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Abstract
Large genome-wide association studies have been performed to detect common genetic variants
involved in common diseases, but most of the variants found this way account for only a small
portion of the trait variance. Furthermore, candidate gene based resequencing suggests that many
rare genetic variants contribute to the trait variance of common diseases. Here we propose two
designs, sibpair and unrelated-case designs, to detect rare genetic variants in either a candidate
gene based or genome-wide association analysis. First we show that we can detect and classify
together rare risk haplotypes using a relatively small sample with either of these designs, and then
have increased power to test association in a larger case-control sample. This method can also be
applied to resequencing data. Next we apply the method to the Wellcome Trust Case Control
Consortium (WTCCC) coronary artery disease and hypertension data, the latter being the only trait
for which no genome-wide association evidence was reported in the original WTCCC study, and
identify one interesting gene associated with hypertension and four associated with coronary artery
disease at a genome-wide significance level of 5%. These results suggest that searching for rare
genetic variants is feasible and can be fruitful in current genome-wide association studies,
candidate gene studies or resequencing studies.

Introduction
When mapping genes contributing to common diseases, a popular hypothesis is the common
disease common variants (CD-CV) assumption that the putative causal variants are common
in the population at large and can express a sizable portion of the phenotypic variation.
[Chakravarti 1999; Lander 1996; Reich and Lander 2001] An example that supports this
assumption, the association of the APOE ε4 allele with Alzheimer disease and heart disease
has long been known[Corder, et al. 1993]. The ε4 allele frequency ranges from 0.05 to 0.41
in different world populations[Fullerton, et al. 2000]. Under the CD-CV assumption, genetic
variants underlying common diseases can be detected by testing a large number of tagging
SNPs across the genome through linkage disequilibrium (LD) methods[Gabriel, et al. 2002;
Risch and Merikangas 1996; Risch 2000]. Such theoretical and empirical evidence led to the
launch of the International HapMap Project [2003; 2005; Frazer, et al. 2007], which focuses
on understanding the pattern of common variants in the genome and their LD in four
population samples. As an example, tagging SNPs can be selected for genotyping in order to
improve efficiency and reduce cost. This also led to the technological advance of dense SNP
genotyping, such as with Affymetrix and Illumina chips, with good coverage of the human
genome attained by genotyping hundreds of thousands of SNPs at a time. As a result, we are
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able to study large and well-characterized clinical samples at affordable cost [2007]. This
strategy recently led to the detection of many common susceptibility genetic variants
responsible for complex diseases, such as rheumatoid arthritis[Plenge, et al. 2007; Thomson,
et al. 2007], coronary artery disease (CAD)[McPherson, et al. 2007; Samani, et al. 2007] and
type 2 diabetes[Saxena, et al. 2007; Zeggini, et al. 2007].

However, it has also been observed that the genetic variants identified through genome-wide
association studies (GWAS) have accounted for only a small portion of the presumed
genotypic variation, and hence many variants remain to be discovered [McCarthy, et al.
2008]. For example, human adult height has been a well-known heritable trait with
heritability ranging around 0.81[Perola, et al. 2007]. Yet three recent GWAS of height
[Gudbjartsson, et al. 2008; Lettre, et al. 2008; Weedon, et al. 2008], in a combined sample
size of 63,000 individuals, identified a total of 54 independent variants influencing height,
with each locus explaining ~0.3%-0.5% of the phenotypic variance[Visscher 2008]. Under
the CD-CV assumption, the effect sizes of most of the common risk variants will be modest
and require large sample sizes to detect them. Thus, we still face great challenges in order to
uncover the rest of the genetic variants contributing to the variation of a complex trait. The
CD-CV assumption has been heatedly debated, with the proposal of the alternative
assumption of common disease-multiple rare variants (CD-MRV). Although family based
linkage analysis has been considered less powerful than association analysis for identifying
complex-disease genes [Risch 2000], lack of association evidence is found in the regions
identified by linkage analysis. For example, linkage evidence has been consistently detected
on chromosome 3q27 to obesity related traits in various populations [Kissebah, et al. 2000;
Luke, et al. 2003; Zhu, et al. 2002] but no variant has been reported in GWAS in this region.
It may be possible that multiple variants within a gene, either common or rare, contribute to
the phenotypic variation, resulting in the lack of power in association studies.

Simulation studies have suggested that the frequency spectrum of causal variants is likely to
be broad because of the collective effect of mutations, random genetic drift and selection,
indicating that many disease susceptibility alleles could be relatively rare[Iyengar and Elston
2007; Pritchard 2001; Weiss and Terwilliger 2000]. For the past two decades the genetic
basis of breast cancer has been intensively investigated and three classes of breast cancer
susceptibility variants have been suggested: rare high-penetrance variants, rare moderate-
penetrance variants and common low-penetrance variants[Stratton and Rahman 2008; Walsh
and King 2007]. The genetic architecture of breast cancer may suggest that common
diseases follow a similar pattern, with both rare and common variants contributing to the
trait. In fact, studies of HDL cholesterol as a model trait have found that multiple rare
genetic variants in the coding regions of regulatory genes, including ABCA1, APOA1, and
LCAT, are significantly over-represented in the lower tail of the distribution[Cohen, et al.
2004; Frikke-Schmidt, et al. 2004]. Recently, population-based resequencing methods have
uncovered rare genetic variants associated with metabolic phenotypes[Cohen, et al. 2005;
Cohen, et al. 2006a; Cohen, et al. 2006b; Kotowski, et al. 2006; Romeo, et al. 2007] and
plasma angiotensinogen level[Zhu, et al. 2005]. The current strategy used to search for rare
variants is by sequencing candidate genes in the selected disease group. The frequencies of
the identified rare variants are then compared to those in selected control groups. Variants
are further assessed for their potential function in the relevant gene product, such as by their
occurrence in conserved regions causing change in protein structure[Bodmer and Bonilla
2008; Cohen, et al. 2006a]. The challenges of such studies are the identification of candidate
genes, the choice of appropriate cases, the need for deep DNA resequencing of many genes
in a large number of individuals, and the assessment of the functional consequences of
variants. This strategy has also led to the detection of mutations in three renal salt handling
genes - SLC12A3, SLC12A1 and KCNJ1 - contributing to human blood pressure
variation[Ji, et al. 2008].
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When resequencing data are available and rare variants are reliably genotyped, the combined
multivariate and collapsing (CMC) method can be a powerful method to detect rare variants
that contribute to phenotypic variation provided the functional rare variants can be
reasonably well classified [Li and Leal 2008]. Although resequencing technology is fast
developing, it is still prohibitively expensive to conduct whole genome resequencing, or
resequencing within genes for a large number of samples. When multiple rare loci contribute
to a disease risk, current statistical methods, which consider each genetic marker or
individual haplotype separately, lack statistical power and therefore require larger samples
to detect the rare variants[Marchini, et al. 2004]. In addition, rare variants are not well
tagged by the common SNPs available in the currently available chips [Bhangale, et al.
2008]. Thus, novel powerful statistical methods to detect rare variants under the current
designs of GWAS are in great need for association studies.

Material and Methods
For the current GWAS in which the common SNPs are tagged, directly testing rare variants
or collapsing rare variants is impossible because most of the rare variants are either not
genotyped or not well called. It is then important to develop a method of testing rare variants
without using the rare variants directly. Intuitively, we could use haplotypes consisting of a
set of common SNPs to tag the rare variants we are interested in. Although the rare variants
are usually not well tagged by common variants, it is reasonable to assume that one or more
rare variants may fall on only one haplotype consisting of common SNPs. We can argue that
a rare variant is introduced into a population later than common variants. When the
frequency of a haplotype is small, we would expect a substantial fraction of the haplotypes
to carry the rare variants (Figure 1). This is a reasonable assumption because most of the
frequencies of haplotypes consisting of many SNPs will mostly be small, as demonstrated
below in our application of the method to the WTCCC data in which 30 SNPs were
analyzed at a time. Because the relative risks of rare variants are considered much larger
than those of common risk variants, the average relative risk of a haplotype could still be
relatively high, even if only a fraction of those with the haplotype carry the rare risk
variants. Consider a particular haplotype H that consists of several genotyped SNPs. We
denote by Hr and Hr ̄ those individual haplotypes respectively carrying and not carrying the
risk allele of an untyped rare variant. Then the probability of being diseased, given

haplotype H, is . Thus, the
relative risk of haplotype H is the average risk of haplotypes H carrying and not carrying the
rare risk allele (this latter is 1) weighted by their frequencies. When the frequency of
haplotype H is small in a population, we would expect a substantial fraction of the H
haplotypes to carry the rare risk allele and, therefore, the relative risk of H may still be large.
In the following discussion, we only consider a haplotype that may carry a rare risk allele.
We call such a haplotype that carries at least one risk allele a risk haplotype. As we
discussed above, we only need to adjust the relative risk of a haplotype if it carries untyped
rare risk alleles only a fraction of the time. Rather than simply testing individual haplotypes
or SNPs for association, our idea to detect rare variants includes two stages. We first identify
a set of risk haplotypes using a small proportion of the sample and then test for association
with that set of identified haplotypes in an association study. Because we test the set of rare
risk haplotypes collectively, the cumulative frequency of such risk haplotypes can be large
and hence the power can be substantially increased.

Enrichment of rare risk haplotypes in cases
Assume we study haplotypes in a candidate gene or a small genomic region. We expect the
risk haplotype frequencies to be enriched among cases. Let H = {H1, H2,. . H,k} be a set of
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rare risk haplotypes with the corresponding haplotype frequencies h1, h2,…, hk in affected
cases and h1

0, h2
0,…, hk

0 in a general population, and let Hk+1 be the rest of the (non-risk)
haplotypes with total frequency hk+1 in cases and  in controls, respectively. We also

define the cumulative risk haplotype frequency . We can calculate the frequency of
a rare risk haplotype Hi among cases as

Thus, we can write hi = ϕ(λ, p)hi
0, where  for a multiplicative mode of

inheritance;  for a dominant mode of inheritance; and

 for a recessive mode of inheritance, respectively, where λ is the
genotypic relative risk. (See Appendix A). The enrichment factor ϕ(λ, p) depends only on
the genotypic relative risk λ and the cumulative risk haplotype frequency p. In figure 2, the
top panel demonstrates the relationship between the enrichment factor ϕ(λ, p) and λ and p for
the three modes of inheritance. It is apparent that ϕ(λ, p) is largest for a dominant mode,
followed by a multiplicative mode. The enrichment factor for a recessive mode of
inheritance is much smaller, and ϕ(λ, p) decreases as the cumulative risk haplotype p
increases.

Enrichment of rare risk haplotypes in affected sibpairs
Since a risk variant segregates within families, rare risk haplotypes may be further enriched
in affected sibpairs. We now demonstrate that rare risk haplotypes can be enriched in
affected sibpairs. We use the same notation as above, except that we let h1, h2,…, hk be the
risk haplotype frequencies and hk+1 be the rest of the (non-risk) haplotype frequency,
respectively, in affected sibpairs. Let s1 and s2 be two sibs of a sibpair, where si = 1 if the i-
th sib is affected and 0 if not affected. Then the frequency of a rare risk haplotype Hi in
affected sibpairs can be written as (Appendix A) hi = P(Hi ∣ s1 = s2 = 1) = ϕsib(λ, p)hi

0,
where

1. Under a multiplicative model, f2 = λf0, ,

2. Under a dominant model, f2 = f1 = λ f0,

3. Under a recessive model, f2 = λ f0, f1 = f0,
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Figure 2, bottom panel, demonstrates the relationship between the enrichment factor ϕsib(λ,
p) and λ and p for different modes of inheritance. The enrichment factor ϕsib(λ, p) is larger
than that in unrelated cases for each of the corresponding three modes of inheritance,
although the general pattern is similar.

Stage 1. Co-classifying rare risk haplotypes using cases or affected sibpairs
We have seen that rare risk haplotypes can be enriched in cases or affected sibpairs. We first
introduce a method to co-classify rare risk haplotype using unrelated cases, which we call an
unrelated-case design, although controls are required. We co-classify the rare risk

haplotypes by defining the rare risk haplotype set as , where
N is the number of cases used for co-classification and μ is a predefined constant. Since hi

0

is usually unknown in practice, we estimate it from the controls.

We can similarly define the rare risk haplotype set for affected sibpairs, which we call the
affected sibpair design. In this case, we define the rare risk haplotype set by

, where N is the number of affected sibpairs, hi is the
frequency of rare risk haplotype Hi in affected sibpairs, and hi

0 and μ are defined as before.
Here we used 3N because there are only 3N independent haplotypes in N sibpairs under the
null hypothesis.

When the haplotype frequencies in a population are known, the theoretical power to co-
classify a rare risk haplotype for the unrelated-case design is the probability of observing

more than  rare haplotype in 2N Bernoulli trials. Here [x] denotes
the largest integer less than x. For N affected sibpairs, the theoretical power is the

probability of observing more than  rare haplotypes in 3N
Bernoulli trials. Figure 3 shows the power to co-classify a rare risk haplotype with 300
affected sibpairs or 600 cases for genotypic relative risks in the range 1.2-3.0 for
multiplicative, dominant and recessive modes of inheritance. We took the cumulative risk
haplotype frequency be 10% and chose μ = 1.28. We examined the power to co-classify an
individual with risk haplotype frequency 0.5% (Figure 3 left panel) and 1% (Figure 3 right
panel), respectively. In general, we observed that the affected sibpair design has more power
to co-classify rare risk haplotypes than the unrelated-case design when the number of
individuals is the same. The power decreases as the individual risk haplotype frequency
decreases. Power will also decrease when the cumulative risk haplotype frequency increases
(data not shown).
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Stage 2. Association test
After we obtain the risk haplotype set S using an unrelated-case or affected sibpair design,
we can detect association between the set S and a disease by comparing the frequency of
haplotypes in S between cases and controls using Fisher’s exact test. When the haplotypes in
S carry rare risk variants, we would expect a substantial difference in the cumulative
haplotype frequencies between cases and controls, and would therefore expect good power.
For comparison, we also performed single marker analysis by comparing the allele
frequency between cases and controls. The minimum p-value for testing the set of markers
was corrected by the estimated effective number of tests [Nyholt 2004].

Simulation results using ACE gene haplotype frequencies
We obtained the haplotype frequencies in the ACE gene from our previous hypertension
study in African samples [Zhu, et al. 2001]. There were 13 polymorphisms genotyped in this
gene, resulting in a total of 149 different haplotypes with frequencies≥0.01%
(Supplementary Table 1). The allele frequency for each polymorphism and the LD pattern
among the polymorphisms are presented in supplementary table 1. We set 8 rare haplotypes,
with frequencies in the range 1.0%-1.5% and with a cumulative risk haplotype frequency of
10%, to be risk haplotypes. For illustration, we assumed their effect on the phenotype is the
same, i.e. that penetrance is only dependent on how many risk haplotypes an individual
carries. However, this is not a necessary assumption in our method. An individual’s
genotype was simulated by randomly drawing two haplotypes according to the haplotype
frequencies. Disease status was simulated based on the penetrance, given the haplotypes,
according to the three modes of inheritance. To simulate affected sibpairs, we independently
simulated two individuals as the parents and then randomly transmitted one of the two
haplotypes for each parent to his/her offspring. We kept generating sib pairs from parent-
pairs until we generated enough affected sibpairs.

We first simulated 1,900 cases and 3000 controls for the unrelated-case design so that the
total sample size was approximately equivalent to that of the WTCCC study[2007]. To
perform the two-stage analysis, we randomly selected 300 cases for the co-classification
stage 1 and used the remaining 1600 cases for the stage 2 association test. Since the power
of the association test is dependent on the risk haplotypes being identified at stage 1 and the
sample size at stage 2, we also examined the power for 400, 600, 800 and 1000 cases
respectively at stage 1 and the corresponding number of remaining cases at stage 2. We
assumed that the haplotype frequencies in the population are unknown and 1,000 controls
were used to estimate their frequencies. Thus, we always used 2,000 controls at the stage 2
association test. We made comparisons with the affected sibpair design by simulating 150,
200, 300, 400 and 500 affected sibpairs respectively at the co-classification stage 1, and the
same sample sizes at the stage 2 association test as for the unrelated-case design. Thus, the
total sample size at stages 1 and 2 together was equivalent for the unrelated case and
affected sibpair designs. We used μ = 1.28 to co-classify rare risk haplotypes at stage 1.

Table 1 presents the type I error for the two-stage method for both the unrelated-case and
affected sibpair designs. The type I error was calculated at stage 2 based on 1,000
replications when the genotypic relative risk was set to 1.0. We observed reasonable type I
error rates for both designs.

Figure 4 presents the power of the unrelated-case and affected sibpair designs for a variety
of sample sizes at the co-classification stage 1 when haplotype phases are known, based on
1,000 replications. We estimated the power at the 10-6 significance level, which can be
considered as a genome-wide significance level of 0.05 after adjusting for 50,000
independent tests. When we perform one test in each gene, this number would be more than
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the maximum number of tests over the whole genome. We observed that the affected sibpair
design is always more powerful than the unrelated-case design. When the haplotype phases
are known, 800 cases or 400 affected sibpairs at stage 1 has the best power for the situations
considered in our simulations, while 600 cases or 300 affected sibpairs result in similar
power. For a dominant mode of inheritance there is apparently better power than for either
multiplicative or recessive modes - in fact the recessive mode has virtually no power for
either design. Both designs have over 80% power for a dominant mode for the various
sample sizes at stage 1 when the genotypic relative risk is over 2.0. For comparison, we
present the power of single SNP analysis, correcting for multiple tests using the method
suggested by Nyholt[Nyholt 2004]. For the single SNP association test, we calculated power
by comparing the allele frequencies between the 2,000 cases and 3,000 controls. There is
almost no power for single SNP analysis after correcting for multiple comparisons. We
further examined whether linkage analysis will have power to detect the linkage evidence
when multiple rare risk haplotypes contribute to phenotypic variation by using the samples
at stage 1 of the affected sibpair design. We present the linkage evidence by calculating the
mean test Z score of alleles shared IBD for a variety of numbers of affected sibpairs. We
observed that linkage analysis can have reasonable power when there are multiple rare risk
haplotypes affecting the phenotype. This simulation also demonstrates that single SNP
association analysis can easily miss underlying rare genetic variants - even when the linkage
analysis suggests evidence of a susceptibility variant.

The above analysis is based on known haplotype phase, which will be unlikely in practice.
We thus performed the analysis by pretending that haplotype phase was unknown and was
inferred, using PHASE [Stephens, et al. 2001] for unrelated individuals and Merlin
[Abecasis, et al. 2002] for sibpairs. Figure 5 presents the power of the same simulation data
as in Figure 4 but with the haplotype phase inferred. As expected, the power of detecting
association is less than when we know the haplotype phase. However, we still obtain
reasonably good power for a dominant mode of inheritance when the genotypic relative risk
is over 2.0. The power of the affected sibpair design is still much better than that of the
unrelated-case design. For the unrelated-case design, 600 or 800 cases at stage 1 has the best
power for the situations considered in our simulations, which is similar to that when
haplotype phase is known. Similarly, 300 or 400 affected sibpairs has the best power among
the variety of sample sizes at stage 1. We examined the percentage of the number of true
risk haplotypes co-classified for the different sample sizes at stage 1 for both designs
(Supplementary Table 2). We observed that the distribution of the number of true risk
haplotypes co-classified approaches the true number of rare risk haplotypes as the sample
size increases. However, this approach is not as fast as that found when the genotypic
relative risk increases.

We next examined the power performance when less frequent risk haplotypes contribute to
disease. To do this, we set 15 rare haplotypes, with frequencies in the range 0.56%-1.0% and
with a cumulative risk haplotype frequency of 10%, to be risk haplotypes. We observed that
the power was slightly less than that when the risk haplotype frequency is relatively high,
although the power pattern is similar (Supplementary Figures 1 (phase known) and 2 (phase
unknown)). Similarly, we observed 800 cases or 400 affected sibpairs at stage 1 has the best
power for the situations considered in our simulations, while 600 cases or 300 affected
sibpairs have similar power. We further reduced the cumulative risk haplotype frequency to
3.3% by setting only 4 of the 15 haplotypes as risk haplotypes. In this case we observed that
400 cases or 200 affected sibpairs at stage 1 has the best power (Supplementary Figure 3),
suggesting it would be better to put more samples in the stage 2 association analysis when
the cumulative risk haplotype frequency is low.
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Application to the WTCCC hypertension and coronary artery disease data
The whole genome association study performed by the WTCCC studied seven major
diseases in the British population. Many new genetic variants were detected to be associated
with these diseases, but only one was detected for coronary artery disease (CAD) and none
for hypertension (HT), which appears to offer a challenge. We reasoned that many rare
genetic variants may contribute to the variation of these two diseases, and so applied our
method to the WTCCC HT and CAD data. We downloaded the genotype data called by the
algorithm CHIAMO for the HT and CAD samples and the shared controls (which consist of
the 1958 Birth Cohort (58C) and UK Blood Service sample (NBS)) from the WTCCC
website. The individuals dropped in the WTCCC study were also excluded in our analysis,
resulting in 1952 HT cases, 1926 CAD cases and 2838 controls. We applied the same
criteria as the WTCCC study for SNP exclusion, except that we kept all the SNPs with
minor allele frequencies<1%. These criteria include: 1) missing genotype proportion >1%;
2) HWE exact test p-value < 5.7×10-7 in controls; 3) allele frequency difference test based
on 1df Trend Test p-value < 5.7×10-7 or genotype frequency difference based on 2df
General Test <5.7×10-7 between 58C and NBS. After the QC analysis, 405,401 and 408,084
SNPs remained for the analysis for HT and CAD, respectively.

We first mapped a SNP to a particular gene if the SNP is within, or close to, the gene. If a
SNP is located between two neighboring genes, we mapped it to the gene that has the closer
physical distance to it. We used the map created by Wang et al. [Wang, et al. 2007] as a
reference. Haplotypes were inferred using the software fastPHASE, [Scheet and Stephens
2006] which minimizes the switch error in every gene. When the number of SNPs within a
gene was greater than 30, the analysis was performed on every sequence of 30 consecutive
SNPs. Since we do not know the cumulative risk haplotype frequency for these two
diseases, we randomly chose 300 cases and 1000 controls for co-classifying risk haplotypes.
The co-classified risk haplotypes were then compared between the remaining 1652 cases
and 1838 controls for HT using Fisher’s exact test. Similarly, we test the association
between 1626 CAD cases and 1838 controls for CAD using Fisher’s exact test. The total
number of tests for association was 24,738 for HT and the Bonferroni-corrected genome-
wide significance level is thus 2.02×10-6, and 23,828 for CAD and the corresponding
Bonferroni-corrected genome-wide significance level is 2.09×10-6.

Figure 6 presents the QQ plots of −log10(p-value) for testing association between 58C and
NBS against the uniform distribution, which is the expected distribution under the null
hypothesis, and the genome-wide −log10(P value) according to the chromosomal positions
of genes in association tests, for HT and CAD. Overall we did not observe any substantial
deviation from the null, suggesting that neither population stratification nor cryptic
relatedness play a significant role in our analysis (Figure 6, A and B). Table 2 presents the
genes that reached genome-wide significance level, after correcting for multiple tests, for
HT and CAD. For HT, we observed two significant genes, TLR4 and ZFAT1; and for CAD,
we observed 6 significant genes. MEF2B, EIF4H, CDKN2B, HFE2, ZBTB43 and CDR2L.
Only CDKN2B has a high risk haplotype frequency (28% in cases vs 22% in controls),
which was reported in the original WTCCC study[2007]. Since we directly used the
genotype data provided by the WTCCC database and our QC procedures did not check
whether all the SNPs are well called by CHIAMO, we then went back to the WTCCC
database and checked if all the SNPs in the 8 identified genes were well called. We
identified 4 SNPs in TLR4, MEF2B, CDKN2B and CDR2L that were not well called. After
dropping these 4 badly called SNPs, we redid the analysis with the 4 genes and then only
CDKN2B still reached genome-wide significance.

Because our two-stage analysis is dependent on how well the co-classification is performed
at stage 1, which is dependent on the sample that is selected for stage 1, we then randomly
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selected 300 cases at stage 1 keeping the rest of the samples for the stage 2 analysis. We
repeated this process 5,000 times and examined the percentages of each of the 5 genes
(ZFAT1 for hypertension; EIF4H, CDKN2B, HFE2 and ZBTB43 for CAD) reaching
genome-wide significance. We further compared with all the genes in the genome. Figure 7
presents the distribution of the number of times that a gene can reach the genome-wide
significance level for all the genes among the 5,000 replications. The 5 genes ZFAT1,
EIF4H, CDKN2B, HFE2 and ZBTB43, for which this occurred 58.9%, 88.2%, 38.9%,
21.9%, and 47.7% of the time, respectively, clearly stand out from the rest of the genes. In
addition, we also observed the gene MACROD2 (17.8%) for HT and the gene LDHA
(10.5%) for CAD that were missed before.

Our simulation analysis also indicated that the power of our method is dependent on the
cumulative risk haplotype frequency, which can affect the sample size to choose at stage 1.
We used 300 cases at stage 1 on assuming the cumulative risk haplotype frequency is low.
We then selected 500 cases at stage 1 and the rest of the samples for stage 2 and redid the
analysis. We repeated this process 5,000 times and examined the percentage of times the 5
genes reached genome-wide significance. The results are consistent with those obtained
when 300 cases were used at stage 1.

Finally, we examined the rare risk haplotypes for the 5 genes by comparing the rare risk
haplotype frequencies between cases and controls using all the samples. Table 3 lists the risk
haplotypes and their corresponding frequencies in all the cases and controls, as well as the
Fisher exact p-values. The genes ZFAT1, CDKN2B and ZBTB43, but not EIF4H and HFE2,
each includes more than three risk haplotypes.

Discussion
We have proposed a two-stage method to detect association due to multiple rare variants in
association studies. It should be noted that our method is based on detecting risk haplotypes
rather than ungenotyped rare risk alleles, although we hypothesize the rare risk alleles fall on
risk haplotypes. Using both simulations and real data, we demonstrated that the proposed
two-stage method has reasonable power to reach a genome-wide significance level at a
sample size comparable to that usually used for a whole genome association study design to
detect common disease variants. However, the proposed method has no power in the case of
a recessive mode of inheritance. For a recessive disease, it is much more difficult to observe
any enrichment of risk alleles among cases compared to controls. To perform the two-stage
analysis, the dataset is divided into two parts; one part is used for co-classifying rare risk
haplotypes and the other is for association testing. We have also proposed two designs for
the co-classifying stage: the unrelated-case and affected sibpair designs. We demonstrated
that the affected sibpair design has better power to co-classify rare risk haplotypes than the
unrelated-case design when the genotyping cost is the same. This is due to the risk haplotype
frequencies being more enriched in affected sibpairs than in affected cases, as demonstrated
in Figure 2. The power of co-classifying rare risk haplotypes decreases when the cumulative
risk haplotype frequency increases. Our simulations showed that the power of the
association test depends on both the relative sample sizes at stages 1 and 2 and the
cumulative risk haplotype frequency. The higher the cumulative risk haplotype frequency,
the larger the sample size we would use at stage 1. The reason for this is that we would then
co-classify more risk haplotypes at stage 1; therefore, we will still have good power in the
association test at stage 2 even though the sample size is relatively small because we have
used more of the total sample at stage 1. We observed that 300-400 cases or 150-200
sibpairs, together with 1000 controls, at stage 1 can perform well when the cumulative risk
haplotype frequency is relatively low. In practice, we can choose different sample sizes at
stages 1 and 2 and compare whether the results at different sample sizes are similar. If in a
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particular gene the results are substantially different, we would examine whether the
cumulative risk haplotype frequency is high or low.

For illustration, our simulation model assumed all rare risk haplotypes share a common
relative risk, which is not the case in practice. However, our analysis does not need to make
this assumption. It is possible that we can improve the proposed method by a weighted
method in the stage 2 analysis, with the weights estimated from stage 1. For example, the
weights can be the odds ratios of rare haplotypes estimated at stage 1. However, the
performance of such a weighted method should be further studied in simulations.

Our simulations indicate that single SNP analysis does not have power when multiple rare
risk variants contribute to a phenotype, even when a linkage signal can be detected. This
may explain why many current GWAS have failed to detect variants in regions where
linkage evidence had been reported in previous studies.

Our method is designed for application to data where mostly common SNPs are genotyped,
such as in current GWAS, although the method can also be applied to resequencing data.
Unlike the method of Li and Leal [Li and Leal 2008], who propose to collapse rare variants
when all the rare variants in a dataset have been genotyped, our method co-classifies rare
haplotypes by assuming that rare risk variants distribute on different haplotypes. Therefore
in our method it is not necessary for the rare variants to have been genotyped. Since
haplotype phase is usually unknown in practice, statistical methods[Browning and Browning
2007; Scheet and Stephens 2006; Stephens, et al. 2001] should be used to infer the phase.
Our simulations indeed suggest power can suffer when haplotype phase is unknown,
although the type I error remains reasonable. However, we observed that the loss of power is
not substantial, even when we only used the most likely haplotypes inferred by PHASE. We
also noticed that the loss of power is less for the affected sibpair design than for the
unrelated-case design, suggesting that using family data to infer haplotype phase can be an
advantage in detecting rare genetic variants, even though we used it only at the first stage.

Our proposed method is computationally much less intensive than the method recently
proposed by Guo and Lin [Guo and Lin 2008], which applies a dimension-reduction method
based on a generalized linear model with a regularization approach (rGLM) used in data
mining and statistical learning. Since the asymptotic distribution of the method’s test
statistic is unknown, a permutation procedure has to be applied. In GWAS, over a million
permutations must be performed in order to accurately evaluate the p-value at the genome-
wide significance level. Thus rGLM is infeasible in GWAS because of the tremendous
computational burden. Rather than classifying risk haplotypes, rGLM weeds out the
haplotypes that are not associated with the phenotype. Furthermore, when the number of risk
haplotypes is large, the number of degree of freedom remains large, potentially reducing the
power.

There was no gene reported to be associated with HT, and only one gene (CDKN2B) with
CAD, in the original WTCCC report [2007]. We thus hypothesized that some genes might
be associated with HT or CAD due to multiple rare variants and were therefore unlikely to
be detected by single SNP association analysis. We applied our method to the WTCCC HT
and CAD data and detected one and four novel genes significantly associated with HT and
CAD, respectively. Although the association evidence between CDKN2B and CAD had
been already established, because of being due to common variants, this gene was also
identified in our analysis. However, we also noticed that genotyping errors due to bad SNP
calling can result in false positive signals. For example, among the 8 genes detected in the
initial analysis, 3 of them were due to the bad calling of individual SNPs. It is also possible
for false positives to be introduced when the missing SNP genotyping rates are different
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between cases and controls. We compared the missing rates for the SNPs in these 5 genes
and did not observe any significant difference, indicating that the significant findings are not
due to different SNP missing rates between cases and controls.

Except for CDKN2B, which has been reported to be associated with CAD, the remaining 4
genes are novel. This is not surprising, given the rarity of the variants associated with these
traits. However, we might expect some linkage evidence for these genes in family studies. In
the linkage analysis of large pedigree data from South Italy, genome-wide significant
linkage evidence to essential hypertension was reported on chromosome 8q22-23 [Ciullo, et
al. 2006], where the ZFAT1 gene is located. We did not find any linkage evidence reported
in previous studies for the 4 CAD genes, which may be attributed to the low power of
linkage analysis.

However, we caution that the findings of the 5 genes for HT and CAD should be further
replicated in independent studies. It could be a great challenge to replicate association
evidence due to multiple rare variants, even within the same locus, particularly in different
populations. The reason for this is that different populations very likely have different rare
variants affecting the same phenotypic variation.

Although our two-stage method is computationally simple and has good power to detect rare
genetic variants, it has several limitations. First, dividing samples into two parts is not
optimal. Nevertheless, the cumulative risk haplotype frequency is increased, leading to more
power in the association test for a set of risk haplotypes. Ideally, it would be most efficient if
all the samples could be used for both co-classification and the association test. For
example, we could calculate the p-values for every haplotype and then combine the evidence
of a subset of haplotypes that reach nominal significance. However, the distribution of
combined correlated p-values is unknown and the p-value might be best obtained by a
permutation test. The reason for doing this is that the haplotypes are correlated (because of
following a multinomial distribution) and many haplotypes are rare, and so a test based on
an asymptotic distribution is not reliable. Furthermore, the distribution of the test statistic is
different in different genes, making it difficult to compare the test statistic values across
different genes. For genome-wide association studies, we need to conduct over a million
permutations in order to obtain a reliable small p-value. Therefore, a one-stage method may
not be computationally feasible. Our proposed method can thus be very useful in analyzing
data from GWAS. Second, our proposed method is sensitive to genotype errors and requires
extreme caution in its use. However, this is always a problem for methods to detect rare
variants. If the genotype errors or genotyping missing is random, the type I error is not
inflated for the proposed method. One of our future studies will assess how serious the effect
of different nonrandom genotype error rates can be. Third, when analyzing the data from
GWAS, the method requires breaking the genome into many chromosome segments. There
are alternative ways for doing this, including haplotype block based methods. If a
chromosome segment includes many rare variants, the power of the proposed method can be
made better by analyzing the haplotypes in that segment, rather than in a haplotype block. In
addition, haplotype blocks cannot capture well the variation due to rare variants. Thus, a
gene-based analysis strategy can be better than haplotype block based methods, as we
demonstrated in the application of our method to the WTCCC HT and CAD data. However,
when multiple rare variants fall in a block with strong LD, a haplotype block based method
can be better than a gene-based method.

In conclusion, we developed a two-stage method for detecting rare variants. This method
can be straightforwardly extended to resequencing data when such data are available.
Although our method is based on the assumption that multiple rare variants contribute to
complex diseases, it can also detect genetic variants under the CD-CV assumption.
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Appendix A

Rare risk haplotypes are enriched among cases
The frequency of a rare susceptible haplotype Hi among cases is

1. Multiplicative: f2 = λf0, , we have

2. Dominant: f2 = f1 = λ f0, we have

3. Recessive, f2 = λ f0, f1 = f0, we have

Rare risk haplotypes are enriched among affected sibpairs
Using the same notation as in the text and let s1 and s2 be two sibs of a sibpair, where si = 1
if the i-th sib is affected and 0 if not affected. Let I be the number of haplotypes shared
identical by descent (IBD) by a sibpair. We have

Letting g1, g2 be the genotypes of two sibs and fg the penetrance of genotype g, we have
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(1)

Assume all the susceptible haplotypes have the same effect, that is, assume fHiHj = f2 if i <=
k, j <= k, fHiHj = f1 if i ≤ k, j = k + 1, or i = k + 1, j ≤ k and HHiHj = f0 if i = j = k + 1, where k
is the number of rare risk haplotypes. We then have Equation (1)

Similarly, when Hi is a risk allele, or i < k + 1, we have

1. Multiplicative: f2 = λ f0, , we have

The factor before hi reflects the enrichment of the rare haplotype shared by affected
sibpairs.

2. Dominant: f2 = f1 =λ f0, we have

3. Recessive, f2 = λ f0, f1 = f0, we have
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Figure 1.
Hypothetical rare haplotypes and disease variants. Each colored line represents a haplotype
created by genotyped markers. The vertical bars represent rare disease variants. The rare
disease variants may not be genotyped. Lines with the same color represent the same
haplotype as represented by genotyped markers. Co-classification can classify some
haplotypes which carry rare disease variants into a group. But some haplotypes that do not
carry any disease variants may also be mistakenly co-classified. However, most classified
haplotypes carry disease variants.
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Figure 2.
Plots of the enrichment factors ϕ(λ, p) and ϕsib(λ, p) against λ and p for multiplicative,
dominant and recessive modes of inheritance. ϕsib(λ, p) is always larger than ϕ(λ, p). Both
enrichment factors increase as λ increases, but decrease as p increases.
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Figure 3.
Theoretical power of co-classifying rare risk haplotypes for the sibpair and unrelated-case
designs. Three modes of inheritance were considered: multiplicative f2 = λ f0, ;
dominant f2 = f1 =λ f0 and recessive f2 = λ f0, f1 = f0. Haplotype frequencies in the population
are known. 300 affected sibpairs and 600 unrelated cases were used. The cumulative risk
haplotype frequency is 10%. Left panel: individual risk haplotype frequency is 0.5%. Right
panel: individual risk haplotype frequency is 1.0%.
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Figure 4.
Power comparison for the affected sibpair design, unrelated-case design and single marker
analysis. Power was calculated at the 10-6 significance level based on 1,000 replications.
Haplotype phases are known. Haplotype frequencies were based on the ACE gene in an
African population. There are 8 true risk haplotypes and the corresponding haplotype
frequencies are between 1.0%-1.5% with cumulative risk haplotype frequency 10%. The
lines represent the power of the three different modes of inheritance for different sample
sizes used at stage 1, with the total sample size always kept the same. Single SNP
association analysis was conducted on 2000 cases and 3000 controls but corrected for
multiple comparisons[Nyholt 2004]. Linkage score was averaged from 1,000 replications
using the mean test score of alleles shared identical by descent.
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Figure 5.
Power comparison for the affected sibpair design, unrelated-case design and single marker
analysis. Power was calculated at the 10-6 significance level based on 1,000 replications.
Haplotype phases are unknown and were inferred by PHASE. Haplotype frequencies were
based on the ACE gene in an African population. There are 8 true risk haplotypes and the
corresponding haplotype frequencies are between 1.0%-1.5% with cumulative risk
haplotype frequency 10%. The lines represent the power of the three different modes of
inheritance for different sample sizes used at stage 1, with the total sample size always kept
the same. Single SNP association analysis was conducted on 2000 cases and 3000 controls
but corrected for multiple comparisons[Nyholt 2004]. Linkage score was averaged from
1,000 replications using the mean test score of alleles shared identical by descent.
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Figure 6.
Association results of HT and CAD in the WTCCC data. (A) Q-Q plot of −log10(P value)
for the association test between HT and genes. The shaded region is the 95% confidence
band. (B) Q-Q plot of −log10(P value) for the association test between CAD and genes. (C)
Genome-wide −log10(P value) according to the chromosomal positions of genes in the
association test for HT. The red horizontal line indicates a P value of 2.02×10-6. Two genes
with −log10(P value) above the red line are identified. (D) Genome-wide −log10(P value)
according to the chromosomal positions of genes in the association test for CAD. The red
horizontal line indicates a P value of 2.09×10-6. Six genes with −log10(P value) above the
red line are identified.
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Figure 7.
The distributions of the number of times a gene can reach the genome-wide significance
level for all the genes across the genome among 1000 replications. Top: HT; bottom: CAD
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