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Abstract
Local conformation is an important determinant of RNA catalysis and binding. The analysis of RNA
conformation is particularly difficult due to the large number of degrees of freedom (torsion angles)
per residue. Proteins, by comparison, have many fewer degrees of freedom per residue. In this work,
we use and extend classical tools from statistics and signal processing to search for clusters in RNA
conformational space. Results are reported both for scalar analysis, where each torsion angle is
separately studied, and for vectorial analysis, where several angles are simultaneously clustered.
Adapting techniques from vector quantization and clustering to the RNA structure, we find torsion
angle clusters and RNA conformational motifs. We validate the technique using well-known
conformational motifs, showing that the simultaneous study of the total torsion angle space leads to
results consistent with known motifs reported in the literature and also to the finding of new ones.

Index Terms
RNA backbone; statistical analysis; vector quantization; local conformations; torsion angles;
conformational motifs

1 INTRODUCTION
Nucleic acid polymers play important roles in the storage and transmission of information.
RNA can both encode genetic information and catalyze chemical reactions [9]. As the only
biological macromolecule capable of such diverse activities, it has been proposed that RNA
preceded DNA and protein in early evolution [2]. Over the past 15 years, the database of RNA
conformation and interaction (the NDB [24]) has evolved rapidly or, to be more accurate, has
exploded, in both size and complexity. The database has been transformed from tRNA and
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RNA oligonucleotides to moderately sized globular RNAs to massive complexes containing
multiple large RNA molecules, many proteins, ions, water molecules, etc. These large
complexes are a rich source of new information, but do not surrender to traditional methods
of analysis. These complexes are of sufficient size that one can gather and analyze statistics
that were not previously available. The development of techniques for discovering statistical
rules governing RNA conformation and interaction will help answer fundamental biological
and biochemical questions including those related to nonprotein enzymology and the origins
of life. The goal here is to discover repetitive elements of interaction and conformation (motifs).

Murray et al. [20] noted the “rotameric” nature of RNA and articulated that RNA occupies an
energy landscape governed largely by bond torsions. Torsion angles show clear frequency
clustering, in one dimension. However, the analysis of RNA conformation presents particular
problems. For protein backbones, for each amino acid residue, there are two torsional degrees
of freedom: ϕ and ψ. Observed protein conformations are generally confined to limited regions
of this two-dimensional space (Ramachandran plot) [26], [27]. For RNA, the dimensionality
is much greater. For each nucleotide residue, there are seven independent torsion angles, see
Fig. 1 and [29]. Each RNA residue has six backbone torsional angles and one angle χ that
describes the rotation of the base relative to the sugar. The sugar has various puckering modes
that are not independent of torsion angle δ. Differences in dimensionality are a distinguishing
characteristic of RNA conformational analysis in comparison to protein conformational
analysis.

To deal with the high dimensionality or RNA conformation, several approaches have been
explored. A reduced set of two pseudotorsional angles per residue was proposed in [5]. This
reduction in dimensionality from seven to two simplifies the analysis, but sacrifices
information. Alternatively, work in [10], [20], [28] attempts to retain information from the full
conformational space. The approach in [10] gives a structural alphabet based on the
discretization of the conformation distribution function via binning the torsion angles taking
one angle at a time. This method is called visual binning because it is based on visual inspection
of torsion angle frequency distributions to define boundaries between conformational classes.

The approaches of [20], [28] decompose the seven-dimensional space into various subspaces
of three dimensions. It is possible to locate centers of frequency clusters in torsional subspaces.
The restriction to three-dimensional subspaces arises from requirements for manual (visual)
detection of the frequency clusters. In addition, a filtering stage is described in [20] to remove
conformations that are suspected to arise from measurement error. Finally, various elemental
units can be parsed during conformational analysis of an RNA polymer. Murray et al. [20]
suggest a base-to-base unit (a “suite”) instead of the chemically inspired, and more
conventional, phosphate-to-phosphate unit (a residue); see Fig. 1.1 The work of [28] utilizes
a dinucleotide building block to attempt to include the correlations between neighboring
residues.

The primary drawback of low-dimensional methods is that some clusters might avoid detection
and defy description. Several distinct clusters at full dimensionality can be compressed into a
single cluster at low-dimensionality. A limitation to three-dimensional subspaces is arbitrary
and might inaccurately characterize some regions of RNA conformational space.

Here, all seven dimensions of RNA conformation are analyzed simultaneously with methods
from classical signal processing. We use high-dimensional clustering, mainly vector
quantization.2 These methods have the potential to be automatic and parameter-free. Here, to

1See the Appendix in our extended report, http://www.ima.umn.edu/preprints/jun2004/1981.pdf, for an attempt at comparison of the two
parsing techniques.
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avoid overclustering of high-frequency conformations, we impose known conformations, such
as A-conformation, onto the clustering. A key contribution of this work is to show that one can
successfully perform simultaneous analysis of the whole of RNA conformation space, leading
not only to results in agreement with techniques based on significant human intervention, but
also to the finding of new motifs. Vector quantization is also a natural extension to scalar work
such as that reported in [10], although the framework presented here is not limited to the use
of this particular clustering technique and others might be able to exploit intrinsic correlations
between RNA torsion angles even further (see Section 6).

The work here continues the research line of [10] (see also [21], [22]), attempting to resolve
some limitations there. Vector quantization gives well-defined distortion and quality metrics.
It does not involve visual inspection and computes high-dimensional clusters. The VQ
approach is validated and/or reinforced3 by comparison of the output with that of previously
reported methods, as well as with the structural motifs library (SCOR) [14]. The VQ method
allows us to describe potential motifs that were not found in [10].

We should note that we do not claim that the VQ approach described here based on torsion
angle clustering is optimal in any sense, merely that it is a logical continuation of the clustering
methods described in [10], which is easy to apply, and allows one to rediscover known motifs
and to discover some possible new ones as well. Other methods based on sequence analysis or
on other search methodologies (see, e.g., [12]) may be more appropriate in various
circumstances and, ultimately, one would want to combine the different approaches. We regard
the work in this paper as a first step in employing vector clustering techniques from statistics
and signal processing to study an important problem in bioinformatics.

The remainder of this paper is organized as follows: In Section 2, we provide the basic
background on vector quantization. In Section 3, we begin with a particular case of vector
quantization, the scalar case, which permits us not only to introduce the basic concepts but also
to show that the results reported in [10] are replicated and refined. In Section 4, we use the full
power of vector quantization to analyze sets of four and seven torsion angles simultaneously,
extending some of the results reported previously in such works as [10], [20]. We moreover
present a modification of the basic vector quantization algorithm, namely, cluster merging,
which is motivated by RNA properties and is needed to adapt this classical signal processing
technique to the study of RNA structure. Section 5 presents the motifs that were found by our
method and compares our findings with known structural motifs. Finally, in Section 6, we
summarize our methods as well as describe some key research directions.4 In the Appendix,
we summarize some of the key results of the visual binning method [10] for the convenience
of the reader.

2 BACKGROUND ON SCALAR AND VECTOR QUANTIZATION
Vector quantization (VQ) is a clustering technique originally developed for lossy data
compression [7], [8], [17]. In 1980, Linde et al. [17] proposed a practical VQ design algorithm
based on a training sequence. The use of a training sequence bypasses the need for
multidimensional integration, thereby making VQ a practical technique, implemented in many
scientific computation packages such as Matlab (www.mathworks.com). This algorithm, of

2Previously, vector quantization was used in the context of protein structure, e.g., [11].
3By “validate” and “reinforce,” we mean that we show the agreement of the results here reported with those in [14] as well as those
previously reported by scalar, visually-based, quantization of torsion angles.
4We have also included appendices in our extended report available at http://www.ima.umn.edu/preprints/jun2004/1981.pdf. These give
some preliminary results on the use of other techniques from statistical signal processing, mainly mutual information, for comparing
residues and suites, and principal component analysis, for the study of RNA motifs.
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course, cannot guarantee convergence to the global minima of the optimization problem
described below.

A VQ is analogous to an approximator. Fig. 2 presents a two-dimensional example of vector
quantization. Here, every pair of numbers falling in a particular region is approximated by the
marked “center” associated with that region (VQ is, of course, closely related to Voronoi
diagrams).

The general VQ design problem can be stated as follows: Given a vector source with known
statistical properties, a distortion measure, and number of desired codevectors, find a codebook
(the set of all red stars) and a partition (the set of blue lines) that result in the smallest average
distortion.

We assume that there is a training sequence (e.g., the measured torsion angles in RNA
backbone) consisting of M source vectors of the form T = {x1, x2,…,xM}. We assume that the
source vectors are k-dimensional, e.g., xm = {xm,1, xm,2,…,xm,k}, for 1 ≤ m ≤ M. Let N be the
number of desired codevectors and let C = {c1, c2,…,cN} be the codebook, where each cn, 1 ≤
n ≤ N, is, of course, k-dimensional as well. Let Sn be the cell associated with the codevector
cn and let P = {S1, S2,…,SN} be the corresponding partition of the k-dimensional space. If the
source vector xm is in the encoding region Sn, then it is approximated by cn, and let us denote
by Q(xm) = cn (if xm ∈ Sn) the corresponding map (each vector is simply associated to the
closest center from C). Then, assuming, for example, a squared error distortion measure, the
average distortion is given by

(1)

The design problem then becomes the following: Given the training data set T5 and the number
of desired codebooks (or clusters) N, find the cluster centers C and the space partition P such
that the distortion D is minimized. This problem can be efficiently solved with the LBG
algorithm [7], [17] and, as mentioned above, its implementation can be found in popular
scientific computing programs. We should, of course, recall that convergence to the global
minima is not guaranteed with this algorithm. Additional details on the technique can be found
in [7], [8], as well as in the tutorial located at [4], from which we have prepared this summary.
In future work, we plan to use more advanced techniques, such as those reported in [23].6

3 SCALAR QUANTIZATION: AUTOMATIC BINNING OF SINGLE TORSION
ANGLES

To provide an accessible introduction to VQ, a brief discussion of scalar quantization (SQ) is
provided here. SQ is a natural extension of our previous work and is extensible to VQ. With
SQ, one can automate the previous binning method described in [10], where torsion angles are
treated individually. In [10], conformational space is partitioned into boxes, each containing
one conformational state, i.e., rotamer, or a subset of conformational states; see also [20]. The
box boundaries were set by visual inspection, using minima of torsion angle frequency
distributions as guides.

5Which can become the whole data set when VQ is used as a clustering technique as in our work.
6Vector quantization is often also known in the literature as k-means clustering.
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As was known from [25], [30], four torsional angles (α, γ, δ, ζ) (which we call the identifier
angles) are, in general, sufficient for this classification. Here, the results of that work are
reproduced with SQ. In the Appendix, more details are described from the work in [10],
reproducing key tables for the convenience of the reader.

We argued in [10] that the frequency histograms of the four identifier torsion angles have a
clear multipeak structure; see Fig. 3 and details below. Since the peak structure is the
cornerstone for our proposed classification method, we describe here these results for a larger
set of RNA structures than those reported in [10]. In particular, two data sets are used. One
follows the work reported in [10] and is for a single RNA with 2,914 residues (HM LSU 23S
rRNA, RR0033), while the second one follows work reported in [20], and is for a collection
of 132 RNAs,7 giving a total of 10,463 residues (redundancies have not been eliminated). Here,
as in the rest of this work, residues with undefined or unknown torsion angles were omitted.
Coordinates were obtained from the Nucleic Acid Database [24]. We have not performed the
filtering of [20]. That method may indeed improve the results. As mentioned above, in the SQ,
we first limit the analysis to the torsion angles (α, γ, δ, ζ) (see Fig. 1) since the others are either
dependent on these angles or have distributions which are almost unimodal [25], [30]. There
is no intrinsic limitation which restricts one to this reduced set of angles and, indeed, being
more automatic, the process can be easily applied to larger sets. As this is an unsupervised
clustering technique, none of the residues were labeled. As we detail later on, clusters are
merged if needed based on biochemical information and clusters proximity.

Fig. 3 shows the distributions for the four angles from the large and small data sets. The two
data sets of histogram features have a strong resemblance, suggesting the generality of the
cluster classification method for analysis of RNA conformation.

One potential problem with visually-based classification methods such as the binning in [10]
and the technique presented in [20], in addition to being limited to ad hoc observations of three
or less angles at a time (see more on this below), is that the resolution (and amount of data)
may not be sufficiently fine, which may make it difficult to distinguish distinct features in the
data, and clusters can be confused and merged.

This issue is demonstrated, for example, in the behavior of the torsional angle ζ. For ζ, the
visually observed frequency distribution contains a single peak (centered about 290 degrees)
in addition to a featureless plateau that extends over 200 torsional degrees. For visual binning
[10], ζ was allocated to two bins. The first bin contains the 290 degree peak. The second bin,
which does not correspond to a single conformational state, contains the extended plateau and,
in visual binning [10], is called “other.” However, potential energy calculations predict that
ζ should partition into three peaks [21], [22], [29]. The filtering method of Murray et al. carves
ζ into the same three peaks. As demonstrated below, our approach retains these details without
the need for filtering.

Understanding the peak shape of each cluster is crucial for probabilistic RNA design and for
understanding local dynamics of folding. The peak shapes of the clusters contain important
information on RNA dynamics, but might also be influenced by coordinate error. It appears
that better fitting for the major clusters (see below for the limits of these clusters) is obtained
using exponential distributions and not Gaussian distributions as argued, for example, in
[10]. For the first data set, the kurtosis8 for the main peak is 5.3 for α and 4.6 for ζ, clearly

7With NDB and PDB codes: ar0001, 02, 04, 05, 06, 07, 08, 09, 11, 12, 13, 20, 21, 22, 23, 24, 27, 28, 30, 32, 36, 38, 40, 44; arb002, 3,
4, 5; arf0108; arh064, 74; arl037, 48, 62; arn035; dr0005, 08, 10; drb002, 03, 05, 07, 08, 18; drd004; pd0345; pr0005, 06, 07, 08, 09, 10,
11, 15, 17, 18, 19, 20, 21, 22, 26, 30, 32, 33, 34, 36, 37, 40, 46, 47, 51, 53, 55, 57, 60, 62, 63, 65, 67, 69, 71, 73, 75, 78, 79, 80, 81, 83,
85, 90, 91; prv001, 04, 10, 20, 21; pte003; ptr004, 16; rr0005, 10, 16, 19, 33; tr0001; trna12; uh0001; uhx026; ur0001, 04, 05, 07, 09,
12, 14, 15, 19, 20, 22, 26; urb003, 08, 16; urc002; urf042; url029, 50; urt068; and urx053, 59, 63, 75.
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indicating a significant deviation from Gaussian distributions (whose kurtosis is 3). The log-
likelihood while fitting an exponential function improves by 24 percent with respect to fitting
a Gaussian for the α torsion angle and by 23 percent for the ζ torsion angle. Similar behavior
is observed for the other data set, although, in some cases, the improvement is more moderate
(e.g., for the first mode of α in the first data set, the improvement is about 16 percent).

Using the clustering technique described in the previous section,9 and requesting the number
N of codevectors following [10] (or just from visual inspection for now, this will be made
automatic later), we found the codevectors or centers of the clusters C = {c1,…,cN} given in
Table 1. Later on, for the classification, we enumerate the clusters in each coordinate by
increasing values. For example, a residue whose torsional angles are in the third peak (center)
in α, the first in γ and δ, and the third in ζ will be enumerated as 3113; see Table 1.

The results are similar for the two data sets. For γ, two of the centers are very close to each
other and will be merged during clustering. This demonstrates a possible problem of
overclustering by scalar quantization (or any other automatic clustering technique). In the next
section, a simple merging algorithm is proposed to treat this difficulty. Once again, although
the number of clusters is predefined, this could be accomplished as part of the automatic
process; see Section 4.

Regarding ζ, if additional clusters are desired, e.g., three clusters for the first data set (see our
discussion above), these clusters are automatically found at 1) 85.86, 2) 188.25, and 3) 289.27,
thereby splitting the large tail (following the description in [20], but in an automatic fashion).
These additional centers will also appear when considering torsion angles in vectorial form in
the next section and will be used to search for motifs. Further increasing the number of clusters
does not produce, in general, a significant change in the distortion D, an indication that the
selected number of clusters is sufficient; see Section 4.

The clustering (binning) method that results from scalar quantization as described so far has
one major difference fromh the one described in [10]. For scalar quantization, no bins are
classified as “other.” In the scalar quantization case, every bin is populated. Every residue is
associated with a specific set of four centroids (by simple proximity via the map Q defined in
Section 2), each one corresponding to one of the four torsion angles (α, γ, δ, ζ). In Table 2, we
give the corners of the boxes that define these bins. We could, of course, easily and
automatically add the “other” class if so desired by simply forcing the torsion angles not to be
“too far” from the center of the bin. This can be quantified for example by the standard deviation
of each bin.

The scalar quantization method was used to automatically cluster the four identifier torsion
angles. The fundamental difference between the binning method in [10] and the scalar
quantization method is that bin boundaries were established manually by inspection of
frequency histograms, while the clusters borders were automatically computed via a distortion
minimization criterion. The four identified torsion angles of all the residues in RR0033 were
classified by scalar quantization, with the three clusters in ζ described above.

In summary, the results of automatic classification by scalar quantization are very similar to
the manual binning method of [10], except for an extra refinement (obtained automatically) in
the ζ coordinate. As mentioned above, it can be shown that any increase in the number of

8The degree of peakedness of a distribution, defined as a normalized form of the fourth central moment of a distribution, µ4/(µ2)2, where
µi denotes the ith central moment.
9Recall that, due to algorithmic limitations, the optimality is only local since we are not guaranteed to converge to the global optima of
D. From the validation results presented later, we have not observed this to present significant problems.
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clusters in the four coordinates will not reduce the distortion D. Indeed, it seems that any attempt
to increase the refinement will only worsen the results.

4 VECTOR QUANTIZATION: AUTOMATIC AND SIMULTANEOUS BINNING OF
MULTIPLE ANGLES

Important (biochemical) information in the torsion angles is lost in scalar quantization or any
other analysis that considers single angles at a time. This loss occurs because each angle is
considered in separation from the others. Scalar clustering is a one-dimensional projection that
can merge clusters that are distinct in projections of higher dimension. For a schematic
illustration of this problem, see Fig. 4.

VQ analysis addresses this problem.10 For an illustration of the methodology, consider VQ
analysis of two angles (with k = 2).11 For example, requesting N = 6 clusters for the pair (α,
ζ), we obtain the centers

The α component of the automatically detected centers is as in the case of scalar quantization,
while the ζ component includes terms that both appear when we request two and three bins for
ζ in the scalar case. That is, VQ for k = 2 finds additional relevant clusters in ζ when considered
as a vector in conjunction with α. In Fig. 5, the torsion angles are plotted (blue dots) together
with the cluster centers (red stars). Repeating this exercise for N = 9 clusters for (α, ζ), gives
the centers

Fig. 6 contains plots of the torsion angles (blue dots) together with the cluster centers (red
stars), showing that, while the main cluster centers are closely located to those when only six
centers were considered, the three additional centers split the broad distributions (lower left
region, where one center became two) as well as splitting the very popular conformations (e.g.,
additional center at the main α pick, right of the figure).

It is clear from the illustrations above that high-dimensional clustering is necessary. All torsion
angles should be considered simultaneously. The framework described in Section 2 permits
that. Analysis of one dimension (one torsion angle at a time), four-dimensional (α, γ, δ, ζ), or
the full seven-dimensional torsion angle space is of equal complexity with automatic VQ
methods. Of course, due to the “curse of dimensionality,” more data is needed at higher
dimensions. However, the work here is not limited by quantity of data. The dispersion within
the clusters (i.e., the peak shape) might be used to infer energy potentials and dynamical
processes.

10As mentioned in the introduction, VQ already produces very good results, as detailed in the rest of this paper, although other clustering
techniques might be able to exploit the RNA structure even further, and this is the subject of future research, see Section 6.
11To further demonstrate the importance of the simultaneous study of torsion angles and to make the figures simpler and since this
exercise is, for the moment, for illustrative purposes only, we exclude the residues of RR0033 in A-conformation, which constitutes over
60 percent of the RNA. A-conformation is characterized by the angles (α, γ, δ, ζ) each in the modes corresponding to their respective
major peaks.
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The first test of the vector quantization method used four dimensions (k = 4), the four identifier
angles (α, γ, δ, ζ) of RR0033. To cluster these four angles, one must determine the optimum
number of clusters (N). False clusters arise if N is too large (overpartitioning). Distinct clusters
are merged if N is too small (underpartitioning). Several metrics are used here to optimize N.
The relationship between the distortion, D, defined in Section 2, and the number of clusters
N is useful for optimizing N. In addition, the observation of overlapping clusters indicates
overpartitioning. The number of clusters N (see also Section 4.1 and Section 6) is also task
dependent; analysis at different resolutions should require a different number of clusters and
topics such as RNA dynamics might need a much more detailed partition than rough
classification studies.

Fig. 7 shows a plot of D as a function of the number of clusters N. The distortion reaches a
“plateau” value for N ≈ 50, meaning that the improvement is mild, compared to the initial value,
when further increasing N. The oscillations observed in the graph are due to the convergence
of the optimization algorithm to local and not global minima.12 Vector quantization was
performed for N = 40, 50, 60. N = 60 gave all the populated bins defined in [10]. All three
cases, however, appear to be overpartitioned. This overpartitioning is especially pronounced
in the A-conformation region. Most neighboring clusters in this region are overlapping. This
overlap is not surprising since these clusters are so highly populated (over 60 percent of this
RNA) that any distortion minimization approach will tend to invest a lot of resources (i.e.,
centers) there. This phenomenon emphasizes the need to impose structural definitions onto the
clustering process, as described below.

The full quantization of the conformation space, based on all seven torsional angles, was also
performed. The algorithm is fast enough to perform a full quantization of the 2,800 residues
of RR0033 to 60 classes in a few seconds. The distortion D virtually plateaus at about 60
classes; see Fig. 8 (recall once again that oscillations are due to local minima). N = 60 gives
the representation of the most populated 15 bins from [10] and is in good correspondence to
the results of the four-dimensional quantization. Additional partitioning of up to N = 100 reveals
very sparsely populated new classes, see Section 6. Here, a “new class” is “far” from previously
found classes. Classes are here considered “close” (or overlapping) when their centroids are
in the same bin (as derived from the SQ, see Table 2) and “far” otherwise.

4.1 Merging
“Closeness” is the first component of a merging criteria. Specifically, we require that two
clusters with centroids that reside within the same bins are merged into a unique cluster, subject
to conditions mentioned below.13

Note that binning, whether by observation, as in [10], or automatically done via SQ, as
described above, gives a partition of the torsion angles space into multidimensional boxes.
There is no a priori reason to believe that the basin of attraction of the specific energy minimum
that defines a native conformer will have such a shape. Using vector quantization with merging
can shift and change the basin and its boundaries. An additional advantage of this method is
that, as mentioned before, vector quantization naturally partitions the entire torsion space.

In order to possibly discover new motifs, we added some natural conditions to the merging in
the full dimensional case. First, we merge two clusters only if the angles (β, ε, χ) have the

12We have experimentally observed that the cluster centers do not significantly vary for different runs of the algorithm, being relatively
robust to local minima artifacts. From the validation results reported below, we also observe that the limitation to finding local minima
has not affected the overall results. The results could be further improved, for example, running VQ several times with different initial
conditions and combining the results.
13Another possible merging criteria is to merge clusters as long as they do not change the total distortion D above a given threshold.
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coordinates of their centroids within the same peak. These peaks may be quite small and very
difficult to observe via simple histogramming.

The second additional merging condition is a structural one: We define a “tagged cluster” as
a cluster that corresponds to a well-established conformation such as A-helical or tetraloop
RNA. Tagged clusters are protected and are not merged with other clusters. Although there are
relatively few of these clusters, they represent a large fraction of the RNA. Approximately 60
percent of globular RNA is found in the A-conformation.

The results of the proposed algorithm (VQ followed by merging of nontagged clusters or
modified vector quantization) are presented in Table 3. Each row contains the ASCII code of
the bin that matches the coding method of [10]14 (see Table 12 in the Appendix) and the
enumeration of the peaks (numbers as obtained from the scalar quantization).

In addition to being automatic and capable of handling all the torsion angles at once, a clear
advantage of the VQ method as compared to manual binning is the smaller numbers of classes
that are needed to classify the structure. Vectorial binning is based on 26 clusters versus 38
bins in the usual binning method [10]. The main reason for this reduction in the number of
classes is that the clustering algorithm does not recognize the “transition states” bins or the
bins classified as “other” from [10]. These are regions of conformation states that are very
sparsely populated and which probably include energy bottlenecks between the low energy
conformations. The result is that conformations that may be measurement error are included
in the structural analysis [20].

5 AUTOMATICALLY FINDING MOTIFS: VALIDATION
Most motifs that are already known have highly conserved three-dimensional structures.
Finding motifs with the modified vector quantization method proposed above can be used as
a validity measure and this is the goal of the present section. In particular, we compare the sites
of different known motifs with search algorithms based on: 1) manual binning following
[10], 2) 4D vector quantization with the angles (α, γ, δ, ζ), and 3) 7D vector quantization with
the whole torsion angles set.

5.1 Tetraloops
The tetraloop motif [1], [13], [18], [32] was used to compare various methods here to each
other and to our previous visual binning method [10]. A tetraloop is a four residue element that
caps an A-helix [1], [13], [18], [32]. The most abundant tetraloop sequence is GNRA, where
N is the U-turn residue. Consensus molecular interactions of GNRA tetraloops are 1) “G” forms
a non-Watson/Crick hydrogen bond with “A,” 2) the N1 of “G” forms a hydrogen bond with
the O2P of “A,” and 3) the 2’ OH of “G” forms a hydrogen bond with the N7 of R. This motif
has been found to be thermodynamically stable and ubiquitous in various RNAs. The high
frequency of occurrence and conservation of molecular interactions makes this motif a very
useful test case for our algorithms.

In previous work, we describe 25 tetraloops in RR0033 (23s rRNA), detected by visual binning.
There we show that global and local RMS deviations of atomic positions of the tetraloops are
related in a reasonable way to torsion angle deviations. RMSD space and torsional space have
similar information content. Twenty-four of 25 tetraloops there are associated with the ASCII

14In this code, the most popular residues are given the most popular letter of the alphabet. Classifying and labeling every residue with
an ASCII letter allows one to used well-developed methods of searching and analysis of text to analyze RNA conformation. Reading
text, establishing words and their relationships can allow unique insights into the three-dimensional structure that is encoded. See the
Appendix for additional details.
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code aaoa in [10], while a single tetraloop is given by aaoe (see also Table 3). A minor
adjustment of the visual binning structure converts the single outlier to the consensus, giving
all 25 of the observed tetraloops as aaoa, shown in Table 4.

Our torsional definition (aaoa) is offset by one residue relative to the sequence-based definition
(GNRA) such that the o of aaoa is the U-turn residue. The rationale for the offset of operational:
In torsion space, aaoa appears to be a more accurate definition than aoaa. The word aaoa is
much more frequent than the word aoaa. Note that “a” indicates the A-helical conformation
and “o” indicates that the α torsional angle is rotated from g to transorientation to give the U-
turn. Although our method searches in torsion space, not molecular interaction space, the
consensus molecular interactions are well-conserved in the tetraloops of Table 4.

In Table 4, the first column gives the starting residue number, exactly as in our previous work
[10]. The second column gives the sequence (in the aaoa frame, not in the GNRA). The
conventional definition is provided in the third column. The fourth column gives the binning
“word,” after adjustment of the visual binning structure, so that all 25 tetraloops, rather than
24 out of 25, are given by aaoa. The fifth and sixth columns show the new automatic results
for the four and seven-dimensional vector quantization, respectively. For tetraloops, there is
complete agreement between the visual binning and the SQ results. All of the SQ tetraloops
are similarly classified as such by visual binning, with no false negative and no false positives.
These results are an indication of the utility of the automatic clustering techniques.

In fact, we can find here a very good agreement among all of the methods. The table gives
perfect agreement in 25 out of 26 cases with [10] (that is, all the methods agree) with just one
false positive (the residue beginning at 149). This false positive replaces an e by an a and an
a by an o. In both cases, the difference is in a single torsion angle and a different side of the
cluster border was “selected.” This is an expected and tolerable error when working with high-
dimensional data for “borderline” angles (recall that, as mentioned in the introduction and
further discussed in Section 6, the proposed torsion clustering should be one component of the
classification approach).

5.2 E-Motif
A second motif with conserved conformation is the E-Loop motif [16]. An E-loop is a double
helical region with a G bulge and characteristic A-G, A-A, and trans-Hoogsteen U-A pairs.
Visual binning identifies six E-Loops in RR0033 (23S rRNA), each with a + (with the G bulge)
and − strand. In fact, there are two rotamers of the + strand that give the same global geometry.
The − strand has a unique conformation. It has been proposed that this double-stranded motif
has affinity for Mg2+ ions and arginine [16]. E-Loops are described as “looped with a
dinucleotide platform in a triplet” by the SCOR library.

For E-Loops, there is full agreement between visual binning and 7D VQ (Table 5). A 4D VQ
gives a single false positive. Inspection of conformation and interactions of the segment
initiating at residue 1,069, identified by 4D VQ, reveals it is not an E-Loop.

The refinement of the ζ coordinate into three distinct regions is of utility here. The second
residue of the E-loop + strand is in a conformation with ζ in the first peak (around 60°). A 7D
VQ reveals that the fifth residue of the + strands (Table 5), which is invariably a U, is in the
“A” cluster (as defined in the table) with a β coordinate centroid that deviates from (180°) (“a”
cluster) to 140° (“A” cluster).

We did not merge this cluster with the “a” cluster. We also observe that “h” in the four-
dimensional quantization and the visual binning is replaced by “z” in the seven-dimensional
VQ.
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The results for the − strand are shown in Table 6. This strand has an A-form stack with a kink
at the second residue. Here, we can find full agreement between visual binning results and 4D
VQ. The 7D VQ gives a bin “U” instead of “u.” The difference between the two in Table 6 is
in the nonidentifier angle β = 94° that is outside the main envelope. Here, we have an example
where a nonidentifier torsional angle gives extra information which is needed for correct
definition of the conformation.

5.3 Kink-Turn Motif
This motif described in [19] also has the double-stranded structure. The kink-turn consists of
a bulging + strand, which has a conserved structure, and a − strand, which has a more flexible
structure. We will focus our attention here on the + strand only.

Referring to Table 7, we see some inconsistencies between the structures detected by the
different methods. Two possible places for the ambiguity in the structure from the binning
method are in the second place letter “e” and the fifth with the letter “r.” In both of these places,
the ζ angle is out of the main peak, but the binning is not finely tuned enough to recognize the
precise place; see also Table 2 and Table 3. With seven-dimensional vector quantization, it is
obvious that one can find ζ in a second peak, which emphasizes an advantage of using the full
dimensional quantization technique.

5.4 Hyper-Twist Motif
The hyper-twist is another motif that is based on the double helix structure. Here, the double
strand is twisted around a purine-purine mismatch. The mismatch is usually a G-A pair. This
motif typically has a symmetric structure. There is a G-A pair and an A-G pair. In Table 8, we
included both the + and the − strand.

The entries marked with a * have a − strand with conformation “e” instead of “r.” There are
some conformations which include a bulge. One of them coalesces with a kink-turn motif. It
was found that all of the mismatch conformations that were marked by “r” belong to one
specific cluster. We used this to unmerge this cluster from the other clusters that were merged
with it before; see Table 3.

5.5 Mismatched GA-Motif
All of the above motifs are characterized by a double helix structure which may be twisted or
bulged. The deformation is a result of a base pair mismatch. This is a secondary structural
characteristic. We can find also a unique conformation in almost all of the above-mentioned
cases. After a base pair mismatch, the residue acquires the conformation marked by “A.” This
conformation is a single cluster. The identifier torsional angles of this conformation have the
same values as that of the A-form helix. The only difference is that the β value is shifted to the
shoulder of the main peak in the histogram of β. See also [28] for related results.

The α, β plot of this cluster is given in Fig. 9. The binning method (even with scalar
quantization) as well as 4D VQ cannot recognize this cluster, while the full seven-dimensional
VQ can. A similar cluster was found with the electron density technique in [28]. This
conformation appears in the following locations:

1. Hyper-Twist: 25, 818, 1,590, 2,504.

2. Kink-Turn: 48, 98, 265, 1,152.

3. E-motif: 176, 214, 359,1,073, 1,371, 2,693.

There is a generalization of the hyper-twist, that is a mismatched double strand that includes
the “A” conformation in:
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The conformation of this double strand is less conserved than the hypertwist.

Other “bulge motifs” with pair mismatches include 442, 465, 489, 593, 2,244, 2,427, 2,259,
2,906, as well as the short double helix with internal loop, 2,427. Some more complicated
mismatch structures are

382, 489, 645, 1,528, 1,891, 1,973, 2,485, 2,675, 2,817, 2,904.

The conformation “A” appears in three places where it cannot be associated with mismatched
structures.

5.6 Helix Initiation Knee
The helix initiation knee is a motif that has a bend at the beginning of a helix [28]. As its name
implies, such a motif is associated with a “knee” between two adjacent helices. This occurs,
for example, in the case of the “knee” between the T stem and the acceptor stem. We defined
this motif to have the binning sequence “taaa”; see Table 9. We found this form to repeat 19
times in RR0033. Table 9 summarizes the search results for this motif.

From the 21 structures that were found to be in the desired conformation (see Table 9), only
six were not initiating a double helix and, also within these six cases, there are a large number
of tertiary interactions with other parts of the LSU. The differences among the methods are
minimal and are mostly confined to the case where t (1111) is changed with the transition state
p in the binning method (4,111) (which includes the “other” region absent in the VQ method).

Another type of helix initiation motif has a typical conformation of “vaaa” in one of the strands.
The “va” conformation was recognized in [28]. There were 13 such structures and they are
summarized in Table 10.

There is full agreement between the 4D and the 7D VQs. Only seven of the above examples
have the same binning structure. The three-double helix is a structure where the first residue
in the “v” conformation is unpaired. It seems that, for this motif, the binning definition of the
“v” conformation gives a more uniform motif. This will be addressed in more detail in Section
6 below.

6 DISCUSSION
RNA conformational motifs were characterized here with statistical techniques from classical
signal processing. These automatic procedures do not use visual inspection or filtering. The
overriding goal is to establish fast and easily applied yet rigorous methods for analysis of RNA
conformation. The simplest method used here, scalar quantization, treats each dimension in
isolation of the others. SQ successfully resolves the torsion angle ζ into the three distinct
clusters (three rotamers) predicted by the potential energy surface. This resolution of ζ into
three was not accomplished in [10] and was found by visual inspection in [20] only after
application of quality filters. This is achieved following well-defined criteria, as well as the
automatic analysis of multiple angles at once. As we have noted, we do not claim that clustering
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analysis in torsion angle space is the only or even best method for finding motifs, but simply
a logical one which is very easy to use and can form part of more comprehensive criteria.

With VQ, populated clusters of RNA conformation are determined in simultaneous analysis
of any dimensionality, up to the full seven-dimensional torsional space. We believe this work
represents the first analysis of RNA torsional space at greater than three simultaneous
dimensions (i.e., of more than three torsion angles). Although VQ was used in this work as the
basis for our automatic analysis, other high-dimensional clustering techniques can be used as
well. Here, four-dimensional VQ was applied first to the four angles (α, γ, δ, ζ) that have
previously been termed “identifier angles” [10] because they appear to completely specify
fundamental RNA conformations. The remaining three dimensions are considered to be
dependent on the four identifier angles, although they are important for conformations search,
see below. Based on the distortion measure from VQ, the number of four-dimensional clusters
was experimentally found by 4D VQ to be about 60. This result suggests that there are about
60 fundamentally distinct nucleotide conformational states within globular RNA, although the
subject of finding the exact number of conformational states (which can be resolution and task
dependent) needs further investigation. The 4D VQ identified each of the populated bins
reported in [10], which were obtained via manual classification. Agreement with SCOR was
found as well.

We then added a merging stage to the VQ method, which is based both on cluster centroid
proximity and on structural constraints, thereby adapting the generic VQ technique to the study
of RNA torsion angles. For example, all clusters that meet the definition of A-helical RNA
were merged into a single cluster. This initial overpopulation of A-helical RNA clusters was
expected since, due to their popularity, VQ allocates to them a large number of resources
(centroids) in order to minimize the distortion.15

We then used this modified VQ on the full set of seven torsion angles defined by a single
nucleic acid residue. This study of the full seven-dimensional space led to new conformations
that were not present at the one or four-dimensional studies. We validated the method by
comparing it with known structural motifs, as well as the SCOR classification. The minor
mismatches could be a result of a too coarse clustering (different motifs merged into a single
cluster). We tested adding clusters (up to 100) and found small changes that are enough to fix
these discrepancies (while requiring additional merging to eliminate the not-novel clusters).

It is important to note that neither SCOR nor our results are complete. The “true” definition of
a given motif should involve the combination of a rotameric state (as is argued in this paper)
and sequence information (which is the basis of SCOR). We believe that one of the
contributions of our research is to start to develop a rotameric contribution to this definition.

We found a conformational signature for the existence of a mismatch motif, an umbrella motif
that includes the bulging or twisted double-stranded cases. We found this conformation only
when we used the modified 7D VQ, showing the importance of working with the whole
conformational space and, thereby, the need for a formal analysis technique, such as the one
described here, that go beyond ad hoc visualization-based approaches.

In the next step (in progress), we will seek the relationship between neighboring clusters using
the method of mutual information. As has been done for secondary structures in protein
research, e.g., [6], it is important to study the dispersion within clusters. It seems likely that
information on shapes of potential energy surfaces and RNA dynamics is contained within the

15Of course, for tasks different to the one in this paper, such a merging might not be needed and considering the different clusters can
lead to a more detailed analysis, for example, of the A-helical variability in the search for “microconformations.”
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cluster shape. Finally, following work on proteins [6], we can also perform principal component
analysis (PCA) on various clusters.

To conclude, in this paper, we have seen how some standard techniques from statistical signal
processing are useful for the analysis of RNA structure. These techniques cover from the
automatic finding of torsion angles clusters and their grouping into motifs, to the analysis of
motif populations. These techniques can be augmented with novel clustering approaches being
developed by the learning and signal processing communities and investigating those, together
with the search for new motifs, is the subject of some of our current efforts.

APPENDIX

BACKGROUND ON THE BINNING METHOD
In this appendix, for the convenience of the reader, we briefly review the main results reported
in [10]. We introduce here some minor modifications in order just to elucidate the main ideas.
We finally repeat some of the key tables from [10] for easy reference on the part of the reader.

Binning as formulated in [10] is a histogram-based method for describing RNA conformation
and for identifying RNA tertiary structural motifs. The conformation of each bond can be
described by a small number of discrete integers. Each residue can be assigned to a distinct
configuration class. Further, some of the torsion angles are dependent or highly restrained. In
summary, one can reduce the full multidimensional torsion angle space to a set of 38
configuration classes. An ASCII code can be assigned to each configuration class. Thus, the
three-dimensional description of conformation is reduced to a single dimension.

More precisely, each torsion angle of a given residue is allocated to the appropriate bin. By
definition, torsion angles with single-peak distributions cannot be readily separated into distinct
bins because, essentially, all the angles are contained under a single envelope. Because of this,
the angles β, ε, and χ are assumed not to contribute information to the conformational
description and are ignored; see [10]. Because of their multipeaked nature, the remaining four
torsion angles and P allow a straightforward separation into distinct configuration classes.
However, δ and P are correlated, both by geometric definition and from analysis of the HM
23S rRNA data. Thus, to avoid redundancy, we eliminate P and consider only four torsion
angles, α, γ, δ, and ζ. The reduction in parameters led us to a four digit structural representation
of the conformation of a given residue. Each residue is assigned a sequence of four integers,
nα, nγ, nδ, nζ, where each digit denotes the envelope to which a torsion angle belongs.

Binning has several important advantages:

1. It allows one to exploit the large and sophisticated pattern recognition capabilities
already developed for one-dimensional databases.

2. It allows one to combine sequence and conformational information in the same one-
dimensional representation, for example, by interleaving the ASCII binning
characters with sequence characters.

3. It allows one to represent conformational information along with base-pairing, tertiary
interaction, etc., in simple two-dimensional representations.

4. It can be readily tuned to a given organism, class of RNA, etc.

5. It is relatively easy to implement, and may be automated in the manner indicated in
this paper.

The results of the method in [10] are summarized in Table 11 and Table 12.
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Fig. 1.
RNA with six backbone and the glycosidic torsion angles labeled. The four identifier torsion
angles are shaded. The two alternative ways of parsing out a repeat are indicated. A
conventional nucleotide residue spans from phosphorous atom and 5’ oxygen atom, (changing
residue number between 3’O and P), whereas an RNA suite is from sugar to sugar (or base to
base).
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Fig. 2.
Two-dimensional example of clustering via (vector) quantization. All the points in a given
interval (in one dimension) or a given cell (two dimensions) are represented by the marked
“center.”
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Fig. 3.
Distributions of the torsion angles α, γ, δ, and ζ for the single RNA (first row) and the collection
of RNAs (second row). We observe the similitude among the distributions, marking the
presence of “rotamers” not only for a given RNA but also across RNAs. We also observe clear
modes, which are automatically detected by the proposed clustering technique. In addition,
note that the ζ torsion angle has a large tail not present in the other distributions.
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Fig. 4.
Qualitative example showing the importance of vectorial investigation of torsion angles. In
this example, the conformations space is projected onto two torsional angles, ψ1 and ψ2. There
are clearly two population clusters, 1 and 2. The individual torsion angle histograms will give
only one peak with a negligible tail and the two clusters cannot be identified when the analysis
is purely scalar. There is a need, therefore, for vectorial analysis, as suggested in this work.
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Fig. 5.
Torsion angles for the pair (α, ζ) (blue dots) together with the six cluster centers (red stars).
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Fig. 6.
Torsion angles for the pair (α, ζ) (blue dots) together with the nine cluster centers (red stars).
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Fig. 7.
Error as a function of the number of clusters for the vector (α, γ, δ, ζ).
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Fig. 8.
Error as a function of the number of clusters for the vector with all seven torsion angles.
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Fig. 9.
The α, β torsional angles of the “A” cluster.
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TABLE 1

Cluster Centers Automatically Computed by Our Technique

Dataset 1

α 68.3 (1), 169.7 (2), 294.3 (3)

γ 50.4 (1), 60.0 (1), 175.8 (2), 292.3 (3)

δ 81.7 (1), 147.8 (2)

ζ 118.0 (2), 286.7 (1)

Dataset 2

α 68.6 (1), 167.8 (2), 294.0 (3)

γ 50.1 (1), 65.0 (1), 174.4 (2), 290.2 (3)

δ 82.7 (1), 144.4 (2)

ζ 116.4 (2), 286.0 (1)

Numbers in parentheses are used for cluster identification.
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TABLE 2

Enumeration of the Bins Obtained by Scalar Quantization and Their Boundaries

bin index 1 2 3

α [0 – 115] [115 – 220] [220 – 360]

γ [0 – 120] [120 – 220] [220 – 360]

δ [50 – 118] [118 – 170]

ζ [10 – 130] [130 – 220] [220 – 360]
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TABLE 3

Results of the Modified VQ on Individual Residues, See Text for Details

Number ASCII Code Associated 4D Box Remarks

1 a 3113 More than half of the cluster centroids are in this box

2 A 3113 β ∈ [125 – 155] Appears in mismatch motifs

3 e 3112 ε ∈ [170 – 240], ζ ∈ [180 – 230], Kink-turn motif.

4 J 3112

5 E 3111 Takes part in the E-loop motif.

6 U 3213 β = 94° Takes part in the E-loop

7 u 3213

8 o 2113 αcenter ∈ [140 – 180], χcenter = 160°

9 O 2113 αcenter ∈ [180 – 220], χcenter = 200°

Takes part in the GNRA tetraloop

10 n 3213

11 r 3122 β ∈ [140 – 200],Hyper-Twist motif

12 q 3122 β ∈ [200 – 260]

13 R 3121 ζ ∈ [40 – 100], Kink-Turn motif

14 Q 3121 ζ ∈ [100 – 160]

15 h 3221

16 d 1322

17 z 3212

18 s 2121

19 t 1113 Starting conformation for an α stack

20 f 1112

21 v 3323 Starting conformation for an α stack

22 c 1123 Takes part in kink-turn motif

23 i 2213 Crank shaft of A-form RNA

24 g 2123

25 y 1312 Another crank shaft from A-form RNA

26 l 1213
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TABLE 8

Hyper-Twist Motif + and − Strands

First residue Sequence Binning Structure 4D VQ 7D VQ

20 – 27 GGUGGAUU aaaaraaa aaaaraaa aaaarAaa

516 – 523 AUGAAAUC aaraaaaa aaraaaaa aaraaaaa

365 – 370 GUGCGG aaraaa aaraaa aaraaa

279 – 281, 285 –
287

CCU, AUC iaaaaa iaaaaa iaaaaa

792 – 799 GAUGAAGC aaaraaaa aaaraaaa aaaraaaa

814 – 822 GUGGAAGUC aaaranzaa aaaranHa aaarAnHaa

1585 – 1592* CGUGGAAG aaaarara aaaaraRu aaaarARu

1602, 1605 – 1610 C,GAAGCG eraaaaa araaaaa araaaaa

1881 – 1887 ACUGAAU iaaraa iaaraaa iaaraaa

2015, 2016, 1771,
1847 – 1850

A,U,U,AGGU aa7aaaa aagaaaa aagAaaa

2500 – 2505 CGCAAG aaaraa aaaraa aaarAa

2515 – 2520* CGACCG aeaaaa aeaaaa aeaaaa

The SCOR description of these sites is mostly of “stacked paired non-Watson/Crick double strand” or “cross strand.” At*, the structure is considered
to be a kink-turn motif. For the 7D VQ, there is a clear preference for the “r” conformation to be in one of the complexes (ζ = 130).
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TABLE 11

Enumeration and Borders of the Bins from [10]

bin index 1 2 3 4

α [40 – 100] [125 – 200] [220 – 350] others

γ [10 – 110] [140 – 210] [230 – 350] others

δ [65 – 105] [130 – 165] others

ζ [240 – 350] others
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TABLE 12

ASCII Code Alphabet for the Binning Method from [10]

Number ASCII Code Associated 4D Box

1 a 3111

2 e 3112

3 r 3122

4 i 2211

5 o 2111

6 t 1111

7 n 3121

8 s 2122

9 l 1211

10 u 3211

11 c 1121

12 d 1322

13 p 4111

14 m 1122

15 h 3222

16 g 2121

17 b 4211

18 f 1112

19 y 1311

20 w 2222

21 k 4122

22 v 3311

23 x 4112

24 z 3213

25 j 2212

26 q 2112

27 1 3321

28 2 3322

29 3 1221

30 4 1321

31 5 3411

32 6 3131

33 7 4121

34 8 1212

35 9 2411

36 0 4311

37 + 3312

38 − 1222
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