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Abstract
As genetic epidemiology looks beyond mapping single disease susceptibility loci, interest in
detecting epistatic interactions between genes has grown. The dimensionality and comparisons
required to search the epistatic space and the inference for a significant result pose challenges for
testing epistatic disease models. The Multifactor Dimensionality Reduction Pedigree
Disequilibrium Test (MDR-PDT) was developed to test for multilocus models in pedigree data. In
the present study we rigorously tested MDR-PDT with new cross-validation (CV) (both 5- and 10-
fold) and omnibus model selection algorithms by simulating a range of heritabilities, odds ratios,
minor allele frequencies, sample sizes, and numbers of interacting loci. Power was evaluated using
100, 500, and 1000 families, with minor allele frequencies 0.2 and 0.4 and broad-sense
heritabilities of 0.005, 0.01, 0.03, 0.05, and 0.1 for 2 and 3-locus purely epistatic penetrance
models. We also compared the prediction error measure of effect with a predicted matched odds
ratio for final model selection and testing. We report that the CV procedure is valid with the
permutation test, MDR-PDT performs similarly with 5 and 10- fold CV, and that the matched
odds ratio is more powerful than prediction error as the fitness metric for MDR-PDT.
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INTRODUCTION
From a methods development perspective, the difficulties encountered when searching for
replicable statistical epistasis in human populations are essentially three-fold. The first
difficulty encountered is multiple comparisons, due to the extremely large space that must
be searched to exhaustively catalog all possible interactions for a set of variables.
Commensurate with these large searches is the problem of over-fitting a model to a
particular sample, which does not generalize well in other samples from the same population
[Chatfield 1995]. The third difficulty is the curse of dimensionality [Bellman 1961], and
essentially refers to the loss of sampling precision due to excessive data subdivision.
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Over-fitting is a major concern where large searches have been performed in limited data to
find a best model [Feng et al., 2004]. This issue is usually managed either by an internal
validation method, such as bootstrapping, splitting samples, or cross-validation, or an
external method, such as collecting an independent sample [Coffey et al., 2004a]. While the
gold standard for model validation is independent sampling, internal methods can also
provide some protection against over-fitting. These methods are relatively efficient and
should be employed when samples are difficult or expensive to collect [Hastie et al., 2001].

The Multifactor Dimensionality Reduction – Pedigree Disequilibrium Test (MDR-PDT)
[Martin et al., 2006] is an approach that uses a modified pedigree disequilibrium test (PDT)
statistic [Martin et al., 2003] within the multifactor dimensionality reduction (MDR)
algorithm [Ritchie et al., 2001]. The MDR-PDT was designed to perform exhaustive
searches for epistasis in pedigree data. The initial debut of MDR-PDT did not feature cross
validation (CV) or a means to perform a search or hypothesis test from among several orders
of model with different numbers of loci, two features of the standard MDR algorithm. MDR
uses CV to perform omnibus searches for multiple orders of SNP models, where order refers
to the number of SNPs in a given model, and also uses CV in permutation testing to conduct
a valid hypothesis test on a single best model from among all orders considered. Currently,
MDR-PDT is restricted to searches and tests within a single order of model, and so several
tests must be performed to evaluate multiple orders of models (e.g. 2-locus, 3-locus, etc.)
sacrificing statistical efficiency for multiple testing, and leading to confusion when models
share several SNPs.

Cross validation finds consistent signals in the data, protects against over-fitting, and helps
select a single best model from among orders of model [Coffey et al., 2004b]. With this
extension, MDR and MDR-PDT use K-fold cross-validation, in which the data are split into
K approximately equal sized subsamples. One of the subsamples is used for testing the
model from the pooled K-1 subsamples, which is the training set. This provides an estimate
of how well a model should predict outcomes in unseen samples. The process is repeated K
times, using each subsample as the testing set. The estimates of prediction can be averaged
across test sets to produce a single estimate, and each observation is used one time for model
testing.

This procedure has been shown to be effective in simulation studies at multiple levels of CV
for MDR [Motsinger et al., 2006]. Here we present an algorithm to perform CV for MDR-
PDT in family data and select a best model from among models of various numbers of loci.
We also present an improved fitness metric for comparing final models, the matched odds
ratio. This measure is an epidemiological statistic for estimating effect sizes from matched
data [Mantel et al., 1959].

METHODS
The MDR-PDT is a within-family measure of association between genotype and disease. As
described previously [Martin et al., 2006], the PDT statistic [Martin et al., 2003] functions
within the framework of the MDR algorithm [Ritchie et al., 2001]. All possible discordant
sib pairs (DSPs) and genotypes transmitted to affected offspring and untransmitted (T/UT
pairs) are taken for all sibships and pooled. For an extended sibship with several affected
and unaffected offspring, several DSPs and T/UT pairs would be available. These pairs
contribute to the statistic only if at least one parent of a T/UT pair is heterozygous, or if DSP
members have different genotypes. This determines which genotypes are high and low risk
by comparing the genoPDT statistic to a threshold of 0, where positive statistics indicate
evidence for association at that genotype. The MDR-PDT statistic is then calculated for the
pooled high-risk genotypes for each set of loci. The models are ordered and evaluated by the
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MDR-PDT statistic. A permutation test is applied to estimate the significance of the result,
the significance of which is inherently adjusted for the size of the search performed.

A notable difference between MDR and MDR-PDT is the ability of MDR to choose a single
best model when several orders of model, for instance 2-locus and 3-locus, have been
considered. In practice this is a very important capability since it allows much larger
searches to be performed under a single hypothesis test, thus removing the need for multiple
testing corrections for tests of each order of model. This capability of MDR is based on the
cross-validation (CV) procedure.

Cross-Validation Procedure
To implement CV in MDR-PDT, a method to split the data evenly must be developed. MDR
is typically used to analyze case-control data, with each individual representing an
independent observation and proportion of the data available. In MDR, the data are binned
into equal-size bins prior to analysis based on counts of cases and controls, with no regard
for missing data, so some bins may be unequal splits for some loci. For MDR-PDT the data
may be from independent pedigrees of various structures and sizes, each contributing
different amounts of information to the dataset. The individual units of information used by
MDR-PDT are transmissions from informative parental matings to DSPs and T/UT pairs.
Quantification of the number of observations available to PDT from each family is
necessary to evenly bin the pedigree data and perform CV as in MDR.

Consider a dataset consisting of pedigrees containing extended sibships of arbitrary size. Let
xij be the number of possible DSPs and T/UT pairs from a pedigree consisting of sibships
sharing both parents with complete genotypes, where i indexes sibships i = (1,2, …, n) in a
pedigree j, j = (1,2, …, m). The variable si will be calculated for a sibship within a pedigree
sharing genotyped parents by ((#affected sibs × #unaffected sibs) + #affected sibs). Without
genotyped parents, si is (#affected sibs × #unaffected sibs). Let xj = Σisi for full sibships
within the jth pedigree. This gives the maximum information available to the statistic for
that pedigree.

To perform CV, randomly split the data by randomly putting intact families into k bins, with
the value of k specified by the user. Let Xb = Σjxj, b = (1,2, …, k), over the j pedigrees in a
bin. Set a variance threshold Vx for the variance V of Xb over bins, where the variance will
not exceed Vx. Compare Vx to V. If Vx < V, reject the split and repeat the procedure up to
30 times. Continue until Vx ≥ V. If no split provides a satisfactory binning of the data, relax
Vx or change the number of bins.

Model Selection Statistic
Once the data are split into equal parts, an extension allowing best model selection for
MDR-PDT is possible. Each CV interval is used as a test set, as in MDR, to develop a
measure of how well a model will predict disease status in independent samples. Across the
k folds of the data, evidence accumulates to support a model if it is the best model from
several training sets. This provides a measure of cross-validation consistency (CVC) for
each best model found in the training sets, which indicates whether a few outliers might be
responsible for a signal. Unlike MDR, the MDR-PDT statistic for the best model at a given
level is not comparable across orders of models. As a result, this statistic cannot be used to
determine which level of model produces the strongest signal. To overcome this challenge in
selecting the best overall model, we evaluated the sensitivity and power of two fitness
metrics, prediction error (PE) and the predicted matched odds ratio (MOR). The prediction
error is defined as the average classification error from test sets during the CV procedure.
The matched odds ratio is calculated by pooling the DSPs or T/UT pairs from test set
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pedigrees and plotting them in a 2×2 table relating the high/low risk variable to status. The
ratio of DSPs and T/UT pairs that are correctly classified to those that are incorrectly
classified is a matched odds ratio [Mantel et al., 1959]. The average predicted MOR is
calculated using DSPs and T/UT pairs from test sets across CV intervals.

The modified MDR-PDT omnibus procedure for evaluating multiple orders of multilocus
models with a single test follows and is illustrated in Supplementary Figure 1:

1. Data are split into k approximately equal parts

2. All possible DSPs and T/UT pairs are generated within each sibship (affected times
unaffected) and pooled within k-1/k of the data. This is a training set.

3. Each genotype is determined to be high or low risk by comparing the genoPDT
statistic [Martin et al., 2003] from the pooled DSPs and T/UT pairs to a threshold τ,
such as τ = 0, which indicates positive or negative association with affected status.

4. Statistics for high-risk genotypes are calculated using the MDR-PDT statistic
[Martin et al., 2006].

5. The procedure repeats for every combination of loci within the order range
specified, calculating an MDR-PDT statistic for each, choosing the largest MDR-
PDT statistic from each order as the best model at that level.

6. MOR or PE is calculated from the testing set for the best model of each order using
the high-low risk levels established during training.

7. Steps 1–6 are repeated in the other splits of the data, so that each CV interval is
used as a test set. Where the same model is observed in multiple training sets, a
measure of cross-validation consistency (CVC) is observed. To select the best from
among all models found in training, CVC is considered first, and if necessary the
average PE or MOR from test sets can serve as a tiebreaker.

A permutation test is performed using at least 1000 permutations to estimate the distribution
of the null hypothesis of no association. The result from step 7 is compared to this
distribution for significance assessment.

Data Simulations
GenomeSIMLA [Edwards et al., 2008a] software has been developed by merging the
software packages of genomeSIM [Dudek et al., 2006] and SIMLA [Bass et al., 2004;
Schmidt et al., 2005] to simulate pedigree data with purely epistatic penetrance. To estimate
the Type I error rate for MDR-PDT with CV following an MDR-PDT search, each of the
1000 null datasets with 500 DSP families each were permuted 100 times to determine
whether the best model from the original null dataset exceeded the 1st or 5th largest value
from the 100 permutations, corresponding to an alpha of 0.01 or 0.05. One-hundred
permutations were used due to processing time constraints. Where a null dataset yielded a
statistic that equaled or exceeded the 1st or 5th largest permutation, a type I error occurred
and was scored. Type I error was estimated in this way for 2-locus models with 5 and 10-
fold CV and omnibus searches for 2 and 3-locus models using either the PE or MOR fitness
metrics with either 5 or 10-fold CV.

Purely epistatic models with marginal relative risks < 1.001 were simulated with a genetic
algorithm, modified from [Moore et al., 2004], for 2 and 3 loci, minor allele frequency
(MAF) of 0.2 or 0.4, and broad-sense heritability of 0.005, 0.01 0.03, 0.05 or 0.1 There were
a total of 20 genetic models, each of which were simulated as 100 20-locus datasets with
independent model loci and 100, 500, and 1000 pedigrees (Supplementary Table 2). These
models were evaluated for the sensitivity of MDR-PDT to detect the correct model loci with
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and without permutation testing and with and without the CV algorithm and subsequent
omnibus model selection. For experiments with permutation testing, only models with
broad-sense heritability of 0.03 or larger were used.

All loci in the simulations were independent to provide conservative estimates of power due
to increased data noise. Due to the larger number of effectively independent variables (Meff)
without LD it is expected that the critical values from the permutation test would be larger
than if there were correlations among variables in the data. This is because the search space
is Meff choose 2 instead of #SNPs choose 2, where Meff < #SNPs with LD, and Meff =
#SNPs without LD. This is analogous to the principles underlying the multiple testing
correction method SNPSpD [Nyholt 2004].

RESULTS
Type I Error

Estimates of the type I error rate for the MDR-PDT with CV after a 2-locus search using the
T-statistic was 0.011 and 0.052 when set to an alpha rate of 0.01 and 0.05, respectively for
5-fold cross validation (Table 1). The error rates for PE were 0.012 and 0.051, and the error
rates for MOR were 0.012 and 0.054 for 5-fold CV. The error rates for a 2-locus search with
10-fold CV were 0.013 and 0.052. For an omnibus search investigating 2 and 3-locus
models using the PE fitness metric with 10-fold CV, the error rates were 0.012 and 0.049.
For an omnibus search for 2 and 3-locus models with 10-fold CV using the MOR fitness
metric, the error rates were 0.010 and 0.053.

Sensitivity and Power
The raw sensitivity without permutation testing for the N-locus (e.g. only 2-locus or only 3-
locus) search method was compared to the omnibus (e.g. 2 and 3-locus) strategy employing
CV. These results show that for a variety of models the CV procedure and omnibus model
selection criteria function well (Supplementary Figures 2a–e). The models are epistatic with
very subtle main effects, with marginal relative risks less than 1.001. The sensitivity of five
and ten-fold CV is very similar across all the simulated scenarios. Also, the sensitivity of the
PE and MOR metrics were very similar. Compared to the n-locus search, where only
interactions of the order present in the simulated model were sought, the N-locus with CV
performed almost as well as or better than N-locus searches without CV. The omnibus
search, where two and three-locus models were examined, tended to lose some sensitivity;
however, this can be explained by the larger number of comparisons performed for those
searches.

The power after permutation testing for MDR-PDT with 5 and 10-fold CV, with the PE and
MOR fitness metrics, for 100, 500, and 1000 discordant sib-pair families is presented in
Figures 1a and 1b. In these results, the MOR metric consistently provided more power to
reject the null hypothesis for the correct 2-locus epistatic model. For 3-locus models, the
power for MOR vs. PE was very similar. There was not much variability in power at 5
versus 10-fold CV in these simulations. We also observed that MDR-PDT with CV was
sensitive to broad-sense heritability and allele frequency, which is consistent with previous
work in MDR [Bush et al., 2008; Motsinger et al., 2006; Ritchie et al., 2003; Velez et al.,
2008].

DISCUSSION
We developed a new algorithm for splitting pedigree data into CV intervals, and a new way
to select best models from among several orders of model. This approach is philosophically
identical to the original MDR algorithm, and further develops the MDR-PDT for use in
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current searches for epistasis. This extension provides some protection against over-fitting,
since higher-order models would not be penalized under the previous algorithm, and also
decreases the number of hypothesis tests for a search. With this extension, MDR and MDR-
PDT results can be compared between data sets without the uncertainty of which significant
model from MDR-PDT best captured the relationship between the outcome and genotypes.
Previous applications of MDR-PDT to real data had resulted in multiple significant models
driven by a strong main effect, such as APOE in Alzheimer’s disease [Edwards et al.,
2008b; Martin et al., 2006]. There was no means of determining which model might
represent the best evidence of epistasis, and so interpretation of results was difficult. Here
we provide a means to select a single best model for further evaluation and hypothesis
testing.

The results of this study are consistent with the previous study on reduction of cross-
validation intervals [Motsinger et al., 2006]. In that study, it was demonstrated that reducing
cross-validation intervals from 10 to 5 did not have a strong effect on the ability of MDR to
find the loci from simulated multilocus models. Here, we observe similar behavior for the
MDR-PDT when varying the number of cross-validation intervals. However, the time to
completion for MDR-PDT with 5-fold CV is approximately half that of 10-fold CV.

The MOR statistic outperformed the PE measure of model effect for 2-locus models after
permutation testing. This is possibly due to the wider range of possible values for MOR,
since PE is bounded at 0 and 1, similar models might have very similar PE values. Also, as
an epidemiological measure of effect size, MOR is likely a more relevant way to compare
models. Superior performance for alternate model fitness functions has been observed for
MDR [Bush et al., 2008], and here we provide a superior measure than PE for MDR-PDT
permutation testing. More fitness functions will be evaluated in future work.

These developments make MDR-PDT a more useful and ultimately a more powerful tool for
detecting interactions in pedigree data. Under permutation testing, the threshold for
significance for the omnibus test would be α, and the threshold for the several N-locus tests
would be α/j, where j is the number of n-locus searches performed. For instance, for an
omnibus search of all 2, 3, and 4-locus models the threshold for significance might be set to
0.05, but for the 3 N-locus searches, the threshold would be set to 0.05/3. This algorithm
allows a single hypothesis test to be performed for a range of model sizes, facilitating
interpretation and reducing tests. Additionally, the CV procedure provides some protection
from over-fitting, which was a potential problem for MDR-PDT without CV. Here we show
with our power results that MDR-PDT will find the correct model and reject the null if the
sample size and effect size are sufficient. Previous versions of MDR-PDT suffered from
multiple significant models of various numbers of loci from an analysis, some of which
might be nested within larger significant models, and driving significance. These extensions
remedy those problems and facilitate more meaningful analysis of pedigree data for
interactions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Figure 1a. The power of MDR-PDT to reject the null hypothesis after permutation testing
with five and 10-fold CV, with either PE or MOR as the fitness metric for six 2-locus
models with allele frequency 0.2 or 0.4 and broad-sense heritability of 0.03, 0.05, and 0.1.
Power is on the Y-axis, the type of analysis is labeled on the X-axis, and the number of
pedigrees is on the Z-axis.
Figure 1b. The power of MDR-PDT to reject the null hypothesis after permutation testing
with five and 10-fold CV, with either PE or MOR as the fitness metric for six 3-locus
models with allele frequency 0.2 or 0.4 and broad-sense heritability of 0.03, 0.05, and 0.1.
Power is on the Y-axis, the type of analysis is labeled on the X-axis, and the number of
pedigrees is on the Z-axis.
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