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Abstract
In this paper, we present a new computationally efficient numerical scheme for the minimizing flow
approach for optimal mass transport (OMT) with applications to non-rigid 3D image registration.
The approach utilizes all of the gray-scale data in both images, and the optimal mapping from image
A to image B is the inverse of the optimal mapping from B to A. Further, no landmarks need to be
specified, and the minimizer of the distance functional involved is unique. Our implementation also
employs multigrid, and parallel methodologies on a consumer graphics processing unit (GPU) for
fast computation. Although computing the optimal map has been shown to be computationally
expensive in the past, we show that our approach is orders of magnitude faster then previous work
and is capable of finding transport maps with optimality measures (mean curl) previously
unattainable by other works (which directly influences the accuracy of registration). We give results
where the algorithm was used to compute non-rigid registrations of 3D synthetic data as well as intra-
patient pre-operative and post-operative 3D brain MRI datasets.
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1. Introduction
Image registration is amongst the most common image processing tasks in medical image
analysis. Registration is the process of establishing a common geometric reference frame
between two or more image data sets and is necessary in order to compare or integrate image
data obtained at different times or using different imaging modalities. A vast amount of
literature exists on image registration techniques and we refer the reader to Maintz and
Viergever (1998), Brown (1992), Goshtasby (2005), Hajnal and Hawkes (2001) for an
overview of this field.

Broadly speaking, image registration techniques can be classified as either “rigid” or “non-
rigid”. Rigid registration is usually performed when the images are assumed to be of objects
that simply need to be rotated and translated with respect to one another to achieve
correspondence. Non-rigid registration on the other hand is used when either through biological
differences or image acquisition or both, correspondence between structures in two images
cannot be achieved without some localized stretching of the images (Crum et al., 2004). In
contrast to rigid registration techniques, non-rigid registration techniques are still the subject
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of significant ongoing research activity. In this paper, we approach the task of non-rigid
registration by treating it as an optimal mass transport problem. As with other registration
techniques, the computational burden associated with this problem is high. We propose a multi-
resolution approach for the solution of this problem on the GPU to alleviate this difficulty.

The optimal mass transport problem was first formulated by a French mathematician Gasper
Monge in 1781, and was given a modern formulation in the work of Kantorovich and, therefore,
is now known as the Monge–Kantorovich problem (Kantorovich, 1948). The original problem
concerned finding the optimal way to move a pile of soil from one site to another in the sense
of minimal transportation cost. Hence, the Kantorovich–Wasserstein distance is also
commonly referred to as the earth mover’s distance (EMD). More recently, optimal mass
transport has found applications in medical image registration problems (Haker et al., 2004,
2001). Although there have been a number of algorithms in the literature for computing an
optimal mass transport, the method proposed in Haker et al. (2004, 2001) computes the optimal
warp from a first order partial differential equation, which is a computational improvement
over earlier proposed higher order methods and computationally complex discrete methods
based on linear programming. However, at large grid sizes and especially for 3D registration
the computational cost of even this method is significant. Rigorous mathematical details for
their algorithm can be found in Angenent et al. (2003).

Though computationally expensive, the OMT method has a number of distinguishing
characteristics: (1) it is a parameter free method and no landmarks need be specified, (2) it is
symmetrical (the mapping from image A to image B is the inverse of the mapping from B to
A), (3) its solution is unique (no local minima), (4) it can register images where brightness
constancy is an invalid assumption, and (5) OMT is specifically designed to take into account
changes in densities that result from changes in area or volume.

In the present paper, we extend our previous work (Rehman and Tannenbaum, 2007) and
implement the more general formulation of the OMT problem for 3D non-rigid registration
based on multi-resolution techniques and using the parallel architecture of the GPU. Although
multi-resolution methods have served as critical pieces of registration algorithms in the past,
it had yet to be shown that the optimal mass transport problem could be solved in the same
manner. Our experimental results show that this is indeed the case, a result which has
implications for many fields beyond imaging due to the ubiquitous nature of the OMT problem.
We also show that the PDE-based solution to the OMT problem is greatly enhanced by our
approach to such an extent that it becomes practical for use on large 3D datasets both in terms
of speed and accuracy. Overall, these results show that OMT-based image registration is
practical on medical imagery and, thus, merits further investigation as an elastic registration
technique without the need of smoothness priors or brightness constancy assumptions.

The rest of the paper is organized as follows. In Section 2 we review the mathematical
formulation of the problem and show how to obtain a descent direction. In Section 3 we discuss
the discretization and the solution of the discrete problem using multi-resolution, multigrid
methods implemented on the GPU. In Section 4 we present the results of applying our algorithm
to synthetic as well as MRI brain datasets. Finally, in Section 5 we summarize our work.

2. Optimal mass transport for registration
2.1. Formulation of the problem

We model the registration of images as an optimal mass transport problem. Accordingly, the
solution to the problem is an optimal mapping û (in some sense) between two densities μ0 > 0
and μ1 > 0 (Kantorovich, 1948). If we now define d as the dimension of the image domain, det
(·) as the determinant, u as a mapping from Ω → Ω with Ω a subdomain of ℝd, and represent
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by ρ(·,·) : Ω × Ω → ℝ+ a function of distance between two points in Ω, then the problem can
be formalized as

(2.1)

We refer to the constraint c(u) = 0 as the mass preserving (MP) property.

For the remainder of this paper, we take ρ(·,·) to be the squared distance function ρ(u(x), x) =
║u(x) − x║2. Even for the simple L2-norm, (2.1) defines a highly non-linear optimization
problem. While there exists a large body of literature which deals with the analysis of the
problem, such as (Ambrosio, 2000;Evans, 1989), only a smaller number of papers discuss
efficient numerical solutions for the problem. Benamou and Brenier estimate û by relating Eq.
(2.1) to the minimization of a certain kinetic energy functional with a space-time transport
partial differential equation (PDE) constraint (Benamou and Brenier, 2003). Their approach
not only estimates the optimal mapping but also provides the transportation path between the
densities. A computationally faster solution to (2.1) was proposed in Haker et al.
(2001),Angenent et al. (2003) and Haker et al. (2004). Their algorithm directly estimates û by
first computing a transformation u0 that fulfills the MP property. Afterwards, the algorithm
improves u0 by concatenating the mapping with the transformation

(2.2)

We refer to the second equation in (2.2) as the c ̃constraint. This means that s ∈  is an MP
mapping from μ0 to itself. The authors in Angenent et al. (2003) and Haker et al. (2004) show
that ŝ can be estimated via a steepest descent flow. To register 2D MRIs, they implement the
method using forward Euler equation scheme for time stepping and a simple finite difference
discretization of the spatial derivatives. The approach, however, does not enforce the MP
constraint at each step of the numerical algorithm, so that the final solution generally does not
fulfill the MP property. In addition, steepest descent is very slow in estimating the solution to
Eq. (2.2). For these reasons it would be very challenging to efficiently register 3D medical
images with this approach. To overcome this hurdle, this paper describes a faster numerical
solution to Eq. (2.2) that enforces the MP constraint.

Unlike Angenent et al. (2003) and Haker et al. (2004), we solve the optimization problem via
an approach where we choose a direction other than steepest descent and show that it converges
faster (see Section 2.2). Furthermore, we derive a numerical approach that uses a consistent
conservative discretization method and enforces the MP constraint at each update of the
solution (Section 3).

We end this section with the comment that our approach most closely relates to those
registration approaches based on fluid mechanics. The optimal warping map of the L2 Monge–
Kantorovich equation may be regarded as the velocity vector field which minimizes a standard
energy integral subject an Euler continuity equation constraint (Benamou and Brenier, 2003).
In particular, in the fluid mechanics framework, this means that the optimal Monge–
Kantorovich solution is given as a potential flow.
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2.2. Obtaining the descent direction
We now quickly review the derivation presented in Angenent et al. (2003) and Haker et al.
(2004) but within a variational framework.

Assuming that the MP constraint manifold (2.2) is valid we take a perturbation in s which stays
on the MP constraint manifold. This leads to

This expression can be simplified as long as the constraint is valid. Since det(∇u) > 0 we can
divide, and rearranging we have

Defining δζ = μ0δs(s−1), we see that

Next, looking at u = u0(s−1), we can write u(s) = u0 which implies that

or

Using the definition of δζ we obtain that as long as the constraint is valid and for u(s) = u0, we
have

(2.3a)

(2.3b)

Letting M denote the objective function in (2.2), it can be shown that

(2.3c)

In the original papers (Haker et al., 2001;Angenent et al., 2003;Haker et al., 2004), it is
suggested to use the Helmholtz decomposition in order to obtain a descent direction. Here we
employ a different approach. First, we note that the divergence constraint can be eliminated
by selecting
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and thus to reduce the objective function M we need to obtain a direction that yields a negative
δM, that is we seek a direction, δη such that

Using Gauss theorem we obtain that

and therefore the steepest descent direction is given by

which leads to the update

and finally to the steepest descent direction in u

or, in symmetric form

(2.3d)

The reason that this form is useful is because it can help to further understand the behavior of
the system. The elliptic operator −∇ × ∇ × is a negative operator thus, the equation can be
thought of as a parabolic PDE as long as all the eigenvalues of ∇u have positive real parts. If
at some point this condition is violated (negative real parts), then we obtain a backward
parabolic equation which is ill-posed. This point must be carefully considered for the numerical
method to be used.

Using the above decomposition a family of different directions may be obtained. Note that in
order to reduce the objective ∫Ω ∇ × u · ηdx, any vector field of the form

can be used. For example, a choice that leads to a similar method to the one derived in the
original works (Angenent et al., 2003; Haker et al., 2004) in 2D is A = −Δ−1 which leads to the
update
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(2.3e)

It is also easy to see that the flow (2.3e) is valid in 3D. Moreover, using Fourier analysis it is
easy to verify that given a smooth u the second formulation (2.3e) leads to a more stable method
that should converge faster compared with the first formulation (2.3d), because the operator ∇
× Δ−1 ∇ × is compact while the ∇ × ∇ × operator is unbounded (Trottenberg et al., 2001a).
Thus, (2.3e) will not in general prefer high or low frequencies. In the next section, we therefore
derive a numerical method for (2.3e) rather than for (2.3d).

3. Implementation
In this section we derive an efficient numerical method for the solution of the flow. The method
has four main components:

• pre-processing of input volume data.

• conservative discretization of Eq. (2.3e).

• a criterion to choose the step size.

• a method to correct steps that drift away from the constraint. (2.2).

3.1. Pre-processing input data
In context of image registration applications the input data to our algorithm is the source and
target volumes that need to be registered. For all the examples presented in this paper we model
the mass density for a voxel as the image intensity. However, it can also be alternatively defined
as any scalar field that is related to the underlying physical model. This property can be
exploited for non-rigid registration of multi-modality data as well, where sufficient anatomical
correspondence exists between the source and target datasets. This will be further studied in
future work. In order for the notion of mass transport to hold it is necessary that both volumes
have same total mass. This is ensured by normalizing the image intensities by the respective
sum of all intensity values in each volume. The normalized data is then scaled by a common
factor to avoid numerical instability due to very small values. Another step in the pre-processing
of input data is the addition of a small mass in the background regions where there the intensity
values are zero in order to avoid a divide-by-zero while solving Eq. (2.3e). Another step
necessary in context of Brain MRI registration is dealing with the inherent anisotropic nature
of the data. We pre-process all brain MRI data by interpolating and re-sampling to isotropic
voxels.

3.2. Conservative discretization
The applications we have in mind derive from medical imaging where images are discretized
on a regular grid. We therefore construct our discretization based on a finite volume/difference
approach. To derive and analyze our discretization we introduce a new variable δp = Δ−1 ∇ ×
u and rewrite (2.3e) as

(3.7)

In order for the discrete system to be well posed we need consistent discretizations for Δ, ∇u
and ∇ × u. There are a number of possible discretizations that lead to a well-posed system.
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We divide Ω into n1 × … × nd cells, each of size h1 × … × hd where d is the dimension of the
problem. We discretize all the components of u at the nodes of each cell to obtain d grid
functions û1, … ûd. Since δp is connected to u by the curl operator, we employ a staggered grid
and place δp at cell centers. To approximate ∇u at each node, we use long differences. For
example, in 2D, assuming h1 = h2 = h, we have

Thus, in 3D, the discretized (1,1) block in (3.7) is a matrix of the form

(3.8)

where Dj is a matrix of long differences in the jth direction. Assuming u is sufficiently smooth
it can be shown that upon a consistent discretization of the Laplacian the system (3.7) is
invertible and that the overall (discrete) problem is well-posed. To obtain a consistent
discretization of the Laplacian we use a standard discretization (5 point stencil in 2D and 7
point stencil in 3D) with Dirichlet boundary conditions.

Finally, we need to discretize the curl of u. Here we use short differences in one direction
averaged in the other direction to obtain a cell center, second order accurate approximation of
∇ × u. For example, in 2D we obtain

(3.9)

where C denotes the curl matrix.

3.3. Computation of a step
The computation of each step requires two parts. Firstly, the solution of (3.7) and secondly, a
way to determine if it is an acceptable step. The solution of the system (3.7) is straightforward.
Any fast Poisson solver can be used for the task. Here we have used a standard multigrid method
with weighted Jacobi smoothing (Trottenberg et al., 2001b), bilinear prolongation and its
adjoint as a restriction (Trottenberg et al., 2001c).

The validity of the update is determined using the following procedure. Assume that at iteration
n we have ûn as an approximation to u and that we computed δû. The update is then performed
using,

(3.10)

where  is an orthogonal projection discussed in Section 3.4 below that projects ûn + αδû into
the mass preserving manifold. The step size α is then chosen such that the objective function
is decreased and that the real part of the eigenvalues of (∇hû) is positive. The entire procedure
is outlined in Algorithm 1.
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Algorithm 1—Solution of OMT:û ← OMTsol(μ0, μ1);
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Use μ0 and μ1 to compute a mass preserving u0

while true do

 Solve (3.7) for δû

 line search: set α = 1

 while true do

  ûn+1 =  (ûn + αδû)

  if ║ûn+1 − x║μ0 < ║ûn − x║μ0 and Re(λ(∇hun+1)) > 0 then

   Break

  end if

  α ⇐ α/2

 end while

end while

3.4. Orthogonal projection into the mass preserving constraint
Assume that we have computed a mass preserving mapping ûn, and that we have updated it to
obtain vn = ûn + αδû. It should be noted that an infinitesimal δû does not guarantee mass
preservation. Furthermore, we aim to take large steps in δû, and therefore the MP constraint is
likely to be invalid. To correct for this we use orthogonal projection. The goal is to compute a
vector field δv such that c(v + δv) = 0. Obviously, δv is non-unique and therefore we seek a
minimum norm solution that is we seek δv such that

subject to

It is easy to verify that a correction for δv can be obtained by solving the system
 (Nocedal and Wright, 1999) The system  can be thought as an elliptic

system of equations. The system is solved using preconditioned conjugate gradient with an
incomplete Cholesky preconditioner.

3.5. 3D multigrid Laplacian inversion
We inverted the Laplacian (a key component of the OMT algorithm) using a 3D multigrid
solver. The multigrid idea is very fundamental. It takes advantage of the smoothing properties
of the classical iteration methods at high frequencies (Jacobi, Gauss Siedel, SOR, etc.) and the
error smoothing at low frequencies by restriction to coarse grids. The essential multigrid
principle is to approximate the smooth (low frequency) part of the error on coarser grids. The
non-smooth or rough part is reduced with a small number of iterations with a basic iterative
method on the fine grid.

The basic components of multigrid algorithm are discretization, intergrid transfer operators
(interpolation and restriction), a relaxation scheme and the iterative cycling structure. We used
an explicit finite difference scheme for approximating the 3D Poisson equation. This approach
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uses a 19-point formula on the uniform cubic grid. Relaxation was performed using a
parallelizable four-color Gauss-Seidel relaxation scheme. This increases robustness and
efficiency and is especially suited for the implementation on the GPU. We used a trilinear
interpolation operator for transferring the coarse grid correction to fine grids. The residual
restriction operator for projecting residual from the fine to coarse grids is the full-weighting
scheme. A multigrid V(2,2)-cycle algorithm was used to iterate for the solution (residual max
norm ≈ 10−5). The interested reader is referred to Gupta and Zhang (2000); Briggs et al.
(2000); Trottenberg et al. (2001c) for complete details on implementation of the multigrid
method.

3.6. GPU implementation
An advantage of our solution to the OMT problem is that it is particularly well-suited for
implementation on parallel computing architectures. Over the past few years, it has been shown
that graphics processing units (GPUs; now standard in most consumer-level computers), which
are naturally massively parallel, are well suited for these types of parallelizable problems (Bolz
et al., 2003; Nolan et al., 2003).

A GPU is a highly parallel computing device designed for the task of graphics rendering.
However, the GPU has evolved in recent years to become a more general processor, allowing
users to flexibly program certain aspects of the GPU to facilitate sophisticated graphics effects
and even scientific applications. In general, the GPU has become a powerful device for the
execution of data-parallel, arithmetic (versus memory) intensive applications in which the same
operations are carried out on many elements of data in parallel. Example applications include
the iterative solution of PDE’s, video processing, machine learning, and 3D medical imaging.

Taking advantage of the benefits a parallel approach has to offer our problem, we implemented
our OMT multigrid algorithm on the GPU. The GPU’s advantage over the CPU in this sense
is that while the CPU can execute only one or two threads of computation at a time, the GPU
can execute over two orders of magnitude more. Thus, instead of sequentially computing
updates on data grids one element at a time, the GPU computes updates on entire grids on each
render pass, significantly improving performance (Fig. 3). For instance, on a modest Dual Xeon
1.6Ghz machine with an nVidia GeForce 8800 GX GPU (3DMark score of 7200),
improvements in speed over our CPU OMT implementation reached 4826 percent on a 1283

volume data where it converges in just 15 minutes. Presently available GPUs only allow single
precision computations, however, this did not affect the stability of the OMT algorithm.

The OMT algorithm is implemented on the GPU as a series of kernel operations: arithmetic
computations performed component-wise over large grids of data. An example of such an
operation is the restriction operator utilized in the multigrid algorithm to down-sample data;
each element of an input data grid is convolved and re-sampled to a lower resolution grid. The
data flow and sequence of kernel applications involved in the OMT solver are given in Fig. 1.
All kernels are written in Cg in conjuction with the OpenGL/fragment shader paradigm for
GPU computing as described in Pharr (2005). Fig. 2

4. Results
We illustrate our registration method using both synthetic and real examples. We start by
recovering a known deformation field that relates two images. We then register two
synthetically generated spherical volumes and conclude by giving a real example of 3D Brain
MRI image registration.
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4.1. Synthetic examples
A synthetic example can easily be constructed to test the convergence of our algorithm. We
used the standard MATLAB 3D MRI dataset for this experiment. Since, the optimal map u can
be defined as the gradient of a convex function ϕ (Angenent et al., 2003). We define one such
function as,

where c, σ1, σ2 and σ3 are parameters chosen to create a unique deformation field.
Differentiating ϕ with respect to x = (x1, x2, x3), we obtain u = (u1, u2, u3),

where,

We then apply this deformation field u to μ1 (x1, x2, x3) (MAT-LAB MRI data) to obtain μ0
(x1, x2, x3) as per the following relationship:

We then input the μ0 and μ1 pair into our solver to find the transformation u. We terminated
our algorithm after 100 iterations or when the curl of the solution was 4 orders of magnitude
smaller than its initial size (in the ∞-norm). The algorithm was run with input sizes of 8 × 8 ×
8, 16 × 16 × 16, 32 × 32 × 32 and 64 × 64 × 32. The error between the known and computed
deformation fields is plotted in Fig. 4 as a function of the grid size which clearly demonstrates
quadratic convergence of our method to the true solution as is expected from the discretization
error used in our numerical approximations.

In the second case, we register a synthetically generated 3D sphere (128 × 128 × 128) to a
deformed (dented) counterpart; see Fig. 5. It can be clearly seen that our algorithm does a good
job in capturing the deformation in the sphere.

4.2. Brain sag registration
In the third case, we registered two 3D brain MRI datasets. The first data set was pre-operative
while the second data set was acquired during surgery (craniotomy and opening of the dura).
Both were resampled to 2563 voxels and pre-processed to remove the skull. For clarity we view
the 2D deformation grid overlaid on corresponding sagital and coronal slices in Fig. 6 and Fig.
7, respectively.

Fig. 8 and Fig. 9 show the respective deformation grids of the above examples in 3D. For each
of the above examples the deformation map was computed in fewer than 20 iterations. The
curl (optimality metric) was reduced to less than 10−3, indicating convergence. This is a major
improvement over the previous methods (Haker et al., 2004;Angenent et al., 2003) where
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thousands of iterations were required for convergence. Another advantage to our method is the
explicit projection to the mass preserving constraint in each iteration which ensures that the
calculated mapping always takes us from the source image to the target image.

5. Conclusions
In this paper, we presented a computationally efficient method for 3D image registration based
on the classical problem of optimal mass transportation implemented in a novel manner.

Many times, global elastic registration methods based on principles from computational fluid
dynamics of the type presented in this work are so computationally intensive that they become
impractical for realistic problems in medical imaging. However, we have shown that optimal
mass transport is, in fact, a viable solution for elastic registration by achieving low run times
for typically sized 3D datasets on standard desktop computing platforms. In future work, we
will be applying this methodology to other interesting cases as well as extending the results to
3D surfaces (for which the Monge–Kantorovich theory holds).
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Fig. 1.
Outline of processing for the OMT solver conducted on the GPU. Processing occurs in two
major phases: evolution of the map from source to target volumes and time step adjustment.
Each gray rectangle represents one Cg kernel executed on the GPU. Arrows indicate the flow
of data volumes through the Cg kernels. The entire process in the figure, above is repeated left
to right until convergence.
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Fig. 2.
CPU versus GPU solution of PDEs: While the CPU computes updates on data grids one element
at a time, the GPU is capable of updating entire grids in one pass due to their massively parallel
architecture.
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Fig. 3.
The GPU realizes an increasing advantage in solving the OMT problem over the CPU as grid
size increases up to 1283 sized grids.
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Fig. 4. Error Analysis-Known Deformation Example
L2-norm and ∞-norm of error in calculation of u as a function of grid size.
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Fig. 5. Synthetic Imagery Results
A sphere is mapped to its deformed counterpart. In the lower image we show the deformation
vector field. It is clearly visible that the magnitude of deformation is maximum at the top where
the dent is and it decays smoothly inside the sphere (Data size 1283).
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Fig. 6.
OMT Results viewed on an axial slice. The top row shows corresponding slices from Pre-op
(Left) and Post-op(Right) MRI data. The deformation is clearly visible in the anterior part of
the brain.
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Fig. 7.
OMT Results viewed on a sagital slice. The top row shows corresponding slices from Pre-op
(Left) and Post-op(Right) MRI data. Here again the maximum deformation is visible on the
anterior part of the brain.
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Fig. 8. Sphere Registration(3D View)
The deformation is visible at the dented region of the sphere. (Data size 1283).
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Fig. 9. Brain Sag Registration(3D View)
The brain sag is visible in the anterior portion of the brain. (Data size 2563).
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