In the present paper, we focus on transforming the question “What is the best model?” to
“What is a good enough model?” The best model comes from some space of possible
models, perhaps ill-defined, perhaps well-defined. Starting from the scientific goal, jumping
completely over the processes of study design and data collection brings us to a particular
set of data and a specific question. A good enough model comes from the space of estimable
models for the data at hand, which define and limit the possible models and paths to the
scientific goal.

Despite the limitations of the data at hand, in some cases an inadequate or incorrect model
can often still be diagnosed. In subsequent sections we indirectly allude to a variety of
assumption diagnostics such as tests for non-independence, normality, homogeneity,
nonlinearity, and goodness of fit. Such diagnostics can allow, but not guarantee, discovering
that the maximum model we start with does not contain the correct model, even when the
correct model is not estimable with the available data. Joiner ([17]) gave interesting
examples.

At the end of the day, the risk of having missed the correct model must always be
considered in any model selection process. Sensible reporting will highlight the limitations
of the data. As a reader of a model selection report, one must always remember “caveat
emptor.”

3.3. Step 1: Specify the Maximum Model
The first step for building a good enough model is to specify the maximum model, the
model with the most covariates among all models considered. Subsequently any model
considered can be created by deleting variables from the maximum model. The process we
describe implicitly assumes that the maximum model contains a good enough model. More
strongly, the process appears to imply the maximum model contains the correct model.
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However, can we do good science even when it does not? We believe that following and
correctly interpreting the process described in subsequent sections will typically lead to
valid conclusions, even when the maximum model does not contain the correct model.

Correct interpretation requires clearly stating and discussing the implications of the
limitations of the data relative to the original scientific goal. For example, a new instrument
promises a quicker and more convenient way to measure Forced Vital Capacity (FVC,
maximum lung capacity), a measure of pulmonary function. A regression model predicting
the standard measurement from the new one would need to include age, gender, and other
health indicators, such as the presence of certain diseases. The limits of the sample
characteristics impose limits on the generalizability of the data in many ways. Including
only healthy males ages 18-30 in the sample limits the generality of the findings and the
ability to specify a model general enough to fit the entire population. More subtly, a sample
of FVC values from such a restricted population will typically be judged to follow a
Gaussian distribution, while a sample from a sufficiently wide range of ages will be better
modeled as log-normal (arguably the correct model). In such cases conscientious use of
sensitivity analysis, especially assumption diagnostics such as outlier and heterogeneity
evaluation, can identify many kinds of wrongness in a model. Assessing the value of adding
polynomial terms provides an important tool for assessing validity of the linearity
assumption, and hence whether the maximum model contains the correct model. Joiner
([17]) described diagnostic strategies for discovering the presence of lurking variables, i.e.
variables that matter that are not included in the analysis. Even if the assumption diagnostics
do not highlight problems, poor fit (such as low R2) will still emphasize the possibility of the
correct model not being contained in the maximum model.

The selection of the maximum model depends on both statistical considerations and
scientific considerations in the specific area. If from the scientific point of view some
predictors play important roles relative to the outcomes, then the predictors should be
included in the maximum model no matter whether they are statistically significant or not in
the model with the current data. From the statistical point of view, one could choose a large
maximum model to avoid omitting a significant variable (avoid any Type II errors) and
therefore maximize validity and predictive power. Alternately, one could choose a small
maximum model to avoid including a nonsignificant variable (avoid any Type I errors) and
therefore maximize reliability and parsimony while avoiding collinearity.

3.4. Step 2: Specify a Model Selection Criterion
3.4.1. Single-Model Criteria—The second step for building a good enough model is to
specify a model selection criterion. In practice, the coefficient of multiple determination R2

is often used to measure the overall goodness-of-fit of an ordinary multiple linear regression
model. The larger R2, the better the model fits the data.

For linear mixed models fitted with the two-stage approach, a subject-specific coefficient of
multiple determination , i ∈ {1, 2, …, N}, can be used to assess the goodness of a first-
stage linear model to the observed longitudinal profiles, where .
Verbeke and Molenberghs ([10]) suggested using scatter plots of the  values versus the
number of repeated measurements pi to summarize the , i ∈ {1, 2, …, N}, and assess the
goodness-of-fit of the model. Ideally, all  should be large, say ≥ 0.75. If the scatter plot of
subject-specific values of  versus the pi shows that many 's are small, then one may
consider a different first-stage model, e.g., change a linear to quadratic model.
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One might also use an overall measure to assess the goodness-of-fit of a first-stage linear

model:  ([10]). This measure indicates what
proportion of the total within-subject variability can be explained by the first-stage linear
model ([10]).

A better overall statistic was suggested by Edwards et al. ([18]). They developed a model R2

statistic for the linear mixed model based on an appropriate F statistic. The R2 statistic
measures multivariate association between the repeatedly measured outcome and the fixed
effects and assesses the goodness-of-fit of the fixed effects model (the means model).

3.4.2. Multiple Models Comparison Criteria—In practice, everyone prefers a simple
model which fits the data well. Therefore, in addition to assessing the goodness-of-fit of a
single model, we often compare different models to see if a simpler model fits the data
nearly as well. Three types of mixed model comparisons can occur. 1) Compare mean
models with the same covariance structure. Nested mean models are the most common. 2)
Compare covariance models with the same mean structure. Two mixed models may be
nested or non-nested in their covariance models. 3) Compare mixed models with different
mean and different covariance structures. When addressing fixed effects (mean model), we
compare nested mean models with the same covariance structure. When addressing random
effects (covariance structure), we recommend comparing covariance models with the same
mean structure.

The most common comparison involves two nested models with the reduced model nested
in the larger model. The two models differ only by the deletion of variables from the larger
model, either explicitly or implicitly (through the imposition of constraints on the larger
model). When parameters of the two models are estimated with the maximum likelihood
(ML) method, a likelihood ratio (LR) test can be used to compare the reduced model to the
larger model. With Lj the log likelihood for model j, the LR test statistic T = −2(L1 − L2)
asymptotically follows and therefore is referred to a  distribution, where d is the
difference in the number of parameters between two models.

Alternatively, models can be fit by restricted maximum likelihood (REML), which is used in
estimating covariance components by maximizing the likelihood function of a set of error
contrasts (instead of maximizing the likelihood function of the data) to account for the loss
of the degrees of freedom involved in the estimation of fixed effects. In contrast to ML
estimation, when models are fit by REML, changing the fixed effects of the model lead to a
different design matrices X and hence different error contrasts. Consequently, the
corresponding REML likelihood functions are based on different observations and are not
comparable. Therefore the difference in -2 restricted maximum log likelihood values
between nested fixed effects models does not give a valid likelihood ratio test ([11]).
Instead, alternative tests ([19]) should be used for testing nested mean structures (fixed
effects) when REML is used for the model fitting.

In contrast to comparing nested mean models, when comparing nested models with different
covariance structures but the same mean structure (fixed effects), the REML likelihood
functions from the two models are comparable because the same mean structure leads to the
same error contrasts. Consequently a valid LR test can be obtained with the REML approach
when comparing nested covariance structures where the true values of covariance
parameters are not on the boundary of the parameter space.

Another situation in which a classical likelihood ratio test cannot be used with either ML or
REML estimation arises in some tests about covariance structure against zero. When testing
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the variance components against zero, the true values (0) of parameters under the null
hypothesis are on the boundary of the parameter space. Consequently the LR test statistic
under the null does not follow a chi-squared distribution asymptotically but often follows a
mixture of chi-squared distributions ([20], [21]). It therefore can not be referred to a χ2

distribution for the p value. Instead, in the simple case of testing s versus s + 1 random
effects, the p-value can be computed as an average of p values with respect to  and .
Stram and Lee ([22], [23]) provided a detailed discussion for more complicated cases.

Various information criteria have been proposed as alternatives to likelihood ratio tests in
selecting models, especially when the models to be compared are not nested such that one
cannot use a likelihood ratio test to compare them as we discussed above. The main idea
behind the information criteria is to compare models with their maximized log likelihood
values but to penalize for the use of too many parameters. The model with the smaller
information criterion is usually preferred. However, note that information criteria only
provide some guidelines to compare models and should not be used as formal statistical tests
of significance. Two commonly used information criteria are Akaike's ([24]) and Schwarz's
([25]) criteria. Akaike's information criterion (AIC) is more conservative and tends to
choose more complex models than Schwarz's Bayesian information criterion (BIC) ([26]).
Therefore, AIC is preferable if Type I error control is the highest priority, but BIC is
preferable if one would like to attain a higher power. The finite-population corrected AIC
(AICC, [27]) seeks a compromise between AIC and BIC in terms of loss of power. We
agree with Morrell et al ([28]) who stated “The best way to select among linear mixed-
effects models based on various information criteria is still not clearly determined.” In a
similar vein, Wang and Schaalje ([29]) observed that in their evaluations “Characteristics of
the data, such as the covariance structure, parameter values, and sample size, greatly
impacted performance of various model selection criteria. No one criterion was consistently
better than the others.”

3.5. Step 3: Specify a Predictor Selection Strategy
The third step for building a good enough model is to specify a predictor selection strategy.
Predictor selection strategies include:

• All possible regressions strategy, which requires fitting all possible models and
therefore provides the most thorough approach for exploratory model selection.
However, the computational burden is its primary disadvantage and challenge.

• Backward elimination, which begins with the maximum model and delete variables
of no value.

• Forward selection, which begins with the simplest model and adds variables of
most value.

• Stepwise, which begins with a forward selection step and allows a deletion step
after each addition.

We note that in mixed models, unlike in ordinary linear models, the outcome of the predictor
selection strategy also depends on covariance structure used. Therefore, finding a good
enough covariance model is important for the model selection of the fixed effects. Section 4
provides practical advice on selection of predictors and covariance structures. As for
expected value (fixed effect) estimation, overfitting yields unbiased estimates, although it
loses a few degrees of freedom. However, underfitting can create severe bias which does not
diminish with increased sample size. Therefore, among strategies, we recommend beginning
with the maximum model and then conducting backward elimination to delete variables of
no value. Nilsson et al ([30]) showed that backward elimination is consistent given any
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strictly positive (nonzero) distribution for covariates. The assumption of strictly positive
distribution for covariates is considered reasonable whenever there is uncertainty about the
data, i.e., data is obtained with noise ([31]). It should be emphasized that the statistical tests
commonly used in mixed models (F, t-test) are all approximate. Hence, caution should be
the rule when assessing effects that may be marginal. In addition to statistical
considerations, scientific considerations should also play an important role in the predictor
selection. If some predictors are important from a scientific point of view, then they should
be kept in the model even though they are not statistically significant with the current data.

3.6. Step 4: Conduct the Analysis
After we define the maximum model and have chosen our criteria for model reduction, we
are ready to conduct the analysis. In the process of the analysis, collinearity should be
assessed and eliminated from models. In addition, assumption diagnostics and influence
diagnostics should be performed to check the validity of the model assumptions and the
impact of individual observations on the analysis. These diagnostics are often helpful in
model selection. In Section 4, we will provide more detailed and practical advice on
collinearity and diagnostics. Muller and Fetterman ([7]) provided advice on issues for
ordinary linear models. Their strategies are also helpful for mixed effects models.

3.7. Step 5: Evaluate the Reliability
Once the final model is selected, we would like to evaluate whether the model holds when
being applied to a new sample (since we are often interested in predicting the outcome for a
new sample). We suggest using a split-sample analysis to evaluate the reliability. That is,
before the analysis begins, we randomly split subjects to either the training data for
exploratory analyses or the holdout data for evaluation of reliability, where all observations
for a given subject will be in the training data or the holdout data. All exploratory analysis is
restricted to the training sample, while the holdout sample is reserved and not used in any
way during the exploratory phase. The holdout data are retained for subsequent use in
confirming and validating the initial analysis. The process must be distinguished from what
some statisticians and scientists describe as a “cross-validation” in which the data are
recombined and the splitting and analysis process is repeated. The splitting process must be
statistically independent of the response or outcome values but could be stratified with
covariate values.

After the splitting, we perform the following procedures. Note that each subject has several
outcome observations over time in a longitudinal study. Therefore, in the following
procedure we recommend using the overall R2 proposed by Edwards et al. ([18]) as a
measure of the squared correlation between the observed and predicted outcomes in linear
mixed models. For generalized mixed models, we recommend using the Euclidean distance
between the observed and predicted outcomes to replace the squared correlation discussed
below.

I. Conduct exploratory analyses on the training data based on Steps 1-4 and select an
exploratory model.

II. Apply the exploratory model obtained from the training data to the holdout data,
and then compute corresponding statistics with the holdout data and compare them
with statistics computed with the training data.

– For the training data, compute the squared correlation between the observed
outcomes and the predicted outcomes based on the model selected in Step I
from the training data.
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– For the holdout data, compute the corresponding statistic (called the squared
cross-validation correlation) between the observed outcomes and the predicted
outcomes based on the model selected in Step I from the training data.

– Compare the squared correlation from the training data and the squared
cross-validation correlation from the holdout data. The difference between
these two correlations is called shrinkage on cross-validation. The closer the
two correlations are, and therefore the smaller the shrinkage the better,
indicating a higher reliability of the model.

III. Combine training and holdout data and conduct regression diagnostics on the
pooled data.

– If shrinkage is small (i.e., reliability is high), pool the training and holdout
data to provide the best available estimates of parameters and diagnostics.

– If shrinkage is poor, pool the data to conduct a second-round exploratory
analysis and overall diagnostics.

IV. Report the results. This includes all results in steps I, II and III, including any
failure to cross-validate and subsequent reanalysis.

In this section, we gave a framework and strategy on fitting a good general model. In the
next section, we will give specific and practical advice on fitting a good enough mixed
model, including how to construct mean and covariance structures, how to diagnose and
treat for collinearity and model assumptions, and how to help model convergence.

4. Practical Advice
4.1. Diagnostics and Treatments for Collinearity, Convergence, Computing Speed, and
Numerical Accuracy

For an otherwise valid model, many important statistical properties are not affected by
collinearity. Examples include error variance and correlation estimates in an otherwise valid
univariate model, and the distributions of residuals. However, collinearity does affect
estimation and inference for the primary parameters, causes a loss of power, and makes
interpretation far more difficult. When there is collinearity, the estimates of regression
coefficients are unstable and imprecise, iterative programs are less likely to converge or will
take longer to converge, results can depend on the listing order of variables, and adding or
dropping a few cases may greatly change estimates of coefficients. Therefore we
recommend avoiding collinearity in fitting models by scaling (e.g., use 1 – 2 meters for
height rather than 100 – 200 centimeters) and mean centering (i.e., use X − X̄ rather than X)
or roughly centering predictors (not exact mean centering but subtracting some “nice”
number to simplify interpretation). Centering and scaling can substantially reduce
collinearity. It would be hard to overemphasize the value in practice of the simple strategies
of centering and scaling as a first step in improving convergence, computing speed and
numerical accuracy.

With well-centered and scaled data, replacing less-than-full-rank coding for predictor
variables with full rank coding can greatly improve convergence, computing speed, and
numerical accuracy. Furthermore, using full rank coding also helps in reducing collinearity
and hence improve interpretability and statistical reliability. In full rank coding schemes, the
number of columns of the design matrix in the model equals its rank, and the columns of the
design matrix are linearly independent of one another. The full rank coding schemes include
cell-mean coding (i.e., create G indicator variables for G groups and do not create an
intercept), reference-cell coding (i.e., create an “intercept” and G − 1 indicator variables for
G groups, where indicator variables take values 0 or 1) or effect coding (i.e., create an
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“intercept” and G − 1 variables for G groups, but those G − 1 variables take values of −1, 0
and 1). For example, suppose we have 4 groups A, B, C, and D. Then, in the cell-mean
coding scheme, we will not create an intercept but have 4 indicators A, B, C and D to
indicate the group membership, where one observation takes the value 1 if it belongs to the
group and 0 otherwise. In the reference-cell coding scheme, we will have one intercept (for
the reference group A) and 3 indicators for B, C and D, where observations in group A will
take the value 0 for all the indicators B, C and D. Effect coding differs from reference cell
coding only by setting the 0 values to -1 only for all observations in group A, for indicator
variables B, C, and D. Muller and Fetterman ([7]) gave more detailed information on
different coding schemes.

Compared to ordinary linear regression, collinearity in mixed models may stem from either
the fixed or random effects. Stinnett ([32]) had a detailed discussion of diagnostics and
treatments of collinearity in mixed models to avoid inflated variances of covariates'
coefficients in fixed effects. For that purpose, Stinnett ([32]) suggested assessing collinearity
after the estimation of model parameters because the variances of the coefficients involve
the covariance structure.

In this paper, we provide advice on collinearity which can be easily implemented and
addresses the problem reasonably in practice. Basically collinearity is a problem among
predictors, so it is reasonable in practice (although not necessarily perfect) to assess
collinearity among predictors in ordinary regression models and software separately from
fitting mixed models. As discussed by Muller and Fetterman ([7]) in Chapter 8, all widely
used measures of collinearity are functions of the design matrix, X, through the cross-
products matrix SSCP = X′ X or the corresponding covariance or correlation matrix (among
predictors). A condition index (CI) can be computed from ratios of eigenvalues for any of
the three cross-product matrices (SSCP, covariance, correlation), while corresponding
eigenvectors provide variance decomposition information to identify problem predictors.
When it exists, the inverse correlation matrix has diagonal elements known as variance

inflation factors, (VIFj), with  and  is the squared correlation of predictor j
with the remaining q − 1 predictors (q − 2 if the design matrix X includes an intercept). The

value of  is often called the tolerance. Condition indices (CI) of 5 to 10, 30 to 100,
and > 100 suggest weak, moderate to strong, and serious dependencies, respectively ([33])
(Appendix A1 provides the SAS code). In practice, the tolerance or variance inflation factor
(VIF) is useful in detecting overall collinearity problems and can be easily obtained from
most standard software (Appendix A1 provides the SAS code). Usually a small tolerance (<
0.1) or high VIF (> 10) indicates a collinearity. However, the validity of the evaluation
depends on the ability to accurately compute the VIF values, which becomes impossible if
collinearity increases sufficiently. Hence we recommend first examining the less-
commonly-used condition indices because they always exist and can usually be computed
accurately even with extreme collinearity.

When collinearity is diagnosed, common treatments for it include eliminating predictors
with near-zero variance, eliminating redundant variables, redefining or combining variables,
and using cell-mean coding, reference-cell coding or effect coding. Effect coding provides
the best choice for controlling collinearity among the coding schemes ([7]).

4.2. Selection of a Preliminary Mean Structure, Random-Effects Structure, and Correlation
Structure

4.2.1. Overall Approach—As discussed above, although the mean structure (the fixed
effects) is usually of primary interest, an appropriate covariance model is important to obtain
valid inferences for the fixed effect parameters. Therefore, unlike ordinary regression
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models, fitting mixed models implies that both an appropriate mean structure and covariance
structure need to be specified. As we discussed in the five steps in Section 3, like ordinary
regression models, we recommend starting with a maximum model in both fixed and
random components and deleting redundant terms to avoid underfitting bias. In addition,
guidelines for fitting classical regression models should be applied to mixed models too. For
example, all hierarchically inferior terms should be included if a higher order effect is
included.

4.2.2. Selection of a Preliminary Mean Structure—The selection of covariates in the
fixed effects is the same process as the selection of predictors in ordinary regression models,
and therefore is based on both scientific and statistical considerations. Variables considered
to be important from the scientific point of view should be included as covariates in the
mean structure. In contrast to ordinary regression models, for longitudinal data we also need
to decide what functions of time should be included in the mean structure model. The
science of the situation will imply the order of the model likely needed. For example, a
plausible model of child growth may require up to a cubic polynomial or restricted cubic
splines to account for an initial level, a growth phase, and a plateau. It is most important at
the preliminary stage to avoid specifying a model that is too small and therefore does not
contain the correct model. The later stages of model fitting allow for reducing the model to
the simplest that suffices. Either planned step down tests or thorough exploratory analysis,
such as plots of smoothed average trend or individual profiles over time, may be used,
depending on the strategy selected (i.e., confirmatory or exploratory). For example, if the
smoothed average trend or individual profiles suggest modeling the outcome as a quadratic
function over time, then an intercept and both a linear and quadratic time effect (time, time2)
should be included in the mean structure. If we do not want to make any assumptions about
the shape of the curve, time may be included as a categorical predictor in the fixed random
effects.

4.2.3. Selection of a Random-Effects Structure and Correlation Structure—In
parallel to defining the fixed effects model, a random effects model must be chosen to define
a covariance model. After we decide the fixed effects, we need to select a set of random
effects to be included in the model. We agree with Verbeke and Molenberghs ([10]) who
wrote “Note that random effects for time-independent covariates can be interpreted as
subject-specific corrections to the overall mean structure. This makes them hard to
distinguish from random intercepts. Therefore, one often includes random intercepts, and
random effects only for time-varying covariates.” In the selection of random effects for
time-varying covariates, we usually only consider time-varying covariates which have been
included in the fixed effects (mean structure).

During the actual data analysis, as discussed in subsequent sections, a plot of the ordinary
least squares (OLS) residual profiles versus time is helpful for the selection of random
effects during exploratory model fitting. For example, if the plot shows constant variability
over time, then only random intercepts are included; while if the plot suggests some straight
lines, then random intercepts and random slopes for time are both included (see Section 5
for illustration with an example). For other random effects, Verbeke and Molenberghs ([10])
suggested an informal check for the appropriateness of the selected random effects in
Section 9.3.

Next, we need to select an appropriate covariance or correlation structure for the model to
account for the correlation among measurements. In thinking of the response variable's
marginal covariance structure, the overall structure Σi is the sum of the random effects
portion ZiΣdi (τd) Z′i and the residual error portion Σei(τe). In cases when the variability in
the measurements cannot be completely modeled by the random effects, we use both
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random effects and residual errors to describe the covariance structure. However, in practice,
it is often efficient to use one of two common ways to model the covariance or correlation
structure: 1) Model the covariance structure only through the random effects (use the
Random statement in SAS Proc Mixed or Proc Glimmix) and assume conditional
independence of the residuals, i.e., given the random effects, the covariance for the residuals
is given by an unknown scalar (variance) multiplied by an identity matrix; 2) Do not include
random effects but model the covariance structure only through the residual errors (use the
Repeated statement in SAS Proc Mixed or Proc Glimmix). However, the latter approach
technically would no longer qualify as a mixed effects model. Commonly used covariance
structures through the random effects include compound symmetry (CS) for constant
correlation between any pair of repeated measurements, first-order autoregressive (AR(1))
for stronger correlation among adjacent measurements, and general unstructured (UN)
covariance model for nonspecific correlation among measurements. Verbeke and
Molenberghs ([10]) discussed specific residual covariance structures.

Note that when we use both random effects and residual errors (use both Random and
Repeated statements in SAS Proc Mixed or Proc Glimmix) to describe the covariance
structure, the components typically do not add up to some known covariance structure. For
example, an unstructured random effects covariance (say for a random intercept and slope)
and an AR(1) residual error covariance leads to a covariance of the response that is not
structured in the way that we speak of above. With repeated measures, it is often appropriate
to assume a relatively simple random effects structure for covariance and a more complex
structure for the residual error covariance. If we do not want to make any assumptions about
the shape of the curve, time may be included as a categorical predictor in the fixed and
random effects, which corresponds exactly to a fully saturated polynomial design matrix in
time. In such cases, a wide range of covariance structures has appeal, especially unstructured
patterns.

Similar to the selection of fixed effects, the evaluation of covariance structure should depend
on scientific knowledge in the specific area as well as statistical criteria. Covariance
structures inconsistent with the context of the data should be ruled out. However, due to the
need to use iterative procedures for computing estimates, convergence can become an issue.
In most cases, when a mixed model algorithm does not converge, it is typically assumed to
be due to difficulties with estimation of the covariance parameters. However, our experience
leads us to believe that many, and perhaps most, such difficulties disappear with careful use
of 1) centering, 2) scaling, 3) full-rank coding, and 4) collinearity removal for predictors in
both X and Z.

In the context of analysis planning, the logic of the sampling plan typically suggests a
particular class of covariance structures. In contrast, in the context of data analysis, as
distinct from analysis planning, the data in hand may not support the logically obvious
structure. It would be ideal to rule out covariance structures inconsistent with the data. In
practice most analysts chose to simplify the covariance structure to achieve convergence,
which leads to the risk of underfitting and the consequent risk of biased inference. The
estimated covariance and correlation matrices and plots of individual profiles can help
identify any systematic covariance structure. Without obvious systematic structure, one
usual approach is to start with a general unstructured covariance structure, and then fit the
same model again with a simpler covariance structure, e.g., compound symmetry, and
compare the two models with difference in likelihoods and information criteria.

Current statistical practice appears to center on avoiding the problem by simplifying the
covariance model. We urge the reader faced with the problem to consider a three step
response. First, step back to recheck scaling, centering, and collinearity, and examine the
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patterns of missing and mistimed data. The collinearity check must be based on full-rank
coding with the dummy variables for the categorical predictors included in the design
matrix. Second, if necessary, modify the data (which may lead to simplifying the model) as
needed to improve convergence and try again. Third, when compelled to fit a reduced
covariance model (inconsistent with the planned structure) include explicit discussion of the
risks to accurate inference (due to inaccurate estimates of variances) in any report of the
analysis.

The choice of covariance model can lead to difficulties in a variety of ways. Although we
favor including more rather than fewer fixed and random effects, it should be noted that
overfitted models may result in divergence of the maximization procedure. Some mixed
model analyses, especially in small samples, can give inflated type I error rates and
confidence intervals that are too narrow. The problem could be due to any combination of an
insufficiently complex and untested (and therefore not credible) covariance structure,
insufficient data for the scientific goal, an inadequate model selected for fitting, inadequate
knowledge about covariance structures when using mixed model software, and
computationally fragile software.

4.3. Assumption Diagnostics
In the selection of mixed models, validity of the model assumptions should be checked with
the maximum model and reduced models. The nature of mixed models requires some special
thinking about assumptions, but need not require much more work. We suspect many
neglect checking assumptions due to assuming that distinct and special methods must be
used. Below we sketch examples which demonstrate that for linear mixed models with
Gaussian errors the better-known tools from univariate models can be applied to great effect.

For linear mixed effects models, assumptions of normality, linearity and variance
homogeneity should be assessed with residuals. Note that one persistent error in data
analysis is using raw data rather than residuals to assess distribution assumptions. There are
two kinds of residuals in a mixed model. One is a marginal residual, which is a deviation of
a person from group mean; another is a conditional residual, which is a deviation of one
measurement within person from the mean of that person over time. Although both residuals
are useful, one needs only test normality with marginal residuals ([34]).

A jacknifed studentized residual involves the difference between a subject's observed
outcome value and his/her predicted value based on the data set in which that case is deleted.
It has some nice properties, e.g., it exactly follows a t distribution and its distribution
corresponds to the distribution of a predicted future observation (see [24] for detailed
discussions). Therefore, we recommend using jackknifed studentized residual histograms
and box plots, and scatter plots of jackknifed studentized residuals versus predicted values
over time to help the assessment. If the plots suggest some problem of non-normality and
heterogeneity, then one should consider transformations like the Box-Cox transformation as
generalized to the mixed model by Gurka et al. ([34]), or use generalized mixed models or
heterogeneity models if necessary. If linearity is a problem, then try to find useful predictors
and transformations, or use nonlinear models if necessary.

4.4. Improve Convergence
When fitting mixed models, one may have problems getting the model to converge. There
are many reasons for a model failing to converge, including too small a sample, the presence
of collinearity (which may reflect any combination of poor centering, scaling, or dummy
coding), a correctable mistake in the choice of error distribution, and a complicated
covariance structure like high-dimensional random effects with an unconstrained covariance
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structure. However, as stated previously, in most cases with good centering, scaling, coding
and limited collinearity, when a mixed model algorithm does not converge, it is due to
estimation of the covariance parameters.

When the maximization procedure diverges, one can first try some computational treatments
like increasing the maximum iterations, changing the parameter convergence values for
step-halvings, the singularity tolerance value, or the number of scoring steps. If they do not
help, one can try simplifying the data by rounding time to the largest units which have
reasonable scientific meaning (e.g., use monthly data instead of weekly data), or use
neighborhood averages. Without violating credibility, one can also simplify the mean
structure and covariance structure of the model by removing redundant variables, avoiding
high order terms, or selecting a simpler covariance structure (while recognizing the risks of
underfitting).

4.5. Recommendations
Finally, we would like to give some overall recommendations as follows in selecting a good
enough mixed model.

• Plan, assess, and report analysis openly.

• Plan backwards by considering the following steps:

– What are the research goals?

– What is the outcome distribution?

– Start with the maximum model by selecting an adequate preliminary mean
structure and random-effects structure.

– Implement model reduction.

– Select the final model and do final analysis.

– Conduct diagnostics.

– Report results.

• Avoid, assess and eliminate collinearity.

• Check assumptions carefully.

• Specify and evaluate a credible covariance model.

• Use transformations and non-Gaussian forms, e.g., use models for a non-Gaussian
exponential family.

• Fit models backwards.

• Provide all details of what you actually did in the written report.

5. A Real Example
5.1. Overview of the Real Example

In this section, we will use a real example to illustrate the strategies discussed in this paper.
The data are from a group-randomized controlled trial (N = 5, 812) of a multicomponent
alcohol preventive intervention for multi-ethnic urban youth, called Project Northland
Chicago ([35], [36], [37]). Sixty one public schools in Chicago that included grades 6th

through 8th were matched on ethnicity, poverty, mobility, reading, and math test scores and
randomly assigned to either the intervention or control group. The intervention was to have
teachers, peer-leaders, parents and community members collaborate with students to prevent
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alcohol drinking. Students were followed at 0.5, 1.5, and 2.5 years after enrollment. For
illustrative purposes, in this paper we focus on the association of covariates with alcohol use
in last 30 days assessed with item “During the last 30 days, on how many occasions, or
times, have you had alcoholic beverages to drink?” The subsample for the present study
comprised 1, 388 students from 34 schools and their parents who were present at baseline
and were part of the control group. A substantive application of this example can be found in
Komro et al. ([37]). Tables I and II show the baseline characteristics and outcome
distributions at baseline and three follow-up times.

5.2. Model the Outcome as a Continuous Variable?
The outcome of interest is alcohol use in the last 30 days at 0.5, 1.5, and 2.5 years after
enrollment, for which one common way to model is to treat it as a continuous outcome
(number of occasions in last 30 days). In this subsection, we will treat the outcome as a
continuous variable and fit a linear mixed effects model to the data, then conduct diagnostics
to examine the validity of the model assumptions. Sections 5.2 and 5.3 will show model
fitting on transformed outcomes.

Based on scientific considerations, the outcome at baseline and 21 variables were included
as covariates in the maximum model, including characteristics of subjects and alcohol access
variables (Table I and [37] have detailed information).

After checking and adjusting scaling of the data, to avoid collinearity, we fitted a linear
regression model on the outcome with the 21 covariates and then conducted collinearity
diagnostics on them (Appendix A1 provides the SAS code). Since the tolerances were
relatively small for the model, we deleted four variables based on scientific understandings
on the problem. This study was conducted in homogenous low SES communities. The
variables “Language spoken most often at home”, “Time lived in US”, and “Receive
reduced-price lunch” were highly correlated with race, and the variable “Done things to
make home access more difficult” was highly correlated with another variable “How hard to
get alcohol from home”, so we only kept the variables “Race” and “How hard to get alcohol
from home” but deleted four other variables to avoid collinearity. Furthermore, we
recentered variables “age at baseline” and “parental monitoring scale” by subtracting their
approximate means 12 and 32 respectively; therefore, we included in the model “age at
baseline–12” and “parental monitoring–32”. As discussed previously, we suggest including
more fixed effects rather than fewer to build a model based on both statistical and scientific
considerations. Therefore, all other variables, which were all scientifically important to and
measured different components of factors in alcohol use were included as covariates in the
mean structure model. To explore how to model the outcome over time as a fixed effect, we
plotted the average number of alcohol uses in the last 30 days versus time (Appendix A2
provides the SAS code). Figure 1 shows that after baseline, the outcome increases
approximately linearly over time, indicating that modeling the outcome as a linear function
over time in addition to including the baseline as a covariate in the mean structure model is
appropriate for the data.

After the exploratory selection of fixed effects, to select random effects we restricted our
attention to variables already included in the fixed effects/mean structure model. In this
study the only time-varying variable is time itself. To choose appropriate random effects for
time, we plotted residual profiles versus time in Figure 2 (Appendix A3 has the SAS code),
which used jackknifed studentized residuals discussed in Section 4.3. From Figure 2, we see
constant variability over time, indicating that no random effect is needed to account for
variability over time and therefore it is appropriate to include random intercepts only. In
addition, since students were nested within schools, we specified schools as a nested random
effect to account for the design effect. Including random effects for other time-independent
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variables is not of interest in this paper, so no other random effects were included. To select
a covariance structure, we started with a general unstructured covariance matrix to avoid
problems due to an inappropriate covariance structure. The linear mixed effects model was
fitted with the mean structure and covariance structure discussed using SAS (Appendix A4
provides the SAS code).

We next needed to check the validity of the model assumptions. We used the marginal
residuals to assess the normality assumption with the data. The jackknifed studentized
residual histograms over time are skewed (Figure 3 shows the histogram at 1.5 years for
illustration) and the Kolmogorov-Smirnov normality test on the residuals gave a value of D
= 0.315 (p < 0.01), indicating that there is a strong evidence that the normality assumption
does not hold for the data.

5.3. Model the Outcome Transformed?
Because of invalidity of the normality assumption, we tried several transformations of the
outcome, including square root, log and Box-Cox transformations with power from 2 to 16.
With each transformed outcome, we refitted a linear mixed effects model with the same
mean and covariance structures as the model in Section 5.1. However, with all the
transformed outcomes, the jackknifed studentized residual histogram and normality test still
indicated that the normality assumption does not hold.

Alternatively, one can try a two-part (mixture) model, in which one component models the
probability of any alcohol use and another component models the amount of alcohol use
given that a student uses some alcohol. In this example, very few students had alcohol use
for more than 3 – 5 occasions in the last 30 days (see Table II), which requires a more
complex model in the longitudinal setting for the second component. Furthermore,
interestingly, two residual plots (Figures 4 and 5) from the linear mixed effects model with
the Box-Cox (power = 16) transformed outcome show an obvious pattern of two modes,
indicating that recoding the outcome as a binary variable could be appropriate. The scientific
focus of the work led the collaborators to choose the simpler route of focusing on the
outcome as a binary variable.

5.4. Model the Outcome as a Binary Variable
Since the normality assumption failed with both original and transformed outcomes, and
Figures 4 and 5 show a pattern of two modes, we decided to transform the outcome to a
binary variable. This transformation is scientifically meaningful for this study. We let the
outcome be “0” indicating no alcohol use in the last 30 days and “1” otherwise.

One choice for a longitudinal binary outcome models population averages and finds
estimates by solving generalized estimating equations (GEE) ([38]). The second approach
uses generalized linear mixed model which includes a subject-specific component as well as
mean value of individuals. When one is interested in what happens “on average” in the
population, the population-averaged model is preferred; when the “typical” (mean) value of
individuals in the population and/or between-subject heterogeneity are of interest, then the
subject-specific model is desired. Given our focus on how to build a good enough mixed
model, we would not have a comparison between the applications of the two approaches in
this example.

We fitted a generalized linear mixed effect model for the recoded binary outcome with the
same mean and covariance structures used in Section 5.1 (Appendix A5 contains the SAS
code for Proc Glimmix). The process of selecting random effects was the same as in the
linear mixed model. We started with an unstructured covariance structure and then
compared the fit of several other covariance structures via comparison of likelihoods and
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information criteria. Finally an unstructured covariance structure was selected because of a
substantial reduction in the likelihood when compared with any other covariance structures.
Since the purpose of this example was not to find the most reduced model, we ended with
this final model, which converged quickly. To find a reduced model, one can delete
variables with the biggest p values and variables that are not important from the scientific
point of view and proceed to fit generalized linear models by testing the difference in log
likelihoods. We also wished to avoid the burden of demonstrating replicable results needed
for any extensive model reduction process.

The estimates and standard errors of coefficients and the odds ratio (OR) and 95%
confidence interval (CI) for each covariate were computed with the fitted model (see Table
III). The results show that past month alcohol use significantly increased over time (P <
0.001, OR = 1.80 (1.61, 2.02)) and age (P < 0.01, OR = 1.37 (1.09, 1.72)). Overall, 19% of
students reported having access to alcohol at home and students who reported any access to
alcohol from home or from their parents had a significantly increased trajectory of past
month alcohol use, OR = 2.3 (1.75, 2.97). A detailed discussion of these results can be found
in Komro et al. ([37]).

6. Conclusions
In practice, investigators often ask how to build a good enough mixed effects model. We
described a systematic step-by-step strategy including practical advice for achieving success.
The advice we provide is convenient and easy to implement in practice with available mixed
model procedures in software such as SAS, SPSS, SPLUS/R, STATA, and others.
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APPENDIX: SAS code used in fitting models in the real example

*A1: Collinearity diagnostics with linear regression
proc reg data=ONE;

model Y = Ybaseline Time X1 X2 …/ collin tol vif; *Output collinearity, tolerance and
VIF

run;quit;

*A2: Plot the average outcome over time for the selection of fixed effects
for time

proc means data=ONE mean;

var Y; by time;

output out=Yout mean=avg_Y;
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run;

symbol i=join color=black r=38;

proc gplot data=Yout;

plot avg_Y*time/nolegend vminor=1 hminor=0;

run;quit;

*A3: Plot the OSL residuals over time for the selection of random effects for
time

proc reg data=ONE;

model Y=Ybaseline Time X1 X2 …

output out=resdout rstudent=r_i_Y; *Output Jacknifed studentized residuals

run;

proc gplot data=resdout;

plot r_i_Y*time;

run;quit;

*A4: Fit a linear mixed effect model and check residual plots
proc mixed data=ONE noclprint maxiter=200 covtest;

class CLUSTER TIM ID;

model Y=Ybaseline Time X1 X2 … /s outp=RES_Y residual;

random INT / SUBJECT=CLUSTER;

repeated tim /type=UN SUBJECT=ID(CLUSTER);

run;quit;

*To check residual plots

proc univariate data=RES_Y normaltest;

var StudentResid;

by Time;

histogram;run;

proc gplot data=RES_Y;

plot pred*StudentResid;

by Time;

run; quit;

*A5: Fit a generalized linear mixed effect model
proc glimmix data=ONE;

class CLUSTER TIM ID;

model Y=Ybaseline Time X1 X2 … /s dist=binomial or outp=RES_Y residual;
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random INT / SUBJECT=CLUSTER;

random tim /type=UN SUBJECT=ID(CLUSTER);

run;quit;
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Figure 1.
The average number of alcohol use in the last 30 days over time.
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Figure 2.
The OLS residual versus time.
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Figure 3.
The Jackknifed studentized residual histogram from the linear mixed effect model with the
original outcome at 1.5 years.
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Figure 4.
The Jackknifed studentized residual histogram from the linear mixed effect model with the
Box-Cox (power = 16) transformed outcome at 1.5 years.
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Figure 5.
Predicted value versus Jackknifed studentized residual from the linear mixed effect model
with the Box-Cox (power = 16) transformed outcome at 1.5 years.
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Table I

Descriptive Statistics for Covariates

Variable Mean SD % “Yes”

Home Access at Baseline

 Last time drank, received from parent - - 9.87

 Last time drank, took from home - - 1.01

 How hard to get alcohol from parent1 2.83 0.46 -

 How hard to get alcohol from home1 2.59 0.69 -

 Done things to make home access more difficult - - 45.19

 Parent Report 6th grader allowed to drink alcohol in home - - 5.91

 Ask 6th grader to bring alcohol to you, past 30 days - - 5.49

 Home alcohol access scale2 8.33 4.35 -

Covariates at Baseline

Student

 African American - - 44.46

 Hispanic - - 39.19

 White - - 16.35

 Age at baseline 11.83 0.57 -

 Gender (male) - - 48.38

 Language spoken most often at home English - - 67.23

 Time lived in US3 1.26 0.74 -

 Receive reduced-price lunch - - 72.43

 Family composition (mother and father, together) - - 55.91

 Parent/child communication scale4 21.04 4.42 -

 Family alcohol discussions scale5 10.56 3.51 -

 Number of friends who drink6 1.49 0.85 -

 How hard to get alcohol from friend1 2.34 0.78 -

Parent

 Parental monitoring scale7 32.86 4.19 -

 Alcohol communication scale8 19.12 5.66 -

1
1 = easy, 2 = in between, 3 = hard

2
range: 4-20; a higher score on this scale indicates more access

3
1 = all your life, 2 = 7-9 years, 3 = 4-6 years, 4 = 1-3 years, 5 = less than one year

4
range: 6-30; a higher score on this scale indicates more parent/child communication

5
range: 3-15; a higher score on this scale indicates more family alcohol discussions

6
1 = none, 2 = a few, 3 = some, 4 = many, 5 = almost all

7
range: 11-40; a higher score on this scale indicates more parental monitoring
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8
range: 5-25; a higher score on this scale indicates more communication about alcohol
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Table II

Outcome Distributions at Baseline and Follow-up Time Points

Alcohol use in the last 30
days*

Time

Baseline frequency (%) 0.5 years frequency (%) 1.5 years frequency (%) 2.5 years frequency (%)

1 1268 (91.75%) 1137 (88.83%) 783 (82.25%) 664 (74.69%)

2 93 (6.73%) 110 (8.59%) 122 (12.82%) 156 (17.55%)

3 16 (1.16%) 22 (1.72%) 24 (2.52%) 44 (4.95%)

4 3 (0.22%) 4 (0.31%) 11 (1.16%) 9 (1.01%)

5 1 (0.07%) 4 (0.31%) 5 (0.53%) 11 (1.24%)

6 0 1 (0.08%) 2 (0.21%) 1 (0.11%)

7 1 (0.07%) 2 (0.16%) 5 (0.53%) 4 (0.45%)

Total 1382 1280 952 889

*
1: no drink; 2: 1 – 2 occasions; 3: 3 – 5 occasions; 4: 6 – 9 occasions; 5: 10 – 19 occasions; 6: 20 – 39 occasions; 7: ≥ 40 occasions
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Table III

Association between variables at age 12 and trajectories of alcohol use in past month from age 12 to 14

Variable Slope SE OR 95% CI

Intercept −2.197*** 0.596

Time 0.590*** 0.058 1.80 (1.61, 2.02)

Age at baseline (original scale −12) 0.314** 0.116 1.37 (1.09, 1.72)

Baseline 0.609** 0.204 1.84 (1.23, 2.74)

Home Access

From Parent Survey

 6th grader allowed to drink at home 0.286 0.238 1.33 (0.84, 2.12)

 Ask 6th grader to bring alcoholic beverage to you 0.143 0.251 1.15 (0.71, 1.89)

 Home Access Scale 0.015 0.016 1.02 (0.98, 1.05)

From Student Survey

 Last time drank, received from parent 0.843*** 0.176 2.32 (1.64, 3.28)

 Last time drank, took from home 0.583 0.562 1.79 (0.59, 5.39)

 How hard to get alcohol from parent 0.020 0.135 1.02 (0.78, 1.33)

 How hard to get alcohol from home −0.232* 0.092 0.79 (0.66, 0.95)

Covariates

Demographics

 Hispanic (ref: black) 0.565** 0.199 1.76 (1.18, 2.62)

 White 0.450 0.245 1.57 (0.97, 2.55)

 Gender (ref: female) −0.272* 0.127 0.76 (0.59, 0.98)

 Family Composition 0.060 0.137 1.06 (0.81, 1.39)

Other

 Number of friends who drink 0.480*** 0.072 1.62 (1.40, 1.86)

 How hard to get alcohol from friend −0.159 0.086 0.85 (0.72, 1.01)

 Parent/child communication −0.033 0.018 0.97 (0.93, 1.00)

 Parental monitoring scale (original scale −32) −0.012 0.016 0.99 (0.96, 1.02)

 Family alcohol discussions −0.008 0.024 0.99 (0.95, 1.04)

 Alcohol communication 0.005 0.013 1.01 (0.98, 1.03)

*
p < .05

**
p < .01

***
p < .001
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