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  Inhibin, which is important for normal gonadal function, 

acts on the pituitary gonadotropins to suppress follicle- 

stimulating hormone (FSH) secretion. The level and cellular 

localization of the inhibin isotypes, α, βA and βB, in the testis 

of mice were examined during postnatal development in 

order to determine if inhibin expression is related to 

testicular maturation. Mouse testes were sampled on 

postnatal days (PNDs) 1, 3, 6, 18, 48 and 120, and analyzed 

by Western blotting and immunofluorescence. Western blot 

analysis showed very low levels of inhibin α, βA and βB 

expression in the testes at days 1 to 6 after birth. The levels 

then increased gradually from PND 18 to 48-120, and there 

were significant peaks at PND 48. Inhibin α, βA and βB were 

detected in testicular cells during postnatal development 

using immunohistochemistry. The immunoreactivity of 

inhibin α was rarely observed in testicular cells during PND 1 

to 6, or in the cytoplasmic process of Sertoli cells surrounding 

the germ cells and interstitial cells during PND 18 to 120. 

Inhibin βA and βB immunoreactivity was rarely observed in 

the testis from PND 1 to 6. On the other hand, it was observed 

in some spermatogonial cells, as well as in the interstitial 

space between PND 48 and PND 120. We conclude that the 

expression of inhibin isotypes increases progressively in the 

testis of mice with increasing postnatal age, suggesting that 

inhibin is associated with a negative feedback signal for FSH 

in testicular maturation.
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Introduction 

  Inhibin is a glycoprotein hormone that is produced 
principally by the gonads. It is a disulfide linked dimer of 
two different subunits, a common α isotype and a βA isotype 
forming inhibin A subunit or a βB isotype forming inhibin 
B subunit [21]. Although five distinct β isotypes have been 
isolated, which are termed βA to βE, only the biological 
activity of βA and βB has been demonstrated [11]. Inhibin 
belongs to the transforming growth factor β superfamily of 
growth and differentiation factors, which are important for 
normal gonadal function. Previous studies reported expression 
of inhibin in the testis of various mammals including humans 
[7], primates [20], rats [26], mice [23], hamsters [9], and pigs 
[8]. Inhibin acts on pituitary gonadotropins to suppress 
follicle-stimulating hormone (FSH) secretion [5] and to 
reduce spermatogonial numbers [25]. 
  The pattern of inhibin expression is associated with the two 
distinct phases of rat Sertoli cells [10]. The first phase is 
related to an increase in circulating FSH levels [10], which 
induce Sertoli cell proliferation. The second phase is related 
to the increasing levels of FSH that are present during 
pubertal maturation [2,10,24]. Inhibin provides a negative 
feedback signal that downregulates the secretion of FSH 
[5,17]. In addition, inhibin α isotype knockout mice show 
testicular stromal tumors and arrest of gametogenesis 
[12,18]. On the other hand, transgenic mice overexpressing 
the inhibin A subunit or the inhibin α isotype have small 
testes and a reduced level of spermatogenesis [13]. This 
suggests that inhibin isotypes may regulate testicular 
maturation along with FSH. The secretion of inhibin is 
restricted primarily to Sertoli cells in rat testis [16]. 
Spermatogenic cells in the seminiferous tubules are capable 
of modulating the expression of inhibin in Sertoli cells both 
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Fig. 1. Light micrographs of the mouse testes at postnatal day 
(PND) 1 (A), PND 18 (B), and PND 48 (C). The arrows in A 
indicate gonocytes in undifferentiated seminiferous epithelium. 
The asterisk in C indicates the defined lumens of the tubules 
including mature sperm cells. H&E stain. Scale bars = 40 μm.

in vitro [4,19] and in vivo [1,6]. Therefore, differential 
expression of inhibin isotypes might be observed in 
seminiferous tubules in mice during testicular development. 
  This study examined the level and cellular localization of 
inhibin isotypes, α, βA and βB, in the testis of mice during 
postnatal development in order to determine if inhibin is 
associated with testicular maturation.

Materials and Methods

Animals and tissue preparation 
  ICR mice used in this experiment were obtained from the 
animal center at the Korea Research Institute of Bioscience 
and Biotechnology. Mice were housed in a room maintained 
under the following conditions: a temperature of 23 ± 2oC, 
a relative humidity of 50 ± 5%, with artificial lighting from 
08:00 to 20:00 and 13-18 air changes per h. The mice were 
fed a standard animal diet. Three mice at postnatal days 
(PNDs) 1, 3, 6, 18, 48 and 120 were obtained from the same 
litters. 
  Mice were sacrificed and testes were immediately 
removed (n = 3). A sample of the testes was embedded in 
paraffin wax after routine fixation in 10% buffered 
formalin. Paraffin sections (5 μm thick) were used in all 
immunostaining experiments. The opposite testis was 
snap-frozen and stored for immunoblot analysis. All 
experiments were carried out in accordance with the 
National Research Council’s Guide for the Care and Use of 
Laboratory Animals (USA).

Antisera
  Rabbit polyclonal anti-inhibin α (H-134), βA (H-120) and βB (H-110) antibodies were obtained from Santa Cruz 
Biotechnology (USA). Mouse monoclonal anti-beta-actin 
and vimentin antibodies were purchased from Sigma 
(USA) and Neomarkers (USA), respectively.

Western blot analysis
  Testes tissues were immersed quickly in buffer H (50 mM β-glycerophosphate, 1.5 mM EGTA, 0.1 mM Na3VO4, 1 
mM DTT, 10 μg/ml aprotinin, 2 μg/ml pepstatin, 10 μg/ml 
leupeptin, 1 mM PMSF, pH 7.4), and sonicated for 10 sec. 
The homogenate was transferred to microtubes and 
centrifuged at 19,340 × g for 10 min. The supernatant was 
then harvested. For the immunoblot assay, the supernatant 
was loaded into individual lanes of 10% sodium dodecyl 
(lauryl) sulfate-polyacrylamide gels, electrophoresed and 
immunoblotted onto polyvinylidene difluoride membranes 
(Immobilon-P; Millipore, USA). The residual binding sites 
on the membrane were blocked by incubation with 5% 
nonfat milk in phosphate-buffered saline (PBS, pH 7.4) for 
1 h. Subsequently, the membrane was incubated overnight 
at 4oC with rabbit polyclonal anti-inhibin-α, βA and βB 
antibodies (1 : 1,000 dilution). After extensive washing and 

incubation with horseradish peroxidase-conjugated goat 
anti-rabbit antibody (1 : 20,000 dilution; Pierce, USA), 
signals were visualized using chemiluminescence (Super 
Signal West Pico; Pierce, USA). For normalization purposes, 
membranes were re-probed with antibodies against 
beta-actin (1 : 20,000 dilution; Sigma, USA). Several exposure 
times were used to obtain signals in the linear range. The 
bands were quantified using Scion Image Beta 4.0.2 for 
Windows XP software (Scion, USA). The data were analyzed 
using one-way ANOVA followed by a Student-Newman-Keuls 
post hoc test for multiple comparisons. In all cases, a p value ＜ 0.05 was considered significant.

Immunofluorescence
  Paraffin-embedded sections of testes (5 μm) were 
deparaffinized, treated with a citrate buffer (0.01 M, pH 
6.0) in a microwave for 20 min, and then treated with 0.3% 
hydrogen peroxide in methyl alcohol for 20 min to block 
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Fig. 2. Expression of inhibin isotypes α, βA and βB in mouse testis increased progressively with postnatal age. Photographs: Representative
photographs of Western blots for inhibin isotypes α, βA and βB and beta-actin (A). Arrowheads indicate the positions of the inhibin isotypes
(40∼47 kDa) and beta-actin (45 kDa). Minor bands at various molecular weights were detected on the immunoblots for the inhibin isotypesα, βA and βB. Bar graph: The results of densitometric data analysis (mean ± SE, n = 3 mice/group). The relative expression levels of
the inhibin isotypes were calculated after normalization to the beta-actin band from three different samples. The value for the testis at
postnatal day (PND) 1 was arbitrarily defined as 1 (B, C and D, graphs). *p ＜ 0.05, **p ＜ 0.01 vs. PND 1-6.

endogenous peroxidase activity. After three washes with 
PBS, sections were incubated with 10% normal goat 
serum, and then incubated with rabbit monoclonal inhibin α, βA and βB (1 : 100 dilution) for 1 h at room temperature. 
The immunoreactivity was visualized using fluorescein 
isothiocyanate (FITC)-labeled goat anti-rabbit IgG (1 : 50 
dilution; Sigma, USA). Cell phenotypes of inhibin α, βA 
and βB expression were examined by double label 
immunofluorescence using cell-type-specific markers, 
including vimentin (1 : 500 dilution) for the Sertoli and 
interstitial cells. First, the paraffin sections were reacted 
with primary rabbit anti-inhibin α, βA and βB followed by 
FITC-labeled goat anti-rabbit IgG (1 : 50 dilution; Sigma, 
USA). Slides were then incubated with mouse vimentin 
followed by tetramethyl rhodamine isothiocyanate-labeled 

goat anti-mouse IgG (1 : 50 dilution; Sigma, USA). 

Results

Histological finding of the mouse testis during 
postnatal development
  The testis at PND 48-120 showed an increase in the height 
of the seminiferous epithelium and the defined lumens of the 
tubules including mature sperm cells (Fig. 1C), while the 
tubules at PND 1-18 were largely undifferentiated (Figs. 1A 
and B). As shown in Fig. 1C, there was an abundant 
population of interstitial cells in the testis at PND 48. The 
seminiferous tubules contained primary spermatocytes, 
spermatids and Sertoli cells at various stages. This suggests 
that sexual maturation in this experimental animal occurs 
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Fig. 3. Immunofluorescent localization of inhibin α, βA, and βB
isotypes in mouse testis at postnatal days 48. (A and B) 
Double-immunofluorescent staining in the same section showed
the co-localization of inhibin α with vimentin in cell bodies of 
Sertoli cells (arrowheads), the cytoplasmic process of Sertoli 
cells (arrows) and in interstitial spaces (asterisks). (C) 
Immunofluorescent localization of the inhibin βA subunit was 
observed in the cell membrane of some spermatogenic cells 
(arrows) as well as in the interstitial cells (asterisk). (D) 
Immunofluorescent localization of the inhibin βB subunit was 
observed mainly in cell membranes of interstitial cells (asterisk) 
as well as in some spermatogonia (arrows). Scale bars = 30 μm.

between PND 18 and 48.

Temporal expression pattern of the inhibin isotypes α, βA and βB during the postnatal development of 
mouse testis
  The protein levels of the inhibin α, βA and βB isotypes in 
the testes during postnatal development were analyzed 
semiquantitatively by Western blotting to determine the 
developmental changes in the inhibin isotypes.
  As shown in Fig. 2, a low intensity signal for inhibin α 
expression was detected in the testis at days 1-6 after birth. 
The level gradually increased at PND 18 to 120, and there 
was a significant peak (approximately 2 fold, p ＜ 0.01 vs. 
PND 1-6) at PND 48 (Figs. 2A and B). A low level of inhibin βA expression was observed in the early phase of 
development (PND 1-6). The level increased and showed a 
significant peak (approximately 2 fold, p ＜ 0.05 vs. PND 
1 and 6) at day 48 after birth (Figs. 2A and C). A low intensity 
signal for inhibin βB expression was detected in the testis at 
PND 1-6. The level increased at PND 48-120, and there were 
substantial levels at both PND 48 (approximately 1.5 fold, 
p ＜ 0.01 vs. PND 1-18) and PND 120 (approximately 1.6 
fold, p ＜ 0.05 vs. PND 1-18) (Figs. 2A and D).

Immunofluorescent detection of inhibin α, βA and βB in mice testis
  At PND 1-6, there was little immunoreactivity for inhibin α, βA and βB subunits in testicular cells (data not shown). 
Inhibin α expression (Fig. 3A) was observed in cytoplasmic 
processes of vimentin-positive Sertoli cells surrounding 
spermatogenic cells (Fig. 3B) at PND 18-120.  
Immunoreactivity for inhibin βA was observed in the 
interstitial and spermatogenic cells (Fig. 3C) during PND 
48-120. Inhibin βB immunoreactivity was observed mainly 
in cell membranes of some spermatogonia in the 
seminiferous tubules as well as in the interstitial cells after 
PND 48 (Fig. 3D). 

Discussion

  This study shows a gradual increase in the expression of 
inhibin isotypes, α, βA and βB, in the testis of mice during 
postnatal development. Each inhibin isotype was localized 
differentially in testicular cells of the testes between PNDs 
18-120. However, expression of these isotypes were rarely 
observed in testes during the early phase of postnatal 
development (PND 1-6).
  In this study, histological examination of the development 
of mouse testis showed that sexual maturation is acquired 
between PND 18 and 48. This suggests that the two major 
functions of the sexually matured testis, spermatogenesis 
and generation of sexual hormones, were accomplished 
between PND 18 and 48. During this phase, protein levels 
of the three isotypes of inhibin in the testis also increased. 

The histological findings in the sexual maturation of 
developing mouse testis are consistent with those of a 
previous report [23].
  In this study, protein levels of the inhibin isotypes (α, βA 
and βB), were analyzed by western blotting. Low intensities 
of the isotypes were detected in the early phase, but the levels 
increased gradually during sexual maturation (PND 18 to 
48). Immunohistochemical results showed that expression 
of inhibin isotypes increased gradually during postnatal 
development of mouse testis, mainly in the Sertoli and 
interstitial cells. Previously, it had not been reported that 
mRNAs for the α, βA and βB isotypes were closely 
associated with testicular maturation [14,22,23]. The level 
of FSH increased in rats during pubertal maturation 
[2,10,24]. Inhibin provides a negative feedback signal that 
regulates FSH secretion [5,17]. Therefore, the maturation of 
Sertoli cells by FSH stimulation promotes the expression of 
inhibin isotypes. Hence, inhibin regulates the development 
of Sertoli cells and spermatogenesis in mouse testis. 
  In this study, inhibin α immunoreactivity was detected 
mainly in Sertoli cells from puberty to adulthood, as 
previously indicated for rat testis [16]. In addition, expression 
of inhibin βA and βB subunits was detected in interstitial and 
spermatogenic cells in the testes of mice from puberty to 
adulthood. Several studies have reported that the differential 
expression in various types of testicular cells depends on the 
animal species [3,8,9,15,17]. Therefore, further studies will 
be needed to determine the functional role of inhibin via local 
or paracrine secretion among testicular cells.
  In conclusion, expression of the inhibin isotypes α, βA and βB, in the testes of mice gradually increased during postnatal 
development. Each isotype was localized differentially in 
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testicular cells during maturation. The expression of inhibin 
isotypes in the testis of mice increased progressively with 
postnatal age, which suggests that inhibin is associated with 
a negative feedback signal for FSH during testicular 
maturation.
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