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Abstract
Influenza hemagglutinin mediates both cell-surface binding and cell entry by the virus. Mutations
to hemagglutinin are thus critical in determining host species specificity and viral infectivity.
Previous approaches have primarily considered point mutations and sequence conservation; here
we develop a complementary approach using mutual information to examine concerted mutations.
For hemagglutinin, several overlapping selective pressures can cause such concerted mutations,
including the host immune response, ligand recognition and host specificity, and functional
requirements for pH-induced activation and membrane fusion. Using sequence mutual information
as a metric, we extracted clusters of concerted mutation sites and analyzed them in the context of
crystallographic data. Comparison of influenza isolates from two subtypes—human H3N2 strains
and human and avian H5N1 strains—yielded substantial differences in spatial localization of the
clustered residues. We hypothesize that the clusters on the globular head of H3N2 hemagglutinin
may relate to antibody recognition (as many protective antibodies are known to bind in that
region), while the clusters in common to H3N2 and H5N1 hemagglutinin may indicate shared
functional roles. We propose that these shared sites may be particularly fruitful for mutagenesis
studies in understanding the infectivity of this common human pathogen. The combination of
sequence mutual information and structural analysis thus helps generate novel functional
hypotheses that would not be apparent via either method alone.

1. Introduction
Influenza virus is a major cause of both seasonal epidemic respiratory disease and periodic
high-mortality pandemics. The most significant of these latter events within recent history,
the pandemic of 1918–1919, caused approximately 50 million deaths worldwide.[1]
Influenza viruses circulate extensively in birds as well as humans and other mammals, and
the three major pandemics of the 20th century (1918, 1957, 1968) were all likely due to
epizootic transfer from viruses infecting other species into the human population. This has
likely occurred both via adaptation of avian viruses to human hosts and via genetic
reassortment between avian or mammalian and human-specific viruses.

More recently, the spread of a highly pathogenic avian influenza virus (HPAI H5N1) and a
number of epizootic infections of humans (with a case-fatality rate of approximately 60%
[2]) has raised concern of another imminent pandemic. Fortunately, the H5N1 virus has thus
far not displayed efficient human-to-human transmission. It has been postulated that the
poor human-to-human transmissibility of H5N1 may be due to inefficient viral replication in
the upper respiratory epithelium of humans. Since the viral hemagglutinin protein is the
primary determinant of both cell entry and antibody-mediated immunity, mutations to the
hemagglutinin molecule that increase the efficiency by which human respiratory epithelial
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cells are infected would be an important permissive factor in human-to-human spread of
either an adapted avian H5N1 virus or an avian-human reassortant.

We would therefore like to understand the functional control of influenza hemagglutinin and
the means by which the molecule might mutate to alter host range or to evade new
therapeutic agents. Informatics-based methods allow computationally efficient screening of
the large number of potential hemagglutinin mutations. Such efficiency is required because
hemagglutinin is over 500 amino acids in length, yielding a mutation space of ~20500, and
mutations both near and distant from the ligand binding site have been shown
experimentally to alter ligand selectivity. We therefore propose a stepwise approach in
which informatics-based methods are used to generate an initial set of predictions that can
be further refined by a combination of physics-based computational methods and targeted
experimental mutagenesis.

Influenza functional regulation differs fundamentally from the canonical systems for which
many function-prediction methods were developed. Computational methods that have been
used in other systems to predict ligand-binding specificity include shape-based analysis of
the ligand-binding pocket [3], analysis of conserved residues [4], evolutionary trace methods
[4], and methods that combine phylogenetic and information-theoretic characterizations [5].
For control of hemagglutinin function, particularly ligand specificity switches, experimental
characterization of isolates displaying partial specificity switches identified both single point
mutations and concerted mutations among several residues[6]. The evolutionary pressure of
the host immune response and the frequent recombination events undergone by influenza
may also complicate the mutational assumptions of phylogenetic methods, and the lack of
crystal structures of a hypothetical human-adapted H5N1 hemagglutinin challenge shape-
based methods. While all of these methods may be helpful in studying influenza function,
there clearly exists the opportunity for novel methodology to yield additional insight.

Computational prediction methods are particularly helpful for influenza because systematic
experimental screening for functionally important mutants is challenging. Hemagglutinin is
heavily glycosylated, and the glycan residues affect ligand binding[7–9]. Furthermore,
glycosylation patterns vary according to the cell culture system used to express the
hemagglutinin protein. Because of these challenges and biosafety issues associated with live
H5N1 virus, experimental studies to date have focused on retrospective analysis of
mutations observed in clinical isolates rather than prospective screening[6, 10].

Given the complexity of influenza evolution and the absence of phylogenetically distinct
lineages of human H5N1 influenza, a statistical approach that does not utilize a model of
evolutionary correlation provides a reasonable alternative. Close co-variation between a pair
of residues is suggestive of selective pressure and likely functional linkage. This is distinct
from conserved residues, which may be required for conformational stability, and
hypervariable residues, which may mutate to achieve immune evasion with no functional
consequence. In many classic examples of small-molecule recognition by proteins, key
residues involved in ligand recognition can be mutated but only in concert. The classic
example of this is the catalytic triad in serine proteases; a point mutation to a key residue can
destroy activity, but activity can be rescued by a complementary mutation to another
residue. In this spirit, co-evolving residues have previously been used as a means of
identifying functional significance in other systems [11], including HIV protease drug
resistance [12, 13]. We employ a slightly different approach here; instead of introducing a
distance matrix for protein mutation and computing co-variance, we compute pair-wise
mutual information between residues in a discrete fashion similar to [14]. We then employ
crystallographic data to evaluate the sequence-based predictions.
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We have used sequence mutual information to analyze closely-linked mutation sites in
hemagglutinin from two influenza subtypes: H3N2 isolates that have circulated in humans
since 1968 and H5N1 isolates that circulate primarily in birds and have been responsible for
millions of poultry deaths and ~400 human deaths since 1997 [2]. To interpret the mutual
information data, we employ a combination of hierarchical clustering and visualization
using available crystallographic data. Comparison of the two influenza subtypes in this
regard is particularly informative: major differences in the residues identified may reflect the
different selective pressures on each, while the common set of residues identified may
reflect common functional roles. Taken together, these results suggest hypotheses regarding
functional regulation of hemagglutinin that are testable via future mutagenesis experiments.

2. Methods
2.1. Sequences and structures

Sequences were obtained from the NCBI Influenza Virus Resource [15]; all 2103 full-length
human H3N2 hemagglutinin sequences and all 1516 full-length human or avian H5N1
hemagglutinin sequences in the database as of July 2008 were used. Multiple-sequence
alignment was performed for each influenza subtype separately and for pooled sequences
from both subtypes using MUSCLE.[16] Crystal structures of A/Aichi/2/1968 (H3N2)
hemagglutinin (1HGG) [17] and A/Viet Nam/1194/2004 (H5N1; 2IBX)[6] were used for
visualization and distance calculations. Since the human H5N1 structure does not include a
ligand, ligand coordinates from a related avian H5 hemagglutinin[18] were used for distance
calculations after structural alignment of the two hemagglunins.

2.2. Identification of closely-linked residues
Pairwise mutual information was calculated in a discrete fashion between each residue
position in the H3N2 and H5N1 multiple sequence alignments respectively as follows:

(1)

where

(2)

and

(3)

for sequence positions i and j, where the variable xi represents the values of the multiple
sequence alignment at position i. Mutual information captures nonlinear relationships more
efficiently than covariance-based methods; use of a substitution matrix to give varying
mismatch probabilities according to the chemical similarity of the amino acids involved may
add further sensitivity.

Symmetric uncertainty[19] was used to normalize the pairwise mutual information matrix as
follows: U(i,j)=2*I(i,j)/(I(i,i) + I(j,j)) for all positions i and j. Single-linkage hierarchical
clustering was performed in MATLAB using U as the distance metric and guaranteeing
U(i,i) =1, all i. The 99.9th percentile of all non-self symmetric uncertainty values was
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calculated, and the corresponding distance metric was used as a threshold for cluster
identification.

2.3. Cluster visualization
Each residue in a cluster was mapped to the corresponding residue in the crystal structure for
H3N2 or H5N1 hemagglutinin as appropriate. These residues were then visualized using
Pymol (DeLano Scientific, Palo Alto CA).

3. Results
3.1. Closely-linked residues in H3N2 hemagglutinin

Closely-linked residues were identified based on hierarchical clustering on normalized
sequence mutual information; clusters were selected using a threshold corresponding to the
99.9th percentile of non-self mutual information; for H3N2 hemagglutinin 75 residues in the
mature hemagglutinin molecule were identified within 12 clusters. These clusters are
visualized on the crystal structure of H3N2 A/Aichi/68 hemagglutinin in Fig. 1. Clusters fall
into three general categories: few residues, short-range interactions (clusters 3, 8, 10, 12);
few residues, long-range interactions (clusters 2, 4, 5, 9, 11); many residues primarily
localized to the globular head (clusters 1, 6, 7). This last category is intriguing because both
the ligand-binding sites and the major antibody-recognition epitopes are located here. In
isolation, these clusters are interesting but less informative; we have compared the clustering
patterns between two influenza subtypes in order to correlate clustering difference with
biological differences between the subtypes.

3.2. Differences between hemagglutinin subtypes
We have analyzed pooled human and avian H5N1 isolates in the same fashion as the human
H3N2 isolates to enable a more informative analysis. Fig. 2 shows all identified clusters for
H3N2 and H5N1 hemagglutinin superimposed onto their respective crystal structures. One
immediately apparent difference between the two subtypes is the frequency of linked
residues on the globular head. This frequency is much greater in human H3N2 isolates than
in the predominantly avian H5N1 isolates. We have quantified this relationship by
measuring the distribution of radial distances from the sialic-acid-binding pocket to the
residues identified as closely-linked for each subtype and comparing that to the distances for
all residues of that subtype. This combined structural and sequence-informatic analysis
clearly shows an enrichment of residues in the globular head for H3N2 compared to H5N1.
While a large number of H3N2 HA residues have been implicated in antibody recognition,
crystal structures of neutralizing antibodies show binding primarily to the globular head[20,
21]. It is also believed that the human immune response plays a major role in driving the
evolution of the H3N2 virus [22, 23]. Since clusters of closely linked residues involving the
globular head are identified in the human H3N2 isolates but not in the primarily avian H5N1
isolates (where the human immune response is not a major factor), we hypothesize that these
clusters may be largely involved in immune escape.

3.3. Commonalities between hemagglutinin subtypes
While human H3N2 isolates differ from H5N1 isolates in the role of the human immune
response in driving viral evolution, they share many basic functional characteristics: binding
of sialic-acid-terminated glycans, pH-induced conformational activation, and catalysis of
membrane fusion. We therefore hypothesize that closely linked residues identified via
independent analysis of each of these subtypes may be involved in some of the common
functional roles. We have identified 12 residues meeting our detection threshold for both
H3N2 and H5N1 isolates; these are listed in Table 1 and mapped to the H3N2 structure and
visualized in Figure 4. These residues are an attractive target for future mutagenesis
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experiments; we hypothesize that single mutants in these positions may have altered activity
in one or more of hemagglutinin’s functional roles.

4. Conclusions
We wish better to understand the functional regulation of influenza hemagglutinin,
particularly with regard to ligand-binding specificity and catalysis of membrane fusion.
Such an understanding will enable better surveillance for host-range changes in influenza
and potentially assist in the development of novel small-molecule inhibitors. Using sequence
mutual information as a robust metric of co-evolution, we have identified clusters of closely
linked residues in both H5N1 and human H3N2 influenza isolates. Structure-based
visualization facilitates the interpretation of these clusters in the context of existing
functional data. By comparing the clusters for these two subtypes, we hypothesize that the
extensive association network on the globular head of H3N2 may be linked to the human
immune response, while the residues identified in common between H5N1 and H3N2 may
be important to the basic functional roles of hemagglutinin. We suggest that these residues
may be useful targets for future mutagenesis experiments. Our combined sequence-
informatic and structural analysis thus enables generation of novel functional hypotheses
that are not readily apparent via either method alone.
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Figure 1. Clusters of closely-linked residues for H3N2 hemagglutinin
Clusters identified by hierarchical clustering on sequence mutual information are visualized
using crystallographic data. Red lines connect α-carbons within each cluster; sialic acid
residues of the ligand are visualized via orange spheres.

KASSON and PANDE Page 7

Pac Symp Biocomput. Author manuscript; available in PMC 2010 January 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Comparison of closely-linked residues between influenza subtypes
H3N2 hemagglutinin is rendered in panel (a), H5N1 in panel (b). Clusters are denoted by red
lines connecting C-alpha atoms in the A/B monomer. Clusters are obtained via hierarchical
clustering on a normalized pairwise mutual information matrix (symmetric uncertainty),
with a distance cutoff corresponding to the 99.5th percentile of all non-self interactions in the
matrix. The sialic acid of the ligand is shown as orange spheres.
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Figure 3. Distance from ligand for closely-linked residues in H3N2 and H5N1 hemagglutinin
Plotted are radial distribution functions for H3N2 hemagglutnin (a) and H5N1
hemagglutinin (b); closely-linked residues are plotted in red, while all protein residues are
plotted in blue.
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Figure 4. Residues identified in common between influenza subtypes
Closely-linked residues identified in common between H3N2 and H5N1 subtypes are
rendered in red on a structure of H3N2 hemagglutinin. The sialic acid of the ligand is shown
as orange spheres.
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Table 1

Closely-linked residues identified via independent analysis of both H3N2 and H5N1 subtypes.

Position A/Aichi/2/68 sequence

HA1 82 Q

HA1 83 T

HA1 106 A

HA1 107 S

HA1 115 S

HA1 164 L

HA1 174 F

HA1 197 Q

HA1 287 S

HA1 302 Y

HA2 2 L

HA2 59 T
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