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Abstract
Integrative biomedical research projects query, analyze, and integrate many different data types and
make use of datasets obtained from measurements or simulations of structure and function at multiple
biological scales. With the increasing availability of high-throughput and high-resolution
instruments, the integrative biomedical research imposes many challenging requirements on software
middleware systems. In this paper, we look at some of these requirements using example research
pattern templates. We then discuss how middleware systems, which incorporate Grid and high-
performance computing, could be employed to address the requirements.

Keywords
integrative biomedical research; system level integrative analysis; multi-scale integrative
investigation

1 Introduction
Integrative biomedical research projects study complex interrelationships between different
biological entities and across different biological scales (e.g., molecular, cellular, and organ)
in order to understand the function and structure of biological processes in normal and disease
conditions. A better understanding of the relationships can result in a better understanding of
the mechanisms of complex diseases such as cancer and can lead to improved disease diagnosis
and treatment strategies.

Integrative research studies carry out a wide range of experiments and capture a wide variety
of data types. Datasets may be captured from high-throughput molecular analyzers (such as
data from microarray analysis, mass spectroscopy measurements, and measurements done
using real-time polymerase chain reaction (PCR) platforms), from high-resolution imaging of
tissues and organs (using high-power light and confocal microscopy scanners, high-resolution
magnetic resonance (MR) and positron emission tomography (PET) scanners), and from
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phenotypic observations such as electrocardiogram measurements. The datasets are integrated,
analyzed, and mined using computational biology, image analysis, and bioinformatics
techniques in order to look for patterns in data that can predict responses to treatment and
provide insight into mechanisms of disease.

Biomedical researchers increasingly leverage high-throughput instruments capable of
generating semantically complex terabyte-level molecular datasets and to scanners capable of
rapidly capturing multi-terabyte high-resolution images of tissue and organs. As a result,
researchers have a great opportunity to study biological processes at unprecedented resolutions
and scales. While advanced data-capture technologies provide highly detailed views of
structure and function of biological and physical processes, the researcher is faced with the
need to efficiently store, manage, and analyze large volumes of semantically complex data in
order to synthesize meaningful information. In addition, studies involving complex diseases
often require collaboration between researchers with complementary expertise areas. In such
studies, information can be captured and stored in disparate, heterogeneous databases and may
need to be analyzed through applications developed and hosted by different groups.

In this paper, we examine and discuss the informatics requirements imposed on systems
software by large-scale, multi-institutional integrative biomedical research studies. We
describe these requirements using example research pattern templates (Saltz et al., 2008a, b,
c). We discuss how Grid and high-performance computing techniques and middleware
components could be used to address some of these requirements. We give examples of
software middleware systems, which our group has been involved in the development of and
which make use of Grid and high-performance computing techniques.

2 Example Integrative Biomedical Research Patterns
Specific research questions investigated in a study will determine the particular approach
employed, the types of experiments (and some case simulations) carried out, the types and
sizes of datasets collected, and the types of analyses executed. Nevertheless, research projects
targeting similar problems employ common principles and processes. These principles and
processes can be classified into broad groups of common patterns, referred to here as pattern
templates (Saltz et al., 2008a, b, c). The concept of pattern templates is inspired by the work
on pattern languages (Alexander, 1977) that capture common aspects of architectural design
patterns and by the principles of software design patterns for software development (Gamma
et al., 1994). In this work, we use pattern templates to capture, classify, and describe
requirements, best practices, and constraints on families of projects and applications. In this
section, we present examples of two pattern templates: system-level integrative analysis and
multi-scale integrative investigation.

2.1 System-Level Integrative Analysis
The system-level integrative analysis template represents research studies that have the
following characteristics: (1) a set of focused biological system questions are targeted in each
study; (2) a closely coordinated set of experimental measurements are carried out; and (3)
results from these experiments are integrated in order to answer the biomedical questions.

A good example of an application described by this pattern template is the effort on the part
of the CardioVascular Research Grid (CVRG; http://www.cvrgrid.org) and the Reynolds
project to answer the following question: “Who should receive implantable cardioverter
defibrillators (ICDs)?”. This question has great practical significance since high-risk patients
may receive ICDs. This study collects data from a set of patients with and without ICDs. The
datasets gathered from the patients include gene expression, single nucleotide polymorphism
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(SNP), microarray data, ECG measurements, recorded firings of ICDs, and image data. These
datasets are analyzed and integrated to predict the likelihood of potentially lethal arrhythmias.

Another example of this pattern template is the effort on the part of the Ohio State Center for
Integrative Cancer Biology (http://icbp.med.ohio-state.edu/). One of the focused questions
targeted in this project is “which ovarian cancer patients are best suited for a given therapy?”.
The project carries out a coordinated set of measurements from Chromatin-
immunoprecipitation microarray (or ChIP-chip), differential methylation hybridization
(DMH), and gene expression profiling experiments (Han et al., 2008). Epigenetics, gene
sequence, microarray, and proteomics datasets collected from these experiments are integrated
in order to understand the impact of epigenetic changes on particular genomic pathways. A
deep understanding of this biological system can be used to develop new drugs and to evaluate
which patients are best suited for a given therapy.

2.2 Multi-Scale Integrative Investigation
The multi-scale integrative investigation pattern template models research studies that have
the following characteristics: (1) the goal in these studies is to measure and quantify biomedical
phenomena; (2) data is obtained from experimental measurements (in some cases simulations)
of multiple biological scales (e.g., molecular, cellular, and macro-anatomic scales); (3) these
datasets are analyzed and integrated to understand the morphology and processes of the
biomedical phenomena in space and time.

An example of the multi-scale integrative investigation is the study of the tumor
microenvironment (TME) in order to understand the mechanisms of cancer development.
Many research studies have shown that cancer development occurs in space and time;
interactions among multiple different cell types, regulation, protein expression, signaling, and
blood vessel recruitment happen in time and space. The TME consists of different types of
cells, including fibroblasts, glial cells, vascular and immune cells, and the extra cellular matrix
(ECM) that holds them together. The cellular organization of tissues is possible via cellular
signal interchange in the TME. In a TME project, the investigation may focus on how
alternations in intercellular signaling could happen and how morphology and cellular-level
processes are associated with genetics, genomics, and protein expression. Understanding
cellular signal interchange can lead to a better understanding of malignant cancer development
and progression.

Image acquisition, processing, classification, and analysis play a central role in the multi-scale
integrative investigation template. Datasets may arise from high-resolution microscopy images
obtained from tissue samples. Hundreds of images can be obtained from one tissue specimen,
thus generating both two- and three-dimensional morphological information. In addition,
image sets can be captured at multiple time points to form a temporal view of morphological
changes. The images are processed through a series of simple and complex operations
expressed as a data analysis workflow. The workflow may include steps such as cropping,
correction of various data acquisition artifacts, segmentation, registration, classification of
image regions and cell types, as well as interactive inspection and annotation of images. The
analysis workflow annotates image regions with cell types and the spatial characteristics of the
cells. This information is then combined with molecular information to investigate correlations
and associations between molecular and morphological information. Genetic and cellular
information can further be integrated with biological pathway information to study the impact
of genetic, epigenetic, and cellular changes on major pathways.

Simulation also plays a crucial role in the multi-scale integrative investigation template. As
knowledge of basic biomedical phenomena increases, the ability to carry out meaningful
detailed simulations increases dramatically. Some researchers are now carrying out TME
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simulations and we expect the prevalence of this to increase dramatically with the improved
quality of detailed multi-scale data.

3 Informatics Requirements of Pattern Template Examples
Both example templates involve the integration of many types of information from a variety
of data resources in order to synthesize information. In the case of the system-level integrative
analysis template, for example, multi-institutional studies access data from resources hosted
at different institutions. Information is drawn from commercial/enterprise systems, e.g., health
information records, laboratory information management systems, the Picture Archiving and
Communications System (PACS) (Huang et al., 1991), as well as genetic, genomic, epigenetic,
and microscopy databases. As a result, successful implementation of the example templates is
influenced by (1) how effectively the researcher can discover information that is available and
relevant to the research project and (2) how efficiently they can query, analyze, and integrate
information from different resources. This is a challenging issue since disparate data sources
are heterogeneous and cannot readily interoperate.

The lack of interoperability among data sources is more apparent in multi-institutional settings;
however, interoperability of resources even within a large institution is often limited. The same
type of data may be expressed in different formats. Naming schemes and semantic metadata
associated with data types are heterogeneous and not compatible: they are often developed and
managed in silos. Middleware systems need to provide tools and infrastructure support to
overcome these barriers to syntactic and semantic interoperability. With syntactic
interoperability, the functionality of a data or analytical resource can be accessed via
programmatic interfaces and data structures can be exchanged between resources
programmatically. With semantic interoperability, systems can consistently exchange
information and can perform reasoning on conceptual knowledge types. This enables
semantically correct and unambiguous use of resources and their content.

Handling of semantic information plays a key role in the two templates, but more so in the
multi-scale integrative investigation template. Image annotations and molecular information
in the study of the TME, for example, can be associated with concepts defined in domain-
specific ontologies. Annotated image and molecular data form a multi-dimensional model of
the TME represented in a semantic knowledge base. It is desirable for a researcher to be able
to query these complex and hierarchical micro-anatomic structures and molecular
compositions using both semantic annotations spatial predicates in order to explore interactions
across different biological scales. As an example, consider Figure 1, which illustrates a
microscopy image annotated with different types of cells and regions. The ontology in this
example may have the following concepts and relationships: “Endothelial cells touch blood
vessel lumen” and “Protein C is expressed only in endothelial cells”. The data gathered from
experiments and analysis may have the following information: “Region A is a cell (from image
analysis)”, “Region A expresses protein C (from molecular assay)”, and “Region B (from
expert markup)”. Analysis of the image also shows that Region B touches Region A. Given
the ontology and the spatial characteristics of the dataset, it can be inferred that “Region A is
an endothelial cell”, “Region B is a blood vessel”. Thus, a query searching for endothelial cells
or blood vessel should return Region A and Region B, respectively. With a more
comprehensive version of this example ontology, other examples of questions researchers may
ask include “What is the morphological/molecular effect on cell type 1 if we make a genetic
change in cell type 2?” or “Are the modifications of the gene expression more evident in
fibroblasts, macrophages or endothelial cells?”.

It is also desirable to support the definition of new concepts and classifications based on already
existing annotations and spatial information. The following rule, for example, creates a new
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concept, “foreign body”, using terms from ontology and spatial relationships. It states that any
entity that is classified as “unknown” and is within 10 units of distance from a macrophage is
a foreign body (a macrophage is a first line of defense against foreign bodies in animals). Here,
the term “macrophage” may come from a cell ontology:

High-performance computing requirements in these example templates arise from many
sources. Clinical outcome information in the system-level integrative analysis template may
be captured in unstructured text documents. Structured information for data integration can be
extracted from the text documents using natural language processing (NLP) techniques. NLP
methods are computationally expensive, and a study may need to process hundreds or
thousands of text documents. Whole genome analyses and coordinated analyses of molecular
and imaging data are other sources of compute- and data-intensive operations. High-throughput
instruments are capable of generating multi-gigabyte genomic datasets. Processing and mining
of these datasets on a desktop machine may take several hours, even days. Similarly,
microscopy images obtained from advanced scanners may reach multiple gigabytes in size. In
studies involving three-dimensional reconstructions and time-dependent acquisition of images,
storage and processing of the image datasets can be prohibitively expensive on desktop
machines.

Exploration of terabyte-scale datasets require support for a researcher to create a global view
of all datasets in a study and efficiently drill down to localized, higher-resolution
representations. Systems software should be able to support efficient computation of various
summaries and representative samples from datasets to speed up the knowledge extraction
process. These systems should implement architecture-conscious caching techniques,
descriptive metadata structures, and index schemes to manage the summary products so that
they can be retrieved and processed quickly. Mechanisms are also desired that can incorporate
trading accuracy of query/analysis results for performance, while meeting user-defined
accuracy or performance requirements.

High-performance computing (HPC) support is also needed to enable efficient management
and querying of very large semantic and spatial information. A high-resolution image may
contain thousands of cells and hundreds of slides may be obtained from a specimen. The
researcher has to manage and interact with large volumes of image data, large numbers of
objects (corresponding to segmented and classified regions), and semantic information. The
size of the semantic information component can easily exceed millions of explicit semantic
annotations (about cell information and genomic data).

Compelling workflow and federated query use cases, which involve multiple data sources and
analytical services, arise from the example templates described here. Studies in the system-
level integrative analysis template, for instance, query information associated with multiple
groups of subjects, compare and correlate the information about the subject under study with
this information, and classify the analysis results. The multi-scale template, and the system-
level analysis template to an extent, can involve processing large volumes of image data,
including three-dimensional reconstruction, segmentation, and feature detection and
classification. These types of analyses require high-performance analytical services, the
backend of which should leverage distributed memory clusters, filter/stream-based high-
performance computing, multi-core systems, symmetric multiprocessor (SMP) systems, and
parallel file systems. In addition, workflow execution engines capable of efficient inter-
resource (inter-service) large-scale data transfers are needed. One of the challenges is to be
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able to enable composition of hierarchical workflows, in which a workflow step itself can be
another workflow, and coordinate execution of the interactions between services as well as
fine-grained dataflow operations within a service.

4 Grid and HPC for Integrative Biomedical Research
This section presents examples of software support that employ Grid and HPC to address the
requirements of integrative biomedical research. We describe the caGrid infrastructure to
present an implementation choice for system-level integrative analysis studies in multi-
institutional settings. Next we describe a proof-of-concept implementation to illustrate the use
of parallel computing for semantic query support in the multi-scale integrative investigation
pattern template.

4.1 Cagrid Infrastructure
A more detailed description of caGrid can be found in earlier publications (Saltz et al., 2006;
Oster et al., 2008). Here we provide a brief overview of the main characteristics of caGrid and
how it can be used to support the system-level integrative analysis template as well as potential
future improvements to caGrid in order to more efficiently support the pattern templates.

caGrid is a Grid middleware infrastructure designed (1) to facilitate collaborative research
studies, (2) to allow researchers to both contribute data and analytical resources and discover
resources in the environment, and (3) to enable federated queries across disparate databases
and execution of workflows encompassing distributed databases and analytical tools. caGrid
implements an infrastructure wherein the structure and semantics of data can be
programmatically determined and by which distributed data and analytical resources can be
programmatically discovered and accessed.

caGrid is built upon the Grid Services standards as a service-oriented architecture. Each data
and analytical resource in caGrid is implemented as a Grid Service. caGrid services are standard
Web Services Resource Framework (WSRF) v1.2 services (Foster et al., 2005) and can be
accessed by any specification-compliant client. A key difference of caGrid from other Grid
systems is the emphasis on interoperability of resources in the caGrid environment. To this
end, caGrid draws from the basic principles of the model-driven architecture. Data and
analytical resources are made available to the environment through object-oriented service
application programming interfaces (APIs). These APIs operate on registered data models,
expressed as object classes and relationships between the classes in UML. caGrid leverages
the existing NCI data modeling infrastructure, the Cancer Data Standards Repository (caDSR)
and the Enterprise Vocabulary Services (EVS) (Covitz et al., 2003; Phillips et al., 2006), to
manage, curate, semantically annotate, and employ these data models. At the Grid level,
services produce and consume objects serialized into XML documents that conform to XML
schemas registered in the Mobius GME (generic modeling environment) service (Hastings et
al., 2007). In effect, properties and semantics of data types are defined in caDSR and EVS and
the structure of their XML materialization in the Mobius GME.

The caGrid infrastructure also consists of coordination services, a runtime environment to
support the deployment, execution, and invocation of data and analytical services, and tools
for easier development of services, management of security, and composition of services into
workflows. The coordination services provide support for common Grid-wide operations
required by clients and other services. These operations include metadata management,
advertisement and discovery, federated query, workflow management, and security. The
coordination services can be replicated and distributed to achieve better performance and
scalability to large numbers of clients.
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caGrid has been used in the implementation of applications and tools to support informatics
needs of a number of biomedical research projects. caGrid is the Grid architecture of the cancer
Biomedical Informatics Grid (caBIG, https://cabig.nci.nih.gov) program. It is also used as the
core middleware infrastructure in the CVRG (http://cvrgrid.org).

Data integration from multiple and distributed resources is a common requirement arising in
the example templates. In the system-level integrative analysis template, researchers may
create molecular, proteomic, clinical, and image databases using in-house tools or existing
public or commercial applications. The service-oriented and model-driven architecture of
caGrid can provide support for interoperability of these databases and for federated and secure
access to these resources.

The first step in producing interoperable resources is for resource providers to agree on some
common data structures and their semantics. These agreed-upon data structures could be
published in the environment so that other researchers can reuse them. In the caBIG
environment, for example, community accepted data models are registered in caDSR and their
semantics are drawn from vocabularies managed in the EVS. XML schemas corresponding to
the registered data models are stored in the GME so they are available at the Grid level. Using
the caGrid service development tools (Hastings et al., 2007), a research group can then wrap
their databases and analysis methods as caGrid data and analytical services, respectively. Data
managed or manipulated in these services is exposed via service interfaces to the environment
using the published data models and XML schemas. In this way, a client application can interact
with these databases via well-defined interfaces and data models without needing to know how
the data is stored in respective database systems.

The security infrastructure of caGrid (Langella et al., 2008) can be employed to ensure that
only users with appropriate privileges can access controlled and sensitive information or
interact with the services.

A cooperative group, for example, could expose their data collection repositories as secure
caGrid services, allowing collaborating sites to securely access data and analytical tools, which
are wrapped as services, without needing to install any special software. Using the federated
query mechanism in caGrid, a researcher can compose and execute a query across multiple
data services to, for example, retrieve microarray data, SNP data, image data, and clinical
outcome data on a group of patients. The results of the query can then be processed through
an analysis workflow involving analysis services at multiple locations.

caGrid provides support for federated querying of multiple data services to enable distributed
aggregation and joins on object classes and object associations defined in domain object
models. The current support for federated query is aimed at the basic functionality required for
data subsetting and integration. Extensions to this basic support are needed to provide more
comprehensive support. Scalability of federated query support is important when there are
large numbers of clients and queries span large volumes of data and a large number of services.
Middleware components need to be developed that will enable distributed execution of queries
by using HPC systems available in the environment as well as by carefully creating sub-queries,
pushing them to services or groups of services for execution, and coordinating data exchange
between services to minimize communication overheads.

caGrid provides a workflow management service that supports the execution and monitoring
of workflows expressed in the Business Process Execution Language (BPEL)
(http://www.ibm.com/developerworks/library/specification/ws-bpel/). The use of BPEL in
caGrid facilitates easier sharing and exchange of workflows. Although a powerful language,
BPEL is difficult for users to use. There are frameworks such as WEEP
(http://weep.grid-miner.org/index.php/Main_Page) that are designed to provide high-level API
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and runtime support for management and execution of BPEL-based workflows. Higher-level
user interfaces and support are necessary to more easily integrate complex analysis workflows
in the biomedical research process. To this end, the caGrid development effort has implemented
support to use the Taverna Work-flow Management System (Hull et al., 2006) in version 1.2
of caGrid core infrastructure. The Taverna environment provides a graphical development
graphical user interface (GUI) and support for shims to enable composition of incompatible
services.

Researchers are capable of collecting or generating large volumes of data thanks to advanced
scanners and analysis instruments. The data- and compute-intensive nature of scientific data
analysis applications demands scalable solutions. Workflow support should implement several
optimization mechanisms to reduce execution times. First, the workflow system should take
advantage of distributed computing resources on the Grid. The Grid environment provides
computation and storage resources. The workflow system should support execution of
workflow components at different sites (Grid nodes) and reliable, efficient staging of data
across the Grid nodes. A Grid node may itself be a cluster system or a potentially heterogeneous
and dynamic collection of machines. The workflow system should enable scheduling of tasks
onto such machines and efficient execution of the portions of the workflow, which are mapped
to that Grid node, on cluster systems. Second, performance of workflows is affected by
application-specific parameters. Performance optimization of a workflow requires finding a
set of optimal values for these performance parameters. Workflow-level performance
parameters include grouping of data processing components comprising the workflow into
meta-components, distribution of components across sites and machines within a site, and the
number of copies of a component to be executed. These parameters have an impact on the
computation, input/output (I/O), and communication overheads, and as a result, the total
execution time. Another means of improving performance is by adjusting component-level
performance parameters in a workflow. An example is the data chunk size in applications,
which analyze spatial datasets. Another example is the version of the algorithm employed by
a component to process the data. The workflow system should provide support to improve
performance through manipulation of such parameters along multiple dimensions of the
parameter space.

In recent work we have developed a workflow middleware that supports data analysis
workflows in a Grid environment with cluster-based Grid nodes and that allows for
performance improvement via manipulation of workflow-level and component-level
performance parameters (Kumar et al., 2009). We are in the early stages of investigating how
this system can be integrated with caGrid. The workflow middleware integrates four systems:
WINGS (Gil et al., 2007), Pegasus (Deelman et al., 2004), Condor (Thain et al., 2005), and
DataCutter (Beynon et al., 2001). The WINGS system is used to facilitate high-level semantic
representation of workflows. In the WINGS system, the building blocks of workflows are
components and data types. An application- or domain-specific library defines the input and
output data types of each component and how metadata for input types are associated with that
for output types. The data types are defined in an application-specific ontology. A user can
describe a workflow using semantic properties associated with components and data types
using the Web Ontology Language (OWL). Using this workflow template, the user can specify
a dataset instance (e.g., an image or group of images) as input to the workflow. A specification
of the workflow is then generated by the workflow system in the form of a directed acyclic
graph. Once a workflow has been specified, the user can adjust workflow-level and component-
level parameters and quality-of-service requirements to enable performance optimizations. The
Pegasus Workflow Management System is used to reliably map and execute application
workflows onto diverse computing resources in the Grid. Condor is used to schedule tasks
across machines. Pegasus submits tasks in the form of a directed acyclic graph (DAG) to
Condor instances running locally at each Grid site. We have extended Condor’s default job-
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scheduling mechanism to support performance optimizations stemming from quality–
performance tradeoffs. DataCutter is employed for pipelined dataflow style execution of
portions of a workflow mapped to a Grid site consisting of cluster-style systems. A task mapped
by Pegasus to a site and scheduled for execution by Condor may correspond to a meta-
component. In that case, the execution of the meta-component is carried out by DataCutter in
order to enable the combined use of task and data parallelism and data streaming among
components of the meta-component.

We have performed an experimental evaluation of this workflow system using a pixel intensity
quantification (PIQ) workflow across two cluster systems hosted in different departments at
the Ohio State University. The first consists of 64 dual-processor nodes equipped with 2.4 GHz
AMD Opteron processors and 8 GB of memory, interconnected by a Gigabit Ethernet network.
The storage system consists of two 250 GB SATA disks installed locally on each compute
node, joined into a 437 GB RAID0 volume. The second cluster is a 32-node cluster consisting
of faster dual-processor 3.6 GHz Intel Xeon nodes each with 2 GB of memory and only 10 GB
of local disk space. This cluster is equipped with both an InfiniBand interconnect as well as a
1 Gbps Ethernet network. The two clusters are connected by a 10-Gigabit wide-area network
connection: each node is connected to the network via a Gigabit card. The PIQ workflow is
shown in Figure 2.

In our experiments, we have created a grouping of multiple components of the workflow into
meta-components to generate a workflow with a coarser task granularity. The zproject and
prenormalize steps formed one meta-component, the normalize, autoalign, and mst steps
formed another meta-component, and the stitch, reorganize, and warp steps formed the third
meta-component. Preprocess is the fourth meta-component in the workflow template and
includes the threshold, tessellate, and prefix sum components. When component collections
are embedded within a meta-component, they are not explicitly unrolled at the time of workflow
instance generation. Instead, they are implicitly unrolled within a DataCutter instance.
DataCutter will create multiple copies of filters that handle the processing of component
collection tasks. Also using the DataCutter system, data processing within the preprocess meta-
component is pipelined and streamed between the components without any disk I/O during
execution. Our experimental results show that by combining components into meta-
components and employing high-performance dataflow techniques within a meta-component
mapped to a cluster system, we can improve the performance of the workflow by over 50%.
The workflow system enables this performance improvement by allowing the user to adjust
performance parameters, in this case the granularity of the workflow steps.

4.2 Parallel Materialization in a Spatial Knowledge Base
The multi-scale investigation template requires support for querying of data using semantic
annotations as well as spatial predicates. It is also desirable to enable creation of new concepts
and semantic information using existing annotations and spatial relationships. Ontology
languages such as RDFS and OWL, in their current form, support explicit role relationships
between individuals (instance data) and do not offer any special support for spatial data types
and predicates. Rule-based programming offers a convenient abstraction to link spatial and
non-spatial information. Existing semantic stores, such as SwiftOWLIM (Kiryakov et al.,
2005), are optimized for materializing RDFS/OWL ontologies. Rule systems such as JESS
(Hill, 2003) are suitable for forward chaining on rules. They support user-defined predicates
as black-boxes. The introduction of spatial predicates in rules, however, may result in a large
number of computations.

We describe a parallel approach that combines a semantic storage engine with a rule engine to
carry out materialization in a spatial knowledge base (SKB), which consists of an ontology,
explicit assertions, and rules involving spatial predicates. Materialization is the process of
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computing all inferred assertions as per the semantics of the ontology and rules with spatial
predicates in the knowledge base. Materialization can speed up the execution of subsequent
queries into the database: materialized assertions can be loaded into a database and optimization
techniques including indexing can be utilized.

The parallel approach employs spatial partitioning techniques along with a demand-driven
strategy for execution. It makes use of spatial predicates in rules to partition space and achieve
data parallelism. The demand-driven strategy is used to achieve load-balanced execution
among processing nodes.

We define a SKB as consisting of four parts: TBox, ABox, spatial object mapping, and rule
set. A TBox consists of concepts and roles and expresses relationships between them in an
ontology language such as RDFS or OWL. An ABox consists of individuals and property
assertions. Individuals may belong to one or more concepts and may be related to each other
via roles. The individuals may be associated with a spatial object that covers a certain portion
of a multi-dimensional space. The third part contains this mapping. The final piece is a set of
rules that capture higher-level application semantics using rules that involve ontology and
spatial constraints. A rule is of the form left-hand side (LHS) ? right-hand side (RHS), which
is interpreted as when the conditions of LHS are true for some binding of variables. The RHS
is asserted for the set of bindings. The LHS is a conjunction of conditional elements (CEs). A
CE may be an ontology constraint or a spatial predicate. The RHS is a conjunction of ontology
constraints.

The first step in materialization is the calculation of inferred assertions due to the semantics of
the ontology. Rule-based inference is applied on the inferred information, which may generate
additional assertions. These two steps may be repeated until no new assertions are generated.

The parallel approach employs a master node and worker nodes. The master node is responsible
for partitioning the space and assigning partitions to workers. Workers report to the master
when they are idle and are assigned a partition by the master node. Execution proceeds in a
demand-driven fashion.

4.2.1 Master Node: Partitioning Space—Each spatial individual in the dataset is assigned
a minimum bounding sphere (MBS), which reflects the boundaries of the individual. If the
individual is a point, the MBS of the individual will be zero. The master node parses the rule
set and expands the MBS associated with spatial individuals to form spheres of influence
(SOIs). The SOI is the indication of how two spatial individual might affect a rule in the rule
set. For example, if there is a rule

This rule states that if the distance between two individuals x and y is less than 10 units, y is
an element of concept C. If the two individuals are points, their MBS will be zero. However,
if they are within 10 units of each other, the rule should return true. In this example, the SOIs
of individuals in the dataset because of this rule will be 5 units.

Initially, each spatial individual is assigned a SOI, which is the same as its MBS. For a given
rule set, the master node computes the minimum radius of the sphere of influence (R) over all
objects in the dataset. To compute R for a rule set, the master node computes a minimum radius
value per rule, R1, R2, … in the rule set. It then computes the maximum of these values. If the
SOI of an individual is smaller than the minimum value, it is expanded to be the minimum
value. Since the parallel algorithm partitions the space, the computation of SOIs is necessary
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to ensure correctness when materialization is carried out. Without SOIs, it is possible that two
individuals that may be required for a rule’s evaluation may be incorrectly assigned to two
different partitions.

The master node maintains a stack of partitions. A partition consists of a bounding rectangle
and a set of individuals. Initially, there is a single partition that holds all individuals. The top
partition is retrieved, and if the size of the partition (i.e. number of individuals) is less than the
target size, it is treated as a partition ready to be processed by a worker node. Otherwise, it is
partitioned into two smaller partitions and the two smaller partitions are pushed onto the stack.
We employ a variant of the kd-tree (Ooi et al., 1987), node-splitting algorithm to partition the
space. Given a partition, the algorithm chooses the longer dimension of the containing space
and finds a splitting plane that creates two balanced partitions. That is, the number of
individuals in partition is approximately equal to the number of individuals in the other
partition. Individuals are assigned to one of the partitions based on which partition contains
their SOIs. Note that some individuals’ SOIs may transcend the splitting plane. These
individuals are assigned to both partitions. When a master generates a small enough partition,
it signals an available worker and passes on the partition information, i.e., the bounds of the
partition.

4.2.2 Worker Node: Processing a Partition—Upon receiving a partition, a worker node
extracts the individuals relevant to that partition and the rules and pushes them into the rule
engine. This involves the following steps:

• Identify concepts and roles in the LHS of the rule set.

• Extract individuals (or pairs of individuals) corresponding to the concepts (or roles).

• Filter individuals (or pairs of individuals) if the concept (or role) is spatially restricted.
A concept is said to be spatially restricted if the concerned variables are involved in
spatial predicates. Individuals that fall outside the partition are not considered.

• Add filtered assertions to the rule engine and allow the rule engine to process
information. This may result in new assertions, which are fed back to the rule engine.

The spatial predicate is never computed for a binding of individuals that are not mapped to the
same partition. The worker node records the new assertions generated by the rule engine and
signals availability to master and waits for the next partition. This finishes the processing of a
partition.

4.2.3 Combining Results from Partitions—When the master is done sending all of the
partitions, it signals the end of the first iteration to all of the workers. Workers combine the
new assertions from all partitions and perform ontological materialization. In most situations,
this would be the end of processing and a trivial union of results from all workers would
correspond to the materialization of the dataset. However, if the rule set is recursive, further
processing may be required. A rule set is recursive if a fact asserted by the RHS of a rule may
cause additional matches in the LHS of some rule. Recall that a spatial individual may be
mapped to more than one partition because of its SOI overlapping a splitting plane. It is possible
that processing of one partition may cause inferred assertions on the individual, which may in
turn affect the processing of the second partition. It is possible that a spatial individual is
assigned to two partitions and is inferred as being member of a concept in one of them. This
new assertion must be propagated to the other partition. The execution proceeds in iterations
to solve this problem. At the end of the first iteration, worker nodes exchange newly generated
assertions, which may satisfy the LHS of some rule. To optimize communication, the workers
do not exchange all inferred assertions. They only exchange inferred assertions corresponding
to concepts (and roles) that appear in the LHS of some rule in the ruleset. Each worker then
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revisits each partition it processed in the previous iteration and checks for a change in the
number of input individuals. If a worker detects a difference, then the partition is processed as
in the first iteration. If no worker detects any change in input size for any partition, then
execution is halted as the fixed point as been reached. Thus, the parallel approach handles
recursive rule sets over multiple iterations.

4.2.4 Proof-of-Concept Implementation—We have developed a proof-of-concept
implementation of the presented approach using DataCutter (Beynon et al., 2001), a
component-based middleware framework. In DataCutter, an application processing structure
is implemented as a set of components, referred to as filters, that exchange data through a
stream abstraction. We used a version of DataCutter that employs MPI as the message-passing
substrate. The master and worker processes are DataCutter filters. The DataCutter subsystem
is responsible for launching the master and worker processes on nodes in a cluster and setting
up communication links. We used SwiftOWLIM library (Kiryakov et al., 2005), which is a
very efficient semantic repository. We also utilize JESS (Hill, 1987), a rule engine system
written in Java, for execution of rules. We implemented the spatial predicates as user-defined
functions and a ruleset parser using the ANTLR tool (Parr and Quong, 1995).

We performed an experimental evaluation using a distributed memory parallel machine and
synthetically generated confocal microscopy dataset. Each compute node has a dual AMD 250
Opteron processor running at 2.8 GHz with 8 GB of main memory. The nodes were connected
through an Infiniband Switch.

Confocal microscopy datasets were synthetically generated in the spirit of real images obtained
from confocal microscope in a TME setting. Scientists are primarily interested in the relative
locations of epithelial cells, endothelial cells, and macrophages. Typically epithelial cells are
found to be lining ducts or blood vessels. Endothelial cells are usually found embedded in the
extra-cellular matrix. We generated a dataset with 100,000 cells in a single three-dimensional
image. Epithelial cells are the most numerous (about 85% of the total number) while endothelial
cells and macrophages, together, form about 5% of the total. The rest of the cells are marked
as unknown to simulate the situation when an image analysis algorithm cannot classify a cell
with the required confidence level.

Table 1 shows a set of sample rules. The first rule states that an unknown cell that is in close
proximity to an epithelial cell may be marked as an epithelial cell. This is a recursive rule. The
second rule states that if an endothelial cell is very close to an epithelial cell, it may in fact be
a special type of endothelial cell that lies within the blood vessel. Macrophages are the body’s
first line of defense against foreign bodies. The third rule states that any unidentified entity
that is very close to a macrophage is a foreign body.

Figure 3 shows the scalability of the system for the three rules. The first rule is the most
expensive since it is recursive and requires multiple iterations. The second rule involves testing
more combinations of individuals than the third rule and is more computationally expensive.
We can see good speedup in the case of the recursive rule as well. The number of unknown
cells is relatively small (8%) and they are distributed in the extra-cellular matrix. The
computational work is well distributed among partitions and execution stops in two iterations.

5 Conclusions
Integrative biomedical research is a challenging field for information technology developers.
The requirements of integrative research projects span a wide range of challenging problems,
from semantic information management to processing of large data volumes to integration of
information in distributed environments. Individual middleware systems and software
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components can address some of these requirements, as described in this paper. However, there
is still substantial work to be done in order to fully support large-scale, multi-institutional
integrative biomedical research studies. It is necessary to implement integrated environments
that combine model-driven architectures, service-oriented architectures, Grid computing
systems, HPC techniques, and techniques in semantic information management.
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Fig. 1.
Microscopy image marked with cell types and regions annotated automatically and manually.
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Fig. 2.
The PIQ workflow.
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Fig. 3.
Execution times on 1–16 processors.
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Table 1

Example rules for confocal microscopy datasets in a TME study

Rule 1 EpithelialCell(?x) ? UnknownCell(?y) → EpithelialCell(?y) ? d(?x,?y) < 20

Rule 2 EndothelialCell(?x) ? EpithelialCell(?y) → BloodVesselEndothelialCell(?x) ? d(?x,?y) < 20

Rule 3 UnknownCell(?x) ? Macrophage(?y) → ForeignBody(?x) ? d(?x,?y) < 20
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