
Maximum-Likelihood Methods for Processing Signals From
Gamma-Ray Detectors

Harrison H. Barrett [Fellow IEEE],
Center for Gamma-ray Imaging and the Department of Radiology, University of Arizona, Tucson,
AZ 85724 USA. They are also with the College of Optical Sciences, University of Arizona, Tucson,
AZ 85721 USA (barrett@radiology.arizona.edu).

William C. J. Hunter,
Center for Gamma-ray Imaging and the Department of Radiology, University of Arizona, Tucson,
AZ 85724 USA. He is now with the University of Washington (wcjh@u.washington.edu).

Brian William Miller,
Center for Gamma-ray Imaging and the Department of Radiology, University of Arizona, Tucson,
AZ 85724 USA. They are also with the College of Optical Sciences, University of Arizona, Tucson,
AZ 85721 USA (molinero@email.arizona.edu).

Stephen K. Moore,
Center for Gamma-ray Imaging and the Department of Radiology, University of Arizona, Tucson,
AZ 85724 USA. They are also with the College of Optical Sciences, University of Arizona, Tucson,
AZ 85721 USA (smoo@email.arizona.edu).

Yichun Chen, and
Y. Chen is with National Central University, Taiwan (ycchen@dop.ncu.edu.tw).

Lars R. Furenlid [Member IEEE]
Center for Gamma-ray Imaging and the Department of Radiology, University of Arizona, Tucson,
AZ 85724 USA. They are also with the College of Optical Sciences, University of Arizona, Tucson,
AZ 85721 USA (furen@radiology.arizona.edu).

Abstract
In any gamma-ray detector, each event produces electrical signals on one or more circuit elements.
From these signals, we may wish to determine the presence of an interaction; whether multiple
interactions occurred; the spatial coordinates in two or three dimensions of at least the primary
interaction; or the total energy deposited in that interaction. We may also want to compute listmode
probabilities for tomographic reconstruction. Maximum-likelihood methods provide a rigorous and
in some senses optimal approach to extracting this information, and the associated Fisher information
matrix provides a way of quantifying and optimizing the information conveyed by the detector. This
paper will review the principles of likelihood methods as applied to gamma-ray detectors and
illustrate their power with recent results from the Center for Gamma-ray Imaging.
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I. Introduction
In imaging applications, gamma-ray detectors are usually based on scintillators or
semiconductor materials. Scintillation detectors are often some variant of an Anger camera in
which each event produces signals in an array of photomultipliers (PMTs) or other optical
detectors. These signals are conventionally used in a simple centroid algorithm to produce
estimates of the two-dimensional (2D) coordinates of the interaction position and the energy
deposited in the material by the interaction.

Semiconductor detectors are often pixellated arrays where the interaction produces electrical
signals directly on pixel electrodes. In these devices, the 2D location of the pixel that produces
the maximum signal is usually taken as the estimate of the interaction location, and the
magnitude of that signal is taken as the estimate of the energy. A similar approach is usually
taken in crossed-strip semiconductor devices, merely defining the pixel by the overlap area of
two orthogonal strip electrodes on opposite sides of a slab of semiconductor.

In thick detectors, there is also considerable interest in the third coordinate of the interaction,
often referred to as depth of interaction or DoI. Numerous clever methods have been devised
for estimating the DoI from either PMT signals in an Anger-like scintillation camera or
waveforms produced in semiconductor arrays.

For application in positron emission tomography, an important additional parameter to estimate
is the time of occurrence of the interaction event. Considerable effort has been expended on
sophisticated analog electronics for this application.

The signal-processing algorithms for all of these estimation tasks are usually chosen for ease
of electronic implementation and rapid execution, but there is no reason to believe that they
are optimal in any sense. They do not incorporate any model for the statistical properties of
the signals, and they usually make simplifying assumptions about the average or deterministic
properties as well. Moreover, they do not incorporate prior knowledge of the parameters being
estimated.

It is the premise of this paper that methods from statistical estimation theory, and in particular
maximum-likelihood estimation (MLE), can be advantageously applied to signal processing
for gamma-ray detectors. Moreover, ML theory provides a rigorous approach to design of the
detectors themselves because the well-known Fisher information matrix, to be defined in
Section II, provides a quantitative measure of the information conveyed by the detector signals.
MLE methods provide a way of extracting that information, and they are readily modified to
incorporate prior information.

MLE also provides a way of approaching entirely new parameter estimation problems in
gamma-ray detection. For example, a single incident gamma ray can deposit energy at multiple
sites in a thick crystal by Compton scattering one or more times before being photoelectrically
absorbed or escaping. MLE methods can be devised for estimating the number of interaction
sites associated with each gamma ray and the position and deposited energy for each.

Another example of a new estimation problem, which we shall discuss in this paper, is
determination of time of occurrence and energy of an event from sampled waveforms, rather
than by analog signal processing. As we shall see, timing resolution substantially better than
the sampling interval can be obtained.

In addition, MLE provides new ways of rejecting scattered events or other data that are
inconsistent with the statistical model used.
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Finally, there is considerable current interest in listmode image reconstruction, especially in
PET, and the relevant event likelihoods for this problem are greatly simplified, as we shall see,
if the list entries are ML estimates.

The application of statistical estimation methods to gamma-ray detectors originated with the
seminal work of Gray and Macovski [1], who considered the 2D position-estimation problem
with and without prior information. Further embellishments and practical implementations of
this concept were developed at both the University of Arizona [2]–[4] and the University of
Michigan [5]. ML estimation of depth of interaction was suggested by Gagnon [6]. It was
demonstrated by Marks [7], [8] in semiconductor arrays and recently by Hunter [9], [10] and
Moore [11] in scintillation cameras for PET. A likelihood window for scatter rejection was
described by Milster [4] and Chen [12], [13], and ML estimation of time of occurrence was
demonstrated by Furenlid [14].

This paper begins in Section II with a short review of ML estimation theory, in the context of
gamma-ray detectors. Section III then discusses specific likelihood models of relevance to
gamma-ray detectors, and Section IV discusses ways of estimating the free parameters in these
models. Section V surveys some applications of ML methods and recent results from the Center
for Gamma-ray Imaging. A summary and conclusions are found in Section VI.

Because of page limitations and the scope of the methods surveyed, many details are left out.
For mathematical background and implementation details, see [15] and [16].

II. Fundamentals of MLE Theory
A. Data Sets and Parameter Vectors

For parameter-estimation tasks, a likelihood is a probability (or probability density function if
appropriate) of the form pr(g|θ), where θ is an N × 1 vector with components given by the N
parameters to be estimated and g is an M × 1 data vector.

As a simple example, consider an Anger camera with 37 photomultipliers in a hexagonal array,
and suppose that we wish to estimate the lateral coordinates x and y, the DoI z and the energy

 of each event. Because there are four parameters to be estimated, N = 4, and ,
where the superscript t denotes transpose. If all 37 PMT signals are used in the estimation, then
M = 37 and component gm of the vector g is the peak signal from the mth PMT (m = 1, ... , 37).
It is common, however, to use only the data from the PMT that produces the largest signals
(the “hottest tube”) and from some subset of PMTs in the neighborhood. If the six nearest
neighbors are used along with the hottest tube, then M = 7 and the seven components of g are
these seven peak signals.

A less familiar example is afforded by the task of estimating the time of occurrence and energy
of a gamma-ray interaction in a single-element (non-imaging) detector such as one element in
a PET system consisting of independent scintillation crystals, each with its own photodetector.
The data vector in this case might consist of M samples of the waveform produced by a single
gamma-ray interaction, rather than just its peak value. If the detector elements are designed so
that the average amount of light reaching the photodetector is independent of position of the
interaction, then there are just two parameters to estimate: the time of occurrence τ and the
energy .

We shall refer to the data format for these two examples as super listmode, to distinguish it
from the usual meaning of the term listmode, where the list entries are position and energy
estimates. To be precise, if we estimate x, y, z and , by whatever means, for the jth event, then

the estimate of  is denoted as . It is this  that is an entry in
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a conventional listmode data set to be used for tomographic reconstruction. A super-listmode
entry, on the other hand, is the original gj, composed of raw PMT or electrode signals.

If we wish to perform an image reconstruction from listmode data (in the conventional sense),
for example by the listmode maximum-likelihood expectation-maximization (LMMLEM)
algorithm [17]–[19], we require a different likelihood from what we have been discussing. We

need to know , where f is some discrete representation of the object that produced

the listmode data and  is the set of estimates for all events, j = 1, . . . j. A super-listmode
reconstruction, which is also possible in principle [20], [21], requires pr({gj}|f).

On the other hand, not all gamma-ray detectors produce the raw data vector for each event
directly. Some detectors operate in an integrating mode, periodically reading out frames of
data which may contain signals from multiple gamma-ray events. An example is the Arizona
Hybrid [22], a pixellated cadmium zinc telluride (CZT)detector with a 64 × 64 array of
electrodes bonded to an integrated circuit that integrates the current from each electrode for 1
msec and then reads it out, regardless of how many events have occurred in this period. Because
of charge spreading by Coulomb repulsion and diffusion as well as hole trapping, each event
that occurs during the 1 msec integration time produces signals on some cluster of detector
pixels. If the number of events in a frame is large, these clusters overlap and we have an
integrating detector as in digital radiography. If the number of events per frame is small enough,
however, cluster overlap may be rare, and it may be possible to identify the pixels associated
with an individual event. In that case we can construct a raw data vector gj for each event, and
the integrating detector functions in a photon-counting mode.

Scintillation detectors based on CCDs (charge-coupled devices) are another example of
integrating detectors that can function in a photon-counting mode [23] if the number of events
per frame is small enough and the cluster size is small enough in comparison to the size of the
CCD. Several authors [23]–[25] have shown that electron-multiplying CCDs with low readout
noise can be used in this way, and more recently microchannel-plate intensifiers in close
proximity to the scintillation material have been used [26]. Miller has also shown how ML
estimation can be applied beneficially to estimate the 3D position and energy of each
scintillation event from the cluster of signals it produces.

We refer to the preprocessing step of identifying and separating the clusters as frame
parsing. Conditions under which unambiguous frame parsing is possible with minimal overlap
have been discussed by Furenlid et al. [27].

B. ML and MAP Estimation
An estimation rule, also called an estimator, is a function that maps a data vector g to an estimate
θ(g), or simply θ for short. One possible estimation rule is to choose the value of θ that
maximizes the likelihood. Formally,

(1)

where the argmax operator returns the value of the θ argument that maximizes the quantity in
brackets for the observed value of g. Thus the ML estimate of a parameter is the value that
maximizes the probability of the observed data with the specified parametric probability model.

An equivalent rule is to maximize the logarithm of the likelihood:
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(2)

If we treat θ as a random vector about which we have some prior knowledge, we can make use
of this information by forming the maximum a posteriori or MAP estimator, given by

(3)

The equality of these two expressions follows from Bayes’ rule and the fact that pr(g) is
independent of θ.

The MAP estimator in (3) has the same form as the ML estimator in (1) except that the
likelihood is weighted by the prior. If all values of θ are equally probable a priori, then pr(θ)
is a constant and MAP estimation reduces to ML.

An example of a useful prior for MAP estimation in gamma-ray detector is Beer's law; if we
want to estimate DoI z for a detector used with a parallel-hole collimator, for example, we
know a priori that pr(z) ∝ exp(–μz), where μ is the attenuation coefficient for the gamma rays.

C. Basic Properties of ML Estimators
In classical estimation theory, the performance of an estimator is specified by its bias and
variance. For a vector parameter, the bias is defined by

(4)

where the angle brackets denote statistical averaging over many realizations of the data for a
given true value of the parameter θ. In general, the bias will depend on this true value. An
unbiased estimator is one for which the bias equals zero for all true values.

The variance of the estimate of the nth component of θ is defined by

(5)

The variances can also be regarded as the diagonal elements of the covariance matrix for the
estimates. This matrix is denoted as , and its elements are given by

(6)

If the components of θ include coordinates of gamma-ray interactions in an imaging detector,
then the bias of the estimates of these components can be interpreted as spatial distortion and
the variance relates to the spatial resolution.

There is a fundamental lower limit on the variance, called the Cramér-Rao bound. To explain
this concept, we must first introduce the Fisher information matrix [28], [29], which will be
denoted F. The elements of this matrix are given by
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(7)

If a general estimator  is unbiased, its variance must satisfy the Cramér-Rao inequality,

(8)

There is a slightly more complicated version, which we will not give here, for biased estimators.
An unbiased estimator that achieves the bound is called efficient.

An efficient estimator does not exist for every estimation problem, but when an efficient
estimator does exist, the ML estimator is efficient. Moreover, The ML estimator is always
asymptotically efficient as more independent replications of a measurement, all with the same
true θ, are acquired. This limit may seem to be irrelevant for event estimation with gamma-ray
detectors, where we get only one data g vector for each event, but each event produces multiple
secondary particles (optical photons in a scintillator or electron-hole pairs in a semiconductor);
to the extent that these secondaries are independent (a point to be discussed further below), the
asymptotic properties of ML estimators hold in the limit of a large number of secondaries.

An ML estimator is not only unbiased and efficient in this asymptotic limit, but it is also
normally distributed, and the covariance matrix of the estimates is asymptotically equal to the
inverse of Fisher information matrix: . Thus the probability density function (PDF)
of the estimates, conditional on the true values, becomes

(9)

where N is the number of parameters being estimated, det(·) denotes determinant, and we have
used the fact that det(F–1) = 1/det(F). We shall make use of (9) in Section III-H.

III. Likelihood Models
An accurate likelihood function, pr(g|θ), should account for all random effects that influence
the data when the parameter of interest is held constant.

In a scintillation camera, the random effects include:

• The random number of optical photons in each event;

• Random propagation of light to PMT photocathodes;

• The random number of photoelectrons produced;

• Random gain in the PMTs;

• Electronic noise.

For semiconductors, the random effects are:

• The random number of electron-hole pairs per event:

• Random trapping and recombination;
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• Electronic noise.

In addition, in both kinds of detector, the deposition of energy by a gamma ray is a complicated
random process.

A. Gamma-Ray Interactions
The first random effect to consider is the location of the initial interaction of the gamma ray
with the detector material. If we wish to estimate the 3D coordinates of the interaction, these
coordinates are not treated as random because the likelihood is conditioned on them, but if we
wish to estimate only the two lateral coordinates, the DoI is a random variable.

Even given the coordinates, the initial interaction is random because it can be either Compton
or photoelectric. If it is Compton, the resulting scattered gamma ray can be reabsorbed or
rescattered at a random location or it can escape. Similarly, if the initial interaction is
photoelectric absorption in a K shell of the detector material, the K vacancy can be filled
randomly either by production of a K x-ray photon, which can be reabsorbed at a random site
or can escape, or by production of an Auger electron which is usually absorbed relatively close
to the original interaction site. In both cases, the initial electrons (photoelectrons, Auger
electrons or Compton electrons) dissipate their energy along random tracks.

One way to simplify the modeling of the complicated events following an initial interaction is
to distinguish between local and nonlocal energy deposition. For a 140 keV gamma ray, for
example, the range of the photoelectron in a typical scintillator or semiconductor material is
around 50 μm, and the range of Auger or Compton electrons is somewhat less. The range of
the K x rays is around 50–100 μm, but a Compton-scattered photon can go substantially farther.
At this gamma-ray energy, therefore, all energy-deposition processes except Compton
reabsorption are local to a spherical region about 100 μm in diameter, and all photoelectric
events deposit the full photon energy within this sphere. The size of this region increases with
gamma-ray energy, but to the extent that it remains small compared to the spatial resolution
of the detector, the local-deposition model should be adequate.

B. Poisson-Based Models for Scintillation Cameras
The energy deposited in the local region defined above produces optical photons in a
scintillation material. If the scintillator responds linearly to the deposited energy , then the
mean number of optical photons is given by

(10)

where Qsc is the scintillator efficiency expressed in optical photons per unit deposited energy.
A common assumption for scintillators is that the actual number of optical photons is a Poisson
random variable with this mean, but many scintillators, notably NaI(Tl), respond nonlinearly
to the deposited energy [30]–[33]. In this case we can regard the mean  as itself being a
random variable, because of the randomness in the complicated physical process discussed

above. If the nonlinearity is significant,  must be replaced by , where the second
overbar indicates an average over the details of how the energy is deposited in the local region.
The actual number of optical photons, Nopt, is then referred to as a doubly stochastic Poisson
random variable, a topic discussed in detail in [16]. One key point is that the variance of
Nopt is greater than its overall mean in the doubly stochastic case.

If Nopt is a Poisson random variable, it follows at once that the number of photoelectrons
produced in each PMT is also a Poisson random variable. If the 3D vector R = (x, y, z) denotes
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the location of the initial gamma-ray interaction, on average a fraction fm(R) of the optical
photons will reach the mth PMT, and on average a fraction ηm of these will produce
photoelectrons (where ηm is the quantum efficiency of the photocathode). Each of these
processes is a binomial selection: each emitted photon will either make it to the PMT or not,
and once there it will either produce a photoelectron or not. A fundamental theorem [16] states
that a binomial selection of a Poisson random variable is also a Poisson random variable, and
the same holds true for two successive binomial selections. For a linear scintillator and a
specified R and , the number of photoelectrons produced by the mth photocathode, denoted
nm, is a Poisson random variable with mean

(11)

and the probability of observing photoelectrons is

(12)

Moreover, Poisson random variables are inherently independent [16], so the multivariate
probability of the set of photoelectron numbers, {nm, m = 1, . . . , M} in all M PMTs is given
by

(13)

In scintillators with significant nonlinearity, Nopt is not a Poisson random variable, but
nevertheless the Poisson law for the photoelectrons is an excellent approximation in practice.
One way of deriving the Poisson law—indeed, the one used by Poisson himself—is to to
consider a binomial process with a small probability of success but a large number of trials. In

our context, this refers to the limit where  is large but ηmfm (R) is small; in other words,
many optical photons are produced but only a small fraction of them produce photoelectrons
in a single PMT, and the resulting distribution of photoelectrons in approximately Poisson.
Colloquially, rarity begets Poissonicity [16].

A simple and effective way of making use of (12) and (13) is to neglect gain noise in the PMT
and subsequent electronic noise (see below). In that case, we can accurately determine the
number of photoelectrons produced by a given event in a given PMT just by correcting for the
PMT gain. The raw data needed for ML estimation of position and energy are given by

(14)

where Vm is the voltage produced by the mth PMT and its associated electronics, Gm is the gain
in volts per photoelectron, and the operator NINT(·) returns the nearest integer to its argument.
With this definition of the data, the requisite likelihood is given by [cf. (13)]
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(15)

We refer to this expression as the scaled-Poisson model.

If  is greater than about 4 or 5, we can go a step further and approximate the univariate
Poissons in (15) by univariate Gaussians with mean and variance both given by .

C. Gain Noise
Many gamma-ray detectors include elements with internal gain, such as PMTs or APDs
(avalanche photodiodes). These elements inevitably introduce another source of randomness,
not accounted for in the scaled-Poisson model. This section briefly discusses the effect of this
noisy gain. For more details see [16] and [15].

The first key point is that the excess noise from different gain elements is statistically
independent. Thus, for a scintillation camera with M PMTs, we can write the PDF for the set
of output signals as

(16)

In the absence of electronic noise, the voltage signal Vm is related to the number of electrons
Km produced on the PMT anode in response to one gamma-ray interaction by

(17)

where  is the gain of the electronics associated with the mth PMT in units of volts per
output electron and  is the random gain (output electrons per input photoelectron) of the
PMT itself.

A lot of effort has gone into devising expressions for the PDF of the random gain, but for
application to gamma-ray detectors a great simplification results from the reasonable
assumption that different photoelectrons produced on the PMT photocathode are amplified
independently. The total signal Vm is then the sum of statistically independent signals from a
large number of individual photoelectrons. It follows from the central-limit theorem, discussed
in [16] and many other texts, that Vm is well represented as a Gaussian random variable. To
specify the PDF of this univariate Gaussian, all we need is its mean and variance.

The mean of Vm, conditional on the interaction location and energy, is

(18)

where  is the mean PMT gain and  is the mean overall gain; note that the electronic
gain in not random.
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The conditional variance of Km is given by the Burgess variance theorem [16] as

(19)

where the latter form holds if, as we argued above, nm is well approximated by a Poisson
random variable.

The variance of Vm is larger than the variance of Km by a factor of  so

(20)

Note that the variance of Vm is proportional to the mean but not equal to it; it could not be
because Vm has units of volts and its variance has units of volts2.

We can use the PMT signals directly as the data from which to estimate R and , or we can
choose to divide by the mean gain to once again get the data values into units of photoelectrons.
In the former case, gm = Vm and  is a univariate Gaussian with mean and variance
given by (18) and (20), respectively; the multivariate likelihood  is a simple product

as in(16). If the PMT gain noise is negligible, so that , this likelihood
is equivalent to a Gaussian approximation to the scaled-Poisson likelihood of (15).

D. Electronic Noise
Electronic noise is usually well described by a zero-mean Gaussian random process. Moreover,
noise in different electronic channels is statistically independent. Thus the product form of (16)
is still valid, and if we use univariate Gaussians for the factors in that expression, we can account
for electronic noise by replacing the variance of Vm in (20) by

(21)

where αm is the expression in square brackets in (20) and  is the variance of the electronic
noise for the mth PMT. The actual value of  depends on the shaping time constants and other
details of the analog electronics and on how the analog waveform is sampled to get the digital
data used for estimation.

E. Gaussian Models for Semiconductor Detectors
There are several important differences between semiconductor and scintillation detectors
which affect the likelihood calculations. The first is that semiconductors are much more
efficient than scintillators in converting gamma-ray energy to measurable signals. With
available photocathodes, it takes about 100 eV to produce an observable photoelectron in a
PMT with a NaI(Tl) detector, but it takes only about 3 eV to produce an electron-hole pair in
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germanium or silicon. On the other hand, the availability of PMTs with high gain makes
electronic noise much less important in scintillation cameras than in semiconductors. Finally,
optical photons do not create a measurable signal until they reach the PMTs or other optical
sensors, but trapped electrons and holes in a semiconductor can still induce signals on distant
electrodes.

The minimum energy required to generate an electron-hole pair is the bandgap energy , so
a high-energy photoelectron of kinetic energy  could in principle produce  pairs.
Because of competing processes such as phonon generation, however, a smaller number will
be produced on average. We define the mean energy expended per electron-hole pair, , such
that the mean number of pairs is .

If there were no competing processes, conservation of energy would require that
, which is not a random number at all. At the opposite extreme, if only a small

fraction of the electron energy goes into creation of electron-hole pairs, the pairs would be
generated independently, and Neh would be a Poisson. Thus . To describe
this range, we define the Fano factor Feh as

(22)

A value of Feh < 1 implies sub-Poisson behavior. In Si and Ge, Feh ≈ 0.07 to 0.15.

New sources of electronic noise must be considered in semiconductor detectors. Flicker or 1/
f noise is often dominant, and in integrating detectors there is an effect called kTC noise [16].

In many semiconductor detector material, charge transport is poor, and there is a high
probability that charge carriers, especially holes, will be trapped before they reach the
electrodes. Modeling of these effects requires knowledge of the mobility and lifetime of the
charge carriers as well as the weighting potentials, which specify the effect of a charge at a
given location on the output signals.

The only practical way of dealing analytically with all of these effects is to use a multivariate
Gaussian model, where all we need is the mean vector and covariance matrix, both conditioned
on the parameters we wish to estimate. If M signals are used to perform the estimation, the
mean vector is M × 1 and the covariance matrix is M × M.

The mean vector and covariance matrix depend on the mean number of electron-hole pairs
produced, the Fano factor, the mobility-lifetime products for both holes and electrons, the
details of the electronics and the electronic noise. For integrating detectors such as the Arizona
Hybrid, they depend also on the PDF of the trapped charge at the end of the integration period.

Explicit expressions for the mean vector and covariance matrix for estimation of R and  in
integrating detectors may be found in Barrett and Myers [16]

F. Nuisance Parameters
So far we have implicitly assumed that the PDF on the detector signals is fully determined by
the parameters being estimated, but this is not always the case. Often there are nuisance
parameters, defined as quantities that we have no interest in estimating but which do influence
the data.
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As an example, for a scintillation camera used with a parallel-bore collimator, the z coordinate
of the interaction (where the z axis is parallel to the bores) is of no interest because it has no
effect on the image in the x – y plane. If the detector is thin and designed so that z does not
significantly influence the mean PMT signals, we can ignore it altogether, but if it does
influence the signals, we must regard z as a nuisance parameter.

As a second example, when we write , we are assuming that this PDF depends on
just the 3D coordinates and energy of a single interaction and on no other unknown parameters.
For a thick detector used at high energy, however, the gamma-ray photon might interact initially
by Compton scattering and the scattered photon might be absorbed or rescattered at a second
location. In that case we would need a total of eight parameters to specify the PDF: three
coordinates and an energy at each of two interaction sites. If the detector is used in a Compton
camera, all eight parameters are of interest and should be estimated. For a PET or SPECT
application, however, the coordinates of the second interaction convey no information about
the object being imaged, but they do influence the data, so they have to be considered nuisance
parameters.

There are several possible ways to deal with nuisance parameters, depending on how much we
know about an estimation problem [16], [34]. The simplest approach, and the one most used
in practice, is just to ignore the nuisance parameters and use an inaccurate likelihood. This
approach will produce an unpredictable bias and generally suboptimal variance of the estimate.

The second approach is to estimate the nuisance parameters and discard the result. This
approach is feasible if the number of nuisance parameters is small, but it rapidly leads to a large
computational burden if there are many nuisance parameters. For the case of a scintillation
camera used with a parallel-bore collimator, for example, we can estimate the z coordinate of
the interaction even if we have no interest in it, thereby avoiding bias in the estimate of x and
y.

Another approach, which is optimal in a sense discussed in Sec. 13.3.8 of Barrett and Myers
[16], is to compute the likelihood for the parameters of interest by integrating out
(“marginalizing”) the nuisance parameters. In the example of a scintillation camera with
parallel-bore collimator, we would write

(23)

where Lz is the thickness of the detector and, by Beer's law, pr(z) = μ exp(–μz)/[1 – exp(–
μLz). If we use the scaled-Poisson model from (15), we get

(24)

After the marginalization, the likelihood is no longer a simple product of univariate PDFs. If
we wish to use a Gaussian approximation, it must be multivariate and we must determine the
covariance matrix.

G. Likelihood Windowing
Another way to deal with nuisance parameters is to use hypothesis testing to reject events that
are not consistent with the assumptions built into the likelihood model.
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A simple but useful example is the likelihood window suggested by Milster [4]. Consider the
hypothesis that the initial interaction is photoelectric, that the K x ray is absorbed locally and
that there has been no scatter in the patient's body. In that case the energy deposited locally in
the detector material is the full original energy of the gamma ray, denoted . The unknown
parameters for the interaction under this hypothesis are just its 3D coordinates contained in
R, and the appropriate likelihood is . The ML estimate of the location is found by
searching over R with energy fixed:

(25)

After finding , we then accept the event only if the resulting maximized likelihood,

, exceeds some threshold. A smaller threshold allows acceptance of more photons
that do not satisfy the hypothesis (false positives), as well as more that do (true positives). A
plot of true-positive fraction vs. false-positive fraction as the threshold is varied yields a photon
ROC curve [12], [13], analogous to the receiver operating characteristic curves used in signal
detection. The area under the photon ROC curve is a measure of the ability of the detector to
reject photons that are Compton-scattered either in the patient's body or in the detector.

Similar methods can be used to discriminate against multiple interactions. We can use any of
the forms given above for  and maximize over both R and . Comparison of the
maximized likelihood to a threshold is an effective way of discriminating against events that
deposit energy at multiple sites, while retaining both photoelectric events and Compton
interactions followed by escape of the scattered photon.

H. Event Likelihoods for Listmode Reconstruction
As noted in Section II-A, image reconstruction from listmode data requires knowledge of the
PDF of the list entries conditional on an object f. Suppose now that the list entries are ML
estimates of interaction locations and that likelihood windowing has been used to reject
scattered radiation and multiple interactions in the detector. If j events are observed, the data

set for listmode reconstruction is .

The events are statistically independent, so

(26)

and the log-likelihood can be written as

(27)

where Rj is the true location of the jth event.

In practice both f and Rj will be discretized, so pr(Rj|f) will be realized as a matrix-vector
multiplication as in any reconstruction algorithm. The integral over Rj can be implemented
efficiently as a sum over a small number of values of Rj in the neighborhood of .
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All that remains is to obtain the factor , which describes the detector blur (in 3D in
general). This step is actually quite difficult for most position-estimation algorithms used in
gamma-ray detectors, but it is straightforward for ML algorithms. We have already seen in (9)
that the ML estimates asymptotically obey a multivariate normal distribution with mean given
by the true value and covariance matrix approaching the inverse of the Fisher information
matrix. The asymptotic limit holds when the number of photoelectrons or electron-hole pairs
produced by a gamma-ray event is large, which is usually an excellent assumption. The Fisher
information matrix can be computed by taking numerical derivatives of the MDRF.

In short, an accurate model for detector blur is readily incorporated in a listmode reconstruction
algorithm provided the list entries are specifically ML estimates of the photon interaction
positions.

IV. Calibration Methods
All of the likelihood functions presented above include some free parameters that are
characteristic of individual detectors. For the scaled-Poisson model of (15), for example, we
need know the mean number of photoelectrons produced by each PMT, , as well as
the gains Gm. When PMT gain noise is considered, we need also to measure the excess noise
factor seen in (20). When the signals are correlated, as when we perform 2D position estimation
and ignore DoI [see (24)], we also need a covariance matrix on the signals.

A. 2D Mean Detector Response Function
Consider a scintillation camera with a thin scintillation crystal so that DoI effects are negligible,
and ignore scintillator nonlinearities for now. Then  is independent of z and (11) can
be rewritten as

(28)

where  is called the mean detector response function for a specific energy
. It accounts for the effects of scintillator efficiency, propagation of light from the interaction

site to the mth PMT, and the quantum efficiency of that tube.

This MDRF can be measured with the apparatus shown in Fig. 1 [36]. A radioisotope such as
Tc-99m is used to produce a collimated beam of gamma rays which can be raster-scanned over
the face of a scintillation camera. At each position a spectrum is acquired, and the mean
response is estimated from the photopeak position. In practice, the MDRF can be measured on
a coarse grid of points and interpolated to a finer grid [36], [39].

The resulting MDRF for a modular scintillation camera with a monolithic (not segmented) NaI
(Tl) crystal of dimensions 12.5 cm × 12.5 cm × 5 mm and a 3 × 3 array of PMTs is shown in
Fig. 2. Each of the nine images is the MDRF for one of the nine PMTs, and the grey level in
the image depicts the MDRF for that tube as a function of the x – y location.

B. 3D Mean Detector Response Function
For thick detectors as used at higher photon energies, a 2D MDRF is not adequate. We can still
collect data with an apparatus similar to the one in Fig. 1, but we cannot control the DoI so

 cannot be measured directly. Instead, we must represent this 3D function in a
parametric form and estimate the parameters. The parameters can be coefficients in some linear
expansion of the 3D function, or they can be parameters such as reflectivities and surface
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roughnesses associated with a model for optical propagation. The data used to perform the
parameter estimation can include spectra obtained with multiple gamma-ray energies or with
scanned beams at other than normal incidence. For more details, see [10], [37], [38].

V. Applications and Recent Results
A. 2D Position Estimation in Scintillation Cameras

As an example of the effectiveness of MLE of interaction locations in 2D, Fig. 3 shows some
experimental images from the modular scintillation camera whose MDRF is shown in Fig. 2.
The raw data were generated by stepping the collimated 99mTc source shown in Fig. 1 over a
13 × 13 array of positions separated by 9 mm. The central image in Fig. 3 illustrates this pattern
of points. Approximately 5,000 events were collected at each location in super-listmode format
(recording all nine PMT signals for each event).

The x and y coordinates of each event were estimated by maximizing the scaled-Poisson
likelihood of (15) with the MDRF functions, , being those shown in Fig. 2. The energy
used in this likelihood model was 140 keV, corresponding to photopeak events, and a likelihood
window was used with the threshold set to accept approximately 85% of all events. The
resulting ML image is shown on the right in Fig. 3, and the trace below the image runs through
the central horizontal row of points.

For comparison, the same super-listmode data were also processed with standard Anger
arithmetic, with position estimates given by

where xm and ym are the coordinates of PMT m. The resulting image is shown on the left in
Fig. 3.

In Fig. 3, a 13 × 13 array of points was imaged, and all points are well resolved in the ML
image except in the corners of the camera. In the Anger image, however, only an 11 × 11 array
of points is seen; the points in the top and bottom two rows and the left and right two columns
are completely unresolved. In addition the Anger image is distorted, indicating that the position
estimates are biased, but the ML point images are centered on the correct grid locations, so the
ML estimates are unbiased as expected from the discussion in Section II-C.

To provide a more direct comparison, we attempted to remove the bias in the Anger image by
geometrical remapping, with the result shown in Fig. 4. Though the distortion was removed in
the center of the image, no improvement in resolution on the outer rows or columns was seen.

To provide a more quantitative resolution comparison, we computed the full width at half
maximum (FWHM) of representative point images in the original ML image and in the
remapped Anger image. No points near the camera edge were included because the Anger
method gave no measurable resolution there, but we included the nine points centered under
the PMTs (referred to as center points) and the four in the interstices between PMTs (interstitial
points). The numbers reported in Table I are the FWHMs in the x direction, in the y direction
and the geometric mean of these two.
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To summarize, this comparison indicates the superior resolution of ML position estimation,
especially at the edges of the camera, and it shows that good spatial linearity is obtained with
no need for distortion correction. The resolution is a measure of the variance of a position
estimator and the linearity is a measure of bias, so the results are in accord with the theorems
that state that the ML estimator is efficient (minimum variance and unbiased) if an efficient
estimator exists, and that it is asymptotically efficient in any case.

B. Likelihood Windowing
One advantage of likelihood windowing with this same modular scintillation camera is shown
in Fig. 5, from the work of Hesterman [39]. By varying the value of the likelihood threshold
with position, excellent spatial uniformity can be obtained.

C. ML Estimation of Depth of Interaction
The recent work of Hunter [9], [10], illustrated in Fig. 6, affords an illustration of how well
3D ML position estimation performs when the 3D MDRF is known. The simulated detector
was a scintillation camera with a 12.5 cm × 12.5 cm × 2.5 cm monolithic NaI(Tl) crystal and
a 3 × 3 array of PMTs. The sides and entrance face of the crystal were assumed to be covered
with retroreflectors to increase the light reaching the PMTs, though the same results would be
obtained by assuming a more efficient scintillator.

The simulated input to the camera was a thin beam of 511 keV photons incident at 45 degrees
to the entrance face of the scintillator. Nearly isotropic spatial resolution around 1–2 mm is
observed.

Experimental confirmation of 3D position estimation in a monolithic PET detector is provided
by the work of Moore [11], shown in Fig. 7, which shows experimental images of a 511 KeV
beam about 1 mm in diameter, incident at 60 degrees from the surface normal of the crystal.
The scintillation camera had the same 3 × 3 arrangement of PMTs as discussed above, but all
faces of the crystal except the one in contact with the PMTs were painted black to minimize
reflections. With this configuration the 3D MDRF could be calculated fairly accurately from
the solid angles subtended by the PMTs at the interaction site, with experimental correction
for the spatial variation of the total light collected.

D. Time-of-Arrival Estimation From Waveforms
A simulation study of ML estimation of time of arrival in a single-element (nonimaging)
scintillation detector for PET was performed by Furenlid [14]. Two random processes were
considered: a Poisson random process describing the emission of optical photons from an NaI
(Tl) crystal, and a Gaussian random process describing noise in the PMT and subsequent
electronics. The Poisson random process was amplified by the PMT and passed through a filter
with a bipolar impulse response. The filter output was sampled at 32 nsec intervals and
Gaussian noise of varying levels was added, providing the data for MLE of pulse amplitude
and time of arrival.

The results of the study are shown in Fig. 8. Although the scintillation decay time was taken
as 270 nsec and the sample interval was 32 nsec, timing resolution better than 4 nsec FWHM
was found for realistic levels of electronic noise (left column in the figure). Increasing the level
of this noise degraded the performance as shown in the center and right columns.

VI. Summary and Conclusions
Estimation of position, energy, timing and other parameters of a gamma-ray interaction in a
detector is fundamentally a statistical problem, and the data analysis should make use of the
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statistics of the detector signals. Maximum-likelihood and Bayesian statistical estimators can
be used if accurate models of the likelihood for parameter estimation from these signals are
known.

The photoelectrons produced in the PMT photocathodes in a scintillation camera are well
described by Poisson statistics, but the signals at the PMT outputs have an increased variance
because of PMT gain noise. Conditional on the 3D location of the interaction, signals from
different PMTs are statistically independent, but correlations may be introduced if the random
depth of interaction is ignored. In semiconductor detectors, the number of hole-electron pairs
produced may be sub-Poisson, but signal induction by trapped charges leads to a multivariate
normal model.

In any kind of gamma-ray detector, MLE is advantageous and practical. The ML estimator is
efficient (unbiased and best possible variance) if an efficient estimator exists, and it is
asymptotically unbiased as the number of photoelectrons or electron-hole pairs gets large. For
position estimation, that means that MLE yields low spatial distortion and optimal spatial
resolution. ML estimates are also asymptotically normally distributed, with a covariance matrix
equal to the inverse of the Fisher information matrix. This observation greatly simplifies the
formulation of listmode likelihoods for image reconstruction.

Examples were presented showing the usefulness of MLE for 2D and 3D position and for
estimation of time of arrival of a gamma-ray photon. The likelihood window for rejecting
scattered photons or other events not compatible with the likelihood model was also discussed
and illustrated.

We have not discussed computational issues here, but many efficient hardware
implementations exist [15], [34]. For example, we have recently demonstrated that 2D position
estimation with a 9-PMT modular scintillation camera can be performed at a rate exceeding
106 events per second on a Sony PlayStation3 gaming console.
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Fig. 1.
Apparatus for measuring the MDRF of a scintillation camera.
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Fig. 2.
Measured MDRF for a scintillation camera with a 3 × 3 array of PMTs.
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Fig. 3.
Center: Object imaged by a scintillation camera. Left: Image obtained with standard Anger
arithmetic. Right: Image with ML position estimates.
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Fig. 4.
Anger image from Fig. 3 after geometrical distortion correction.
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Fig. 5.
Illustration of flood images without (a) and with (b) position-dependent likelihood windowing.
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Fig. 6.
Simulation study of 3D position estimation in a monolithic PET camera. Top: Without
likelihood windowing. Bottom: With likelihood windowing.
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Fig. 7.
Experimental demonstration of 3D imaging of a slanted beam of 511 keV photons with a
modular scintillation camera. Projections of the 3D estimates onto three orthogonal faces of
the camera are shown.
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Fig. 8.
Results of a simulation study of ML timing estimation with varying degrees of electronic noise.
Top: Sample noisy waveforms. Bottom: Histogram of the estimates of time of arrival. Left to
right: Increasing levels of electronic noise
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TABLE I

Resolutions (FWHM), mm

Method Location FWHMx FWHMy Geom. mean

Anger centered 4.12 3.89 4.01

MLE centered 3.41 3.60 3.50

Anger interstitial 3.64 3.41 3.52

MLE interstitial 2.82 2.66 2.73
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