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ABSTRACT

Identification of small nucleolar RNAs (snoRNAs) in genomic sequences has been challenging due to the relative paucity of
sequence features. Many current prediction algorithms rely on detection of snoRNA motifs complementary to target sites in
snRNAs and rRNAs. However, recent discovery of snoRNAs without apparent targets requires development of alternative
prediction methods. We present an approach that combines rule-based filters and a Bayesian Classifier to identify a class of
snoRNAs (H/ACA) without requiring target sequence information. It takes advantage of unique attributes of their genomic
organization and improved species-specific motif characterization to predict snoRNAs that may otherwise be difficult to discover.
Searches in the genomes of Caenorhabditis elegans and the closely related Caenorhabditis briggsae suggest that our method
performs well compared to recent benchmark algorithms. Our results illustrate the benefits of training gene discovery engines on
features restricted to particular phylogenetic groups and the utility of incorporating diverse data types in gene prediction.
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INTRODUCTION

Interest in small non-protein-coding RNAs (ncRNA), in-
cluding tRNAs, snRNAs, snoRNAs, and miRNAs, has
burgeoned in recent years, following a growing recognition
of their roles in a wide range of biological processes (Eddy
2001; Hüttenhofer et al. 2005; Mattick and Makunin 2005).
Their discovery has been aided by high-throughput meth-
ods such as genome sequencing projects and DNA micro-
arrays (Hüttenhofer et al. 2005; He et al. 2007; Matera
et al. 2007). Computational discovery of these small RNAs,
however, has been lagging, particularly for snoRNAs and
miRNAs, due to the paucity of sequence features. We
sought to address this problem for box-H/ACA genes,
a major class of the snoRNAs.

Early screens for snoRNAs used experimental methods
and yielded relatively few genes (Ni et al. 1997; Liang-Hu
et al. 2001; Higa et al. 2002; Wachi et al. 2004; Yang et al.
2005) because experimental methods tend to be biased in
favor of highly expressed sequences (Hüttenhofer et al. 2001;
Gu et al. 2005). More recent efforts combined bioinformatics

methods with sequencing of cDNA libraries or microarray
data to carry out genome-wide scans—Caenorhabditis
elegans (Deng et al. 2006; Zemann et al. 2006; Huang
et al. 2007); other genomes: mouse (Hüttenhofer et al.
2001), Arabidopsis thaliana (Marker et al. 2002), and
Drosophila melanogaster (Yuan et al. 2003). These studies,
however, often rely on homology-based (using BLAST or
similar algorithms) or target site searches, snoGPS (Schattner
et al. 2004) and Snoscan (Lowe and Eddy 1999). This
complicates the discovery of highly diverged or novel se-
quences, or sequences (orphan snoRNAs) that apparently
lack target sites in snRNAs and rRNAs (Hüttenhofer et al.
2001; Bachellerie et al. 2002; Huang et al. 2005; Yang et al.
2006). This discovery bias may be a concern in light of
recent reports that some snoRNAs may guide modifications
of messenger RNAs (Kishore and Stamm 2006; Bazeley
et al. 2008) or function as precursors to other short RNAs
(Saraiya and Wang 2008; Taft et al. 2009).

Two recently developed snoRNA prediction algorithms
aim to address these problems: SnoReport (Hertel et al.
2008) and SnoSeeker (Yang et al. 2006). SnoReport eschews
target site searches entirely; instead, it uses a support vector
machine approach trained on folding energies and distance
constraints of a set of known snoRNAs. SnoSeeker was
designed to search for both guide and orphan snoRNA
genes, using a probabilistic model with conserved primary
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and secondary sequence motifs. SnoReport was designed to
be a universal snoRNA predictor, whereas SnoSeeker was
designed specifically for mammalian sequences.

While a universal predictor may have wide applicability,
the published results (Yang et al. 2006; Hertel et al. 2008)
suggest that a clade-specific predictor may perform better
than a universal one. We therefore sought to develop
a method for identifying H/ACA snoRNAs in the genomes
of Caenorhabditis species, by defining nematode-specific
versions of previously described sequence motifs and
combining them with additional features to achieve higher
prediction accuracy.

RESULTS AND DISCUSSION

The canonical structure of the H/ACA snoRNA is defined
by the presence of an H-box (AnAnnA) and an ACA-box
(ACA), as well as two hairpins of approximately equal
lengths (Supplemental Fig. S1). However, as currently
defined, the information content of these sequence motifs
is quite low, and the hairpins are common enough (Rivas
and Eddy 2000) that the mere presence of these features
does not provide sufficient basis for identifying H/ACA
snoRNAs. To identify other sequence features that may
help in the prediction of nematode H/ACA snoRNAs, we
assembled a comprehensive set (Supplemental Table S1) of
all known H/ACA snoRNAs in Caenorhabditis elegans from
a number of previous studies (Wachi et al. 2004; Deng et al.
2006; Zemann et al. 2006; Huang et al. 2007).

Distinctive genomic organization of C. elegans
H/ACAs

Like many ncRNAs, snoRNAs are often found nested
within the introns of protein-coding genes (He et al.
2006). Our survey of the C. elegans ncRNAs (including
608 tRNAs, 81 snRNAs, 87 C/D snoRNAs, and 62 H/ACAs)
showed that H/ACAs have distinct host-nested gene orga-
nization (Supplemental Table S2). It may be worth noting
that all features described here pertain to the host genes
rather than the RNA itself.

H/ACAs are parallel-nested in introns

Of the 62 currently annotated C. elegans H/ACAs, 56 (90%)
are found nested within the introns of protein-coding
genes, and all but two (i.e., 54) are in the same orienta-
tion (‘‘parallel’’) as the host gene. The propensity toward
parallel nesting is significantly higher than for other small
RNAs (tRNAs: 144/608 [24%], snRNAs: 25/81 [30%], C/D
snoRNAs: 43/87 [49%]) (Supplemental Table S2).

Host genes preferentially reside in operons

The 54 parallel-nested H/ACAs are located within 40
distinct host genes, 23 (58%) of which are contained within

operons. This is significantly higher than the fraction of
operon-contained genes among all genes (2871/20,084 =
14%), compact genes (see below) (17%), or host genes of
other ncRNAs (tRNA: 9.4%; snRNA: 11%, C/D snoRNA:
15%) (Supplemental Table S2).

Size range of host introns

We found that in C. elegans most host introns (introns that
harbor H/ACA RNAs) range between 161 and 400 nucle-
otides (nt) (Fig. 1A). The nested H/ACAs display no
discernable positional bias within the host introns, al-
though they never reside closer than 5 nt to the 39 splice
site or 19 nt to the 59 splice site, likely due to the presence
of the splicing signals (data not shown). Given that most
H/ACAs range between 120 and 160 nt, the limited range of
host intron lengths implies that nematode H/ACAs do not
share host introns. This is consistent with their process-
ing being mechanistically linked to splicing, in a manner
similar to snoRNA processing in vertebrates and higher
plants (Tollervey and Kiss 1997; Bachellerie et al. 2002).

Host genes are compact

Most host genes containing nested H/ACAs have a distinct
exon–intron structure. Specifically, all but the host introns
tend to be short (#65 nt) regardless of the total number of
introns or the length of exons (Fig. 1A). We designated

FIGURE 1. Genomic organization of C. elegans H/ACA snoRNAs.
(A) Intron length distribution of H/ACA host genes compared to all
C. elegans protein-coding genes. Note that the left scale refers to the
counts of host gene introns, while the right scale refers to the counts of
all introns. (C1–C5) The intron length categories (see the text for
details). (B) Examples showing structure of a compact gene and a
noncompact gene (from WormBase).
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these as ‘‘compact genes’’ (Fig. 1B). We also observed
a correlation between compactness of a host gene and its
residence within an operon. Specifically, host genes residing
in operons are less compact than other host genes (see
below).

Previous studies have observed that introns harboring
snoRNAs are often restricted in length (Fedorov et al. 2005;
Yang et al. 2006; Zhou and Lin 2008). While host intron
length is related to host gene compactness, they are not
equivalent, as host gene compactness also requires other
(nonhost) introns to be short. Currently no direct link is
established between host gene compactness and snoRNA
biogenesis. However, it is known that (A) many snoRNAs
reside in ribosomal protein genes (Yoshihama et al. 2002;
Zemann et al. 2006), which comprise a subset of house-
keeping genes; and (B) housekeeping genes in some species
(including C. elegans) are compact, according to a defini-
tion similar to the one used here (Duret and Mouchiroud
1999; Eisenberg and Levanon 2003; Vinogradov 2004).
These data and our observations suggest that compactness
of host genes may have biological relevance, possibly due to
the processing of the H/ACA snoRNAs from the host
introns, or the overall level and ubiquity of expression.
We tested whether annotations of host genes were over-
represented for particular functional categories, but other
than many being housekeeping and broadly expressed, did
not discover any particularly strong trends (Supplemental
Table S2).

Empirical rule describing host gene compactness

To utilize host gene compactness for predicting likely
genomic locations of the H/ACA snoRNAs, we divided the
intron length spectrum into five categories: (C1) #65 nt,
(C2) 66–160 nt, (C3) 161–400 nt, (C4) 401–800 nt, and
(C5) $801 nt (Fig. 1A). Category 1 is the default intron size
for a compact gene. Category 3 introns (C3) are host
intron-sized; indeed, most C3 introns in annotated host
genes contain H/ACA snoRNAs. A compact host gene is
therefore expected to have mostly C1 and at least one C3
intron, although many host genes also contain several C2 or
C4 introns, but none have any C5 introns. The number of
C2 or C4 introns in a host gene is operon-dependent:
nonoperon host genes have more C2 introns, but no C4
introns (data not shown). Based on 36 of the 40 H/ACA
host genes that we considered to be compact (Fig. 1B;
Supplemental Table S3), compact host genes satisfy the
following criteria:

1. May contain any number of C1 introns.
2. Must contain one to four C3 (host-sized) introns.
3. For a nonoperon gene, C2 introns are limited to a max-

imum of one or 50% of the total number of introns,
whichever is greater; the limit is reduced to 25% if the
gene is inside an operon.

4. C4 introns are only allowed if the gene resides in an
operon, and only up to a maximum of one intron or
25% of the total number of introns, whichever is
greater.

5. C5 introns are not allowed.

C. elegans-specific sequence features of H/ACA
snoRNAs

One of the major difficulties in computational identifica-
tion of H/ACA snoRNAs is the low information content of
sequence features. Through detailed analysis of the cur-
rently annotated C. elegans H/ACA snoRNAs, we discov-
ered several additional features of these genes (Fig. 2).

Host introns show preference for a specific 59 splice site signal

Whereas 48% (49,112/102,547) of all C. elegans introns
start with GTnnGT, this motif is substantially more
prevalent among H/ACA host introns (39/54 = 72%)
(Fig. 2A). This trend is not seen among short (#65 nt)

FIGURE 2. Sequence features of C. elegans H/ACA. (A) Sequence
logos showing that GTnnGT usage is higher in host introns than all
introns. Sequence logos were generated using in-house-developed
software based on literature (Schneider and Stephens 1990). (B)
Sequence logo showing the consensus motif of the extended 6-nt
ACA-box. (C) Pre-selection of H- and ACA-boxes requires the box
motifs to conform to sequence consensus, as well as to be positioned
within spatial constraints with respect to each other and the intron
boundaries. (D) Sequence features of the H/ACA used by the Naive
Bayesian Classifier to evaluate candidate sequences.
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introns (22,111/51,657 = 43%), introns of operon genes
(6002/14,903 = 40%), nonhost introns of host genes
(102/210 = 49%), or all host-sized (161–400 nt) introns
(8514/15,719 = 54%). A preference for a specific 59 splice
site motif (GTnnGT) may reflect a link between splicing
and intronic RNA processing (Bachellerie et al. 2002).

Refining consensus motifs of H-boxes and ACA-boxes

All H/ACA snoRNAs are characterized by two A-rich
motifs, the H-box (AnAnnA) and the ACA-box (ACA);
these are common in the A/T-rich introns of C. elegans.
Alignment of the currently annotated C. elegans H/ACAs
showed that the ACA-box extends to the three downstream
nucleotides, with an overall consensus of ‘‘ACAATT’’
(Fig. 2B). We thus refined the sequence of the 39-end of
C. elegans H/ACAs, as the ACA-box is located 3 nt up-
stream of the cleavage site (Bachellerie et al. 2002). Refining
the H-box sequence was more challenging because we fre-
quently found multiple valid motifs between the two
hairpins, as well as numerous H-box-like motifs, such as
AnAnA or AnAnnnA. We found, however, that all C. elegans
H-box motifs always contain at least one non-A nucleotide.

Nucleotide content in hairpin sequences

We found that C. elegans H/ACAs exhibit substantially
different nucleotide usage than intronic sequences, includ-
ing significant differences (Kolmogorov–Smirnov tests)
(data not shown) in the frequency of certain dinucleotides,
particularly, ‘‘AA,’’ ‘‘CG,’’ ‘‘GC,’’ ‘‘GT,’’ and ‘‘TG.’’ This
sequence composition difference may be imposed by the
demands of higher thermodynamic stability of hairpins
(Rivas and Eddy 2000). We did not find any additional
primary sequence motifs in the currently annotated H/ACA
sequences using MEME (Bailey et al. 2006).

Combining host gene and H/ACA sequence features
into a prediction engine

Our prediction engine consists of two separate parts (Fig.
3). The first relies on the compactness rules described above
to rapidly select candidate genes and introns likely to
contain snoRNAs. The second is a naive Bayesian Classifier
that uses newly refined sequence features (Fig. 2C,D) to
evaluate the probability that a given candidate intron,
indeed, contains an H/ACA snoRNA.

Selection of candidate host genes and introns

By applying the compactness criteria to the C. elegans
genome, 4699 out of 19,543 protein-coding genes were
classified as compact; these contained 6775 distinct host-
sized (161–400 nt) introns. The 54 parallel-nested C.
elegans H/ACA snoRNAs were found within 40 distinct
host genes, and 36 of these host genes (containing 50

H/ACAs) were classified as compact. Although this classi-
fication of host gene compactness is ad hoc and determin-
istic, it enabled a rapid and sensitive scan of the whole
genome, reducing the search space for H/ACA snoRNAs to
6775 introns, spanning just 2 Mb in total. This is a sub-
stantial reduction of the sequence space compared to the
combined intronic and intergenic regions on both strands,
totaling z150 Mb (Stein et al. 2003). Importantly, this
selection retained most of the annotated H/ACA sequences:
81% (50/62) of all H/ACA snoRNAs and 93% (50/54) of all
parallel-nested H/ACAs (Table 2, see below).

Construction of the naive Bayesian Classifier

Having reduced the search space to 6775 introns (dubbed
the ‘‘target set’’) using the host gene compactness criteria,
we used the sequence features described above to construct
a naive Bayesian Classifier to search the target set introns
for H/ACA snoRNAs. The Bayesian Classifier is a probabi-
listic approach that calculates the likelihood that a given
sequence belongs to one class (H/ACAs) or another (Table
1, ‘‘background introns’’). The classifier, therefore, has to
be trained on two sequence sets representing the two
different classes (for detailed descriptions, see Materials
and Methods and Supplemental Material). For each can-
didate intron, we first performed a fast scan for the
presence of valid H-boxes and ACA-boxes within specific
distance constraints (Fig. 2C), and then evaluated the

FIGURE 3. Schematic representation of the workflow. (A) Selection
of H/ACA snoRNAs (RNA training set) and host genes used for
training the host gene compactness test and the classifier. (B)
Selection of sequence sets used for background training (background
introns) and negative controls (long and short introns). (C) Selection
of candidate host genes and host introns (target set) and subsequent
steps to identify candidate H/ACA snoRNAs. (Boxes with double
borders) Sequence sets used for training; (solid lines) selection
processes; (dashed lines) training processes.
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likelihood of them belonging to a genuine H/ACA snoRNA
(Supplemental Material; Materials and Methods). To esti-
mate the confidence of each prediction, we used multiple
rounds of random re-sampling of the training sets (Mate-
rials and Methods). We decided that being classified as
H/ACA snoRNA by the Bayesian Classifier at least 500 out
of 1000 re-sampling rounds provided a reasonable com-
promise between sensitivity and specificity. As the Bayesian
Classifier did not use any information on RNA secondary
structure, we added further stringency to our predictions
by calculating the RNA secondary structure of the two
hairpin regions using RNAfold (Hofacker et al. 1994;
Hofacker 2003).

Classifier sensitivity and specificity

To determine the quality of our predictions, we applied the
Bayesian Classifier to the control sequence sets. We tested
the classifier on the 43 introns of the ‘‘RNA training set’’
(Table 1; Materials and Methods). For negative control we
used the ‘‘long introns’’ and ‘‘short introns’’ sets (Table 1;
Materials and Methods) because most of these are not
expected to contain H/ACA snoRNAs (Table 1). The
classifier alone provided a relatively high recall rate (Table
2), with 39 out of the 43 (91%) RNA training set sequences
passing at least 500/1000 re-sampling rounds. The estimates
of the corresponding false-positive rates (predicted H/ACAs

TABLE 1. Summary of sequence sets and performance of the Naive Bayesian Classifier on C. elegans and C. briggsae genomes—sequence
sets for training or evaluating the Bayesian Classifier

Set name Description

RNA training set Positive training set: Forty-three previously annotated C. elegans H/ACA snoRNAs
Background introns Negative training set: All introns from noncompact genes with lengths between 161 and 400 nt

(9139 sequences)
Long introns Negative control 1: Segments (300 nt) taken from the middle of introns with length >1000 nt

(4285 sequences)
Short introns Negative control 2: Randomly selected subset of background introns (6975 sequences)
Target set All distinct introns taken from compact genes with lengths between 161 and 400 nt (6775

sequences)

TABLE 2. Summary of sequence sets and performance of the Naive Bayesian Classifier on C. elegans and C. briggsae genomes—summary
of Bayesian Classifier results

Sequence set Total

Genes passing
$500/1000

resampling rounds

Genes passing
$800/1000

resampling rounds

SnoReport
(v. 1.2)

No
folding

Folding
(%)

No
folding

Folding
(%)

C. elegans
RNA training set 43 39 36 (84) 34 30 (70) 27 (63)
Nontraining set H/ACAs 11 4 4 (36) 4 4 (36) 5 (45)
All nested H/ACAs 54 43 40 (74) 38 34 (63) 32 (59)

Target set 6775 387 145 (2.1) 193 82 (1.2) 132 (2.0)
(Annotated H/ACAs in this set) 50 41 38 (76) 36 32 (64) 27 (54)
Long introns 4285 252 58 (1.4) 125 23 (0.54) 158 (3.7)
Short introns 6975 263 75 (1.1) 155 46 (0.66) 120 (1.7)
Combined long and short introns 11,260 515 133 (1.2) 280 69 (0.61) 278 (2.5)

C. briggsae
H/ACAs homologous to Cel

training set
47 31 29a 25 24 31

H/ACAs homologous to Cel
nontraining set

13 6 5 6 5 3

Target set (introns of compact genes) 4630 163 73 121 57 N/A
(Homologous to nested Cel

H/ACAs in this set)
41 31 29a 25 24 N/A

aThe C. briggsae sequences that did not pass the folding requirements were borderline cases, where one of the hairpins was shorter than the
threshold of 50 nt (one gene, 47 nt; another gene. 49 nt).
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in long and short introns sets) were 4.6% (515/11,260) and
2.5% (280/11,260). After applying the RNA folding step,
the number of recovered RNA training set sequences was
reduced to 36 (84%), but the false-positive rate was
substantially reduced to 1.2% (133/11,260, average of the
two negative control sets) (Table 2). When more stringent
conditions were applied (i.e., requiring the passing of 800,
not 500, rounds), the false-positive rate was reduced by
half, while the loss of annotated H/ACAs was fairly modest
(30/43 = 70%) (Table 2).

As mentioned above, several H/ACA sequences were
excluded from the RNA training set because they resided in
noncompact host genes or possessed noncanonical sequence
features (see conditions for exclusion in Materials and
Methods and Supplemental Material). We tested whether
the classifier could recover any of these excluded genes. The
classifier identified four of 11 such sequences (Table 1;
Supplemental Table S3). Because none of them were homol-
ogous to any of the RNA training set sequences, they could
not have been discovered using homology-based searches.

Search within C. elegans genome

The results from applying the classifier to the host-sized
(160–400 nt) introns selected from the compact genes in
the C. elegans genome are shown in Table 2. At the default
level of confidence (requiring that a given sequence is
predicted in at least 500/1000 re-sampling rounds), 145
H/ACAs were predicted in the target set, including 38
previously annotated H/ACAs. The estimated false-positive
rate of 1.2%, and therefore 81 (6775 3 0.012) false-positive
predictions, suggests the presence of 26 (145 � 38 � 81)
additional, currently not annotated H/ACAs. A more
stringent approach (requiring the passing of 800/1000 re-
sampling rounds) resulted in 82 predicted H/ACAs, of
which 32 were previously annotated. At this level of
stringency the false-positive rate is 0.61%. Therefore, most
(41 = 6775 3 0.0061) of the remaining 50 sequences are
expected to be false-positive predictions, suggesting that
few, if any, additional H/ACAs remain to be discovered in
the genome of C. elegans.

Comparison of algorithm performance

Two currently available prediction engines, SnoReport
(Hertel et al. 2008) and SnoSeeker (Yang et al. 2006), do
not rely on target-site matching, making them comparable
to our approach. However, we only used SnoReport for
comparison because SnoSeeker was developed specifically
for mammalian sequences. We applied the program to the
same C. elegans sequence sets used to evaluate the Bayesian
Classifier (Table 2).

At the default confidence level (passing at least 500/1000
re-sampling rounds), our classifier achieved a higher recall
rate, 91% (39/43), than SnoReport, 63% (27/43), while
recovering similar numbers of H/ACAs not included in the

RNA training set, four versus five (Table 2). Furthermore,
our method gains additional specificity, without consider-
able loss of recovery, using folding (Table 2). When applied
to 6775 host-sized (161–400 nt) introns of the target set,
our method and SnoReport predicted similar numbers of
candidate H/ACAs (145 and 132, respectively). However,
we have achieved a somewhat higher recovery of annotated
H/ACAs (38 versus 27), with a twofold lower estimated rate
of false positives (133 versus 278).

It seems important to underscore that this comparison
was actually biased against our method, because it was
carried out on a pre-selected set of host-sized (161–400 nt)
introns, not the entirety of intergenic and intronic se-
quences. As mentioned above, the former represents a 75-
fold reduction of the search space (2 Mb versus 150 Mb),
greatly reducing the number of false-positive predictions.

Search within C. briggsae genome

To test whether our method, trained on the C. elegans
genome, could be applied to other nematodes, we tested
it on Caenorhabditis briggsae, a related species with an as-
sembled (although incompletely annotated) genome (Stein
et al. 2003; Hillier et al. 2007). As a benchmark for al-
gorithm performance, we first identified C. briggsae loci
that were homologous to previously annotated C. elegans
H/ACAs. There were 60 such parallel-nested genes, of which
47 were homologous to the genes in the RNA training set.

First, we sought to establish that a classifier trained on
the C. elegans data was capable of discovering H/ACA
snoRNAs of C. briggsae. At the default confidence level
(passing at least 500/1000 re-sampling rounds) and impos-
ing folding requirements, 62% (29/47) of homologs of the
RNA training set sequences were recovered. This rate was
comparable to that of SnoReport (66% = 31/47) (Table 2).
Homologs of nontraining set genes cannot be discovered
via BLAST searches using the RNA training set sequences,
because there is no sequence similarity between the two
sets. Yet both our method and SnoReport recovered some
such sequences (five and three, respectively, of 13 total),
suggesting that rules inferred from C. elegans can be used to
discover H/ACA genes in C. briggsae.

We then applied compactness rules inferred from the
C. elegans RNA training set to identify compact genes in
C. briggsae. These contained 4630 host-sized introns (C.
briggsae target set). Among these sequences, the Bayesian
Classifier identified 73 candidate sequences (passing at least
500/1000 re-sampling rounds) that satisfied folding re-
quirements (Table 2), including 29 that were homologous
to known C. elegans H/ACAs, implying that compactness
rules were sufficiently similar between the two species.

Validation of candidate C. elegans H/ACA snoRNAs

Genuine H/ACA snoRNAs are expected to be expressed and
possibly conserved in C. briggsae. We used whole-genome
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tiling microarray data for C. elegans (He et al. 2007) to
determine whether candidate H/ACA genes were expressed.
As a reference, 53 of the 54 currently annotated parallel-
nested H/ACAs were expressed at sufficiently high levels
to be detected, suggesting a false-negative (FN) rate of 2%
(1/54). We carried out BLAST searches against the assem-
bled C. briggsae genome (Stein et al. 2003) to determine
whether our candidate sequences were conserved.

Within the set of 145 candidate C. elegans H/ACAs
(passing at least 500/1000 re-sampling rounds), 38 were an-
notated, leaving 107 sequences of unknown status. Of these,
31 sequences either had a significant match (E < 1e-5) in the
C. briggsae genome or were expressed at a sufficiently high
level to be detected (Supplemental Table S4). This number is
consistent with our estimate (see above) that 26 genuine
H/ACA snoRNAs remain to be discovered in the genome of
C. elegans. Eight predicted sequences are particularly note-
worthy because they are either expressed and conserved
between C. elegans and C. briggsae, or they are conserved in
orthologous introns of the two species (Supplemental Table
S4). We therefore consider them likely genuine snoRNA
genes. Three other sequences were predicted by both our
method and SnoReport; however, unlike the genes above,
these were found in multiple copies throughout the genome
and are thus less likely to be genuine snoRNAs. Taken
together, our results suggest that nearly the entire comple-
ment of C. elegans H/ACA genes has now been discovered.

Conclusions

We developed a two-part engine to predict H/ACA snoRNAs.
First, utilizing the knowledge of genomic architecture of
host genes, we achieved a 75-fold reduction of the search
space to include only the introns likely to contain H/ACAs.
Next, we used a Bayesian Classifier trained on nematode-
specific sequence features to make gene predictions that
were further verified by RNA folding. Our results suggest
that clade-specific features allow accurate predictions of
new genes to be made even in this extensively studied gene
category. The validity of our predictions is supported by
expression data and sequence conservation. Finally, we see
this work as an addition, not an alternative, to current
methods. Many genes have few informative features and are
therefore recalcitrant to computational discovery. Predic-
tion engines containing separate modules, each exploiting
a different set of clade-specific features, may prove to be
a useful approach to solving this problem.

MATERIALS AND METHODS

For a detailed description of the methods used, see Supplemental
Materials.

Genomic sequences and annotated ncRNA data

Genomic sequence data were collected from WormBase release
WS170 (http://www.wormbase.org) (Chen et al. 2005). Additional

snoRNA sequences (both H/ACA and C/D) were curated from
relevant literature (Higa et al. 2002; Wachi et al. 2004; Deng et al.
2006; Zemann et al. 2006; Huang et al. 2007), resulting in a set of 62
H/ACA genes (Supplemental Table S1). We refer to C. elegans genes
by their WormBase ID (e.g., ‘‘WBGene00012345’’), except in those
cases where the snoRNA has not yet been annotated by WormBase.

Analysis of genomic organization

Chromosomal positions and exon–intron information were based
on WormBase WS170 annotations. As the annotation of the
untranslated regions was incomplete, we used the start and stop
codons to mark the boundaries of the coding genes. For genes
with multiple transcription start sites and splice variants, we
considered each transcript separately. There are a few discrep-
ancies in the annotation of the ncRNAs between different sources
(see Supplemental Material).

Identification of candidate host introns
within compact host genes

Host gene compactness was initially noted by comparing the
exon–intron structures of the 40 host genes of parallel-nested
H/ACA snoRNAs (Fig. 3). Once we found that 90% (36/40) of
these genes were, indeed, compact, we constructed a set of empirical
rules to describe the compactness property. These rules were
applied to classify genes as either compact or not compact. From
the introns of compact genes, we selected host-sized (161–400 nt)
introns that could harbor H/ACA snoRNAs. There exist many
compact genes containing only Category I introns (#65 nt), but
these are likely too short to harbor any snoRNAs in their introns.

Analysis of H/ACA sequence features

As our set of H/ACA snoRNAs was assembled from several
published sources, there were occasional discrepancies in the
annotated locations of the H-boxes and ACA-boxes. The selection
of H-boxes was further complicated by the presence of multiple
(and frequently overlapping) candidate motifs. For each H/ACA
snoRNA, we manually selected the H-boxes and ACA-boxes,
ensuring that the position of the predicted hairpin structures
(calculated using mfold) (Matthews et al. 1999; Zuker 2003)
conformed with previous annotations.

Selection and evaluation of candidate H/ACA
sequences

For each candidate host-sized (161–400 nt) intron, we first
performed a fast scan for the presence of valid H-boxes and
ACA-boxes within certain distance constraints (Fig. 2C). A valid
H-box had to conform to the consensus, AnAnnA, and contain at
least one non-A residue. An ACA-box was considered valid if it
scored above the minimum threshold using the ACA-box position
weight matrix (see below). Valid ACA-boxes were situated >120 nt
downstream from the 59 splice site and >6 nt upstream of the
39 splice site. Valid H-boxes were located >60 nt downstream
from the 59 splice site and 50–90 nt upstream of an ACA-box (Fig.
2C). If both motifs were found within these distance constraints,
we consider them position markers for a candidate H/ACA. A
candidate host intron could contain multiple pairs of H-boxes
and ACA-boxes. Once all possible pairs of H-boxes and ACA-boxes
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within an intron were identified, we evaluated them using the
Bayesian Classifier and selected the most likely candidates.

Position weight matrix for scoring the ACA-box

A position–weight matrix (PWM) was generated for the ACA-box
motif using the nucleotide frequencies in the set of ACA-boxes
from the RNA training set. The PWM covers the ACA tri-
nucleotide as well as the three downstream nucleotides. A
threshold value, used for candidate ACA-box selection in sub-
sequent genome-wide screens, was set at 95% of the lowest score
from the RNA training set.

Construction of the naive Bayesian Classifier

Our Bayesian Classifier was constructed using four sequence
features (Fig. 2D), which distinguished H/ACA snoRNAs from
intronic sequences:

1. Starting hexamer of the host intron (59 splice site). This feature
checked whether the splice site of the host intron conformed to
GTnnGT.

2. The expanded 6-nt ACA-box (ACAnnn). This feature de-
termined whether the ACA-box of the candidate sequence was
similar to the ACA-box of currently annotated H/ACAs. Five
alternative sequences (in decreasing order of preference) were
deemed acceptable: ACAATT, ACAnTT, ACAAAn, ACAnnn,
and ATAnTT.

3. ‘‘In-class’’ tetramer usage. This feature calculated the likeli-
hood of finding a particular tetramer in H/ACAs versus
background introns (regardless of the number of times it
appeared in the sequence).

4. ‘‘In-sequence’’ dinucleotide and trinucleotide frequency distri-
bution. This feature examined how frequently a particular di- or
trinucleotide was present in either an H/ACA or intron sequence.

Features 3 and 4 employed a classifier-within-classifier approach,
which was a simplified version of the word-based naive Bayesian
Classifier used in the Ribosomal Database Project Classifier (Wang
et al. 2007). Data files and binary and source code for the Bayesian
Classifier are available from http://www.sourceforge.net/projects/
snobac.

Sequence sets for training and testing the naive
Bayesian Classifier

Two sequence sets were used to train the Bayesian Classifier: the
‘‘RNA training set’’ and the ‘‘background introns,’’ which, re-
spectively, consisted of introns harboring, or devoid of, annotated
H/ACA snoRNAs. The RNA training set, containing 43 sequences,
was derived by removing 11 sequences from the 54 parallel-nested
snoRNAs. The removed sequences included four nested in the
introns of noncompact host genes, three with noncanonical
H-box motifs, and four that were significantly longer than other
annotated H/ACAs (Fig. 3A; Supplemental Table S3). For the
background introns, we used a set of 9139 host-sized (161–400 nt)
introns from all noncompact genes.

We also generated two negative control sets, ‘‘long introns’’ and
‘‘short introns’’ (Table 1), for testing and evaluation purposes.
The long introns contained 300-nt segments selected from the
middle of introns longer than 1000 nt, as well as their own
59 splice site hexamers. The short introns were a randomly

selected subset of the background introns. As these sequences
were all selected from noncompact genes, they are unlikely to
contain H/ACA snoRNAs.

Confidence estimation using random re-sampling

The use of the entire RNA training set for predicting candidate
H/ACA sequences could result in overtraining. To avoid this
problem and to estimate the level of confidence in individual
H/ACA predictions, we conducted 1000 rounds of training on sub-
sets of the training and background introns. In each round, the clas-
sifier was trained on approximately two-thirds (0.66 3 42 + 1 = 30)
of the sequences randomly selected from the RNA training set
and an equal number of randomly selected background introns.
Candidate sequences classified as an H/ACA in all 1000 rounds
could be considered highly confident predictions. Prediction con-
fidence, therefore, can be represented by the number of times out
of 1000 in which a candidate sequence was classified as an H/ACA.
We further evaluated the classifier using a ‘‘leave-1-out’’ cross-
validation method (Supplemental Material; Supplemental Table S3).

Prediction of RNA secondary structures

Predictions of RNA secondary structures were made using RNA-
fold, a part of the Vienna RNA Package (Hofacker et al. 1994). For
HP2, we folded the entire region between the candidate H-boxes
and ACA-boxes. To ensure that this sequence folds into a single,
rather than a number of smaller, hairpins, we also folded all seq-
uences representing 59 and 39 truncations (in steps of 2 nt) between
the original sequence and 50 nt. As HP1 is not bound by a defined
upstream motif, we folded the sequence extending 90 nt upstream
of the candidate H-box and all of its truncated variants. For each
candidate, we reported the longest hairpin length for HP1 and HP2.

Comparison with SnoReport and validation
of predicted sequences by sequence homology
and expression

SnoReport version 1.2 was downloaded from http://www.bioinf.
uni-leipzig.de/zjana/software/SnoReport.html. We used WU-
BLAST (W Gish. 1996-2004. WU-BLAST. http://blast.wustl.edu/)
to search for sequences homologous between C. elegans and C.
briggsae. We matched our candidate sequences against the NPA
(nonpolyadenylated) and SNPA (small NPA, <500 nt) sets, derived
from the published C. elegans tiling array data (He et al. 2007).

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.
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