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SUMMARY
Participant death is often observed in studies that examine predictors of events such as
hospitalization or institutionalization in older adult populations. Cox proportional hazards
modeling of the target event, whereby death is treated as a censoring event, is the standard analysis
in this competing risks situation. However, the assumption of noninformative censoring applied to
a frequently occurring competing event like death may be invalid and complicate interpretation in
terms of the probability of the event. Multiple cause-specific hazard (CSH) models can be
estimated, but ambiguities may arise when interpreting covariate effects across multiple CSH
models and in terms of the cumulative incidence function (CIF). Alternatively, one can model the
proportional hazards of the subdistribution of the CIF and evaluate covariate effects on the CIF
directly. We examine and compare these two approaches with nursing home placement data from
a randomized controlled trial of a counseling and support intervention for spouse caregivers of
patients with Alzheimer’s disease. CSHs for nursing home placement (where death is treated as a
censoring event) and death (where nursing home placement is treated as a censoring event) and
subdistribution hazards of the CIF for nursing home placement are modeled separately. In the
presence of multiple covariates, the intervention effect is significant in both approaches but the
interpretation of the covariate effects requires joint evaluation of all estimated models.

Keywords
competing risk; hazard of the subdistribution; cause specific hazard; Alzheimer’s disease; nursing
home placement

1. INTRODUCTION
Time to event analyses in the health sciences test hypotheses about the occurrence of a target
event in two or more experimental groups with data that are often subject to censored
observations. Censoring may occur for multiple reasons including loss to follow-up,
participant withdrawal, and study termination prior to observation of the target event. If it is
reasonable to assume that those participants remaining in the risk set are representative of all
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who would be at risk for the target event, then we have independent censoring [1, Chapter
III.2.2.]. Under this assumption, testing of group effects and modeling of the survival
function may be carried out with the Kaplan-Meier (KM) method. The marginal probability
of the event, the cumulative incidence function (CIF), may then be estimated by 1−KM. In
the presence of covariates, evaluation of group and covariate effects on the hazard function
and then the modeling of the hazard and survival functions may be performed with the Cox
proportional hazards method [1–3].Additionally, other events may occur that preclude the
occurrence of the target event. These alternative events are typically called competing risk
events [4].The analysis of each cause-specific hazard (CSH) is the standard analysis
procedure for these data, allowing for the covariate effects on the hazard of the target event
to be evaluated in the presence of competing risk events. Computationally, individuals who
experience the competing event are censored at that event time, and there is no
differentiation between varying causes of censoring. Separate cause-specific proportional
hazards models may then be fitted for each failure type, assuming only independent
censoring [1,2,5].A chief drawback to this approach, however, is that independence of
failure types must be assumed in order to directly translate group and covariate effects from
the CSH to the marginal probabilities of failure of a specific event type [6].

In many time to event analyses in older adult populations where the target event is the
institutionalization of the participant or the presence of an acute event such as a stroke, death
of the participant before the target event occurs is common. In practice, participant death is
typically treated as a noninformative censoring event, and treatment and covariate effects are
often estimated with the Cox proportional hazards method [7–10]. While this approach is
valid for evaluating the CSH of the target event, in practice the analysis of the
complimentary CSH of death is often excluded. Furthermore, estimates of the target event
probabilities are either overestimated with the 1−KM estimate or foregone completely.
When the marginal probabilities are of interest, we may model the proportional hazards of
the subdistribution, and therefore directly assess covariate effects on the probability of the
target event in the presence of death as a competing risk [11].

In this article, we review proportional hazards models for the subdistribution, also known as
the cumulative incidence function, for a specific failure type in a competing risks analysis.
We then apply and compare cause-specific Cox proportional hazards models with
proportional subdistribution hazards models in a re-analysis of nursing home (NH)
placement data from the New York University Caregiver Intervention (NYUCI) study. The
NYUCI study is a randomized controlled trial of a counseling and support intervention for
spouse caregivers of patients with Alzheimer’s disease (AD) [12]. A primary outcome of
interest is the time until NH placement of the person with AD. In this study, 32% of care
recipients died under spousal care at home without previous NH placement. These cases
were treated as censored cases in a previous analysis of the effect of the intervention [12].
Comparative analyses of these data illustrate the effects of death as a competing risk event
on the inferences made for both the intervention condition and the model covariates. We
estimate the CIF for NH placement based on the estimated proportional subdistribution
hazards model and provide SAS and R programming code as a reference. We conclude with
a discussion of the differences in the results from these two methods and offer some
guidance to researchers in dealing with competing risk events.

2. METHODS
In time to event data with a single event type we observe for each individual X = min(T, C),
where T is an event time and C is a censoring time, and censoring indicator, D, where D =
I(T ≤ C). We are frequently interested in testing group and covariate effects on the time to
the event and in modeling F(t), the CIF. The CIF determines the probability of observing the
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event at any time up to and including time t. For event times T, we denote F(t) = P(T ≤ t). In
the absence of competing risk events, the CIF is frequently estimated with the nonparametric
KM approach [1–3]. Specifically, F(t) = 1 – S(t), where S(t) = P(T > t), is the estimated
survival function at time t. Conditional on a p×1 vector of time-independent covariates Z =
(Z1,…, Zp), we define the hazard

(1)

We interpret (1) as the instantaneous event rate at time t [2,5]. In the presence of covariates,
we may employ the Cox proportional hazards model to test treatment effects and evaluate
covariate effects. We estimate the vector of coefficients β = (β1,…, βp) in the Cox
proportional hazards model h(t|Z) = h0(t)exp{ZTβ}, where h0(t) is an arbitrary baseline
hazard.

In the presence of k multiple event types, k = 1,…,K, we have separate cause-specific
hazards for each event type:

(2)

We may fit a separate cause-specific Cox proportional hazards model hi(t|Z) =
h0i(t)exp{ZTβi} where βi varies for each event type. In this framework, we assume only
independent censoring [1, Chapter III.2.2, 2, Chapter 8.2, 5]. Individuals who experience the
competing risk event before time t are excluded from the risk set at time t, as are those who
are censored prior to time t. Thus, in the cause-specific model for NH placement, patients
who die without NH placement are censored at the time of death. In the accompanying
cause-specific model, NH placement is a censoring event with death as the target event. The
procedures for obtaining the survival function and the CIF for a single event type are routine
and are described in the texts by Andersen et al. [1], Kalbfleisch and Prentice [2], and
Allison [3]. However, it is well documented that the 1 − S(t) estimate from the KM estimate
may overestimate the CIF in the competing risks context [6,13–15]. In addition, covariate
effects from these CSH models have no direct interpretation on the marginal failure
probability for a specific cause [6,11]. We briefly describe the connection between the CSH
and the CIF later in this section. In the follow-up to the work of Pintilie [16], Latouche et al.
[17] explicitly state this relationship. Beyersmann et al. [18] present this relationship for
three failure types.

Alternatively, we may choose to directly model the cause-specific CIF for the target event.
Gray [19] presents a method for estimating the CIFs and testing their equality across values
of a categorical covariate in the presence of competing risks. The Fine and Gray model has
the added utility of modeling multiple covariate effects, including those that may be
continuous, in the proportional hazards framework. In addition, we may estimate the CIF for
a fixed t and Z = Z0. We highlight this capability in the following case study.

Using notation similar to Fine and Gray [11], the cause-specific cumulative incidence
function is denoted F1(t|Z) = P(T ≤ t, k = 1|Z), where k=1 specifies the event type of
primary interest in the presence K−1 competing risk events. To estimate this function in the
presence of covariates, we estimate parameters of a proportional hazards model for the
subdistribution, where the hazard of the subdistribution is defined
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(3)

Note that the subdistribution hazard places the condition that the target event time has not
yet occurred. In addition, there is an allowance for a competing risk event to have occurred
prior to time t. Thus individuals for whom a competing event has already occurred prior to
time t are weighted and included in the risk set at time t. Fine and Gray acknowledge the
unusual risk set construction and point out that, despite its unconventional appearance, the
parameter estimates for the subdistribution function have a straightforward interpretation,
and present a weighted partial likelihood function for the estimation of model parameters
[11]. We proceed by fitting a proportional hazards model of the form hSUB(t|Z) =
hSUB,0(t)exp{ZTβSUB}.

The CSH and the hazard of the subdistribution are two distinct, but related, functions [17–
18,20–21]. As such, β1, and βSUB do not share exactly the same interpretations. To illustrate
the point, consider the competing risks example in the multistate process in Figure 1. Here
we have two event types where NH placement is the target event and death is the competing
risk event. All patients initiate observation in state 0 (community dwelling). Patients remain
in state 0 until proceeding to either state 1 (NH) with cause-specific hazard α01(t|Z) or state
2 (death) with cause-specific hazard α02(t|Z). At any time in this multistate process a patient
may be in only 1 state and, although some patients were observed to die after NH placement,
we consider states 1 and 2 to be absorbing for this analysis. In this multistate process, define
XT, where XT ε (0,1,2), and we observe the event time T when XT ≠ 0. Patients who never
proceed out of state 0 by the end of the study are censored. Dependent upon covariate values
Z, each event has its own cause-specific hazard, α0i(t|Z), where

(4)

Note that (4) is directly comparable to the more familiar CSH expression (2) where events
other than the target event are treated as censoring events in the analysis. Modeling of the
CSH then requires the assumption of independent censoring but no assumption of
independence between event types. From here we note that, conditional on Z, the CIF for XT
= 1 is a function of both the all-cause survival, S(t|Z), and the cause-specific hazards, α01(t|
Z). We have

(5)

where the all-cause survival is a function of both cause-specific hazards

(6)

While we can estimate βi for the CSHs with ease and interpret it in the usual way,
extrapolating the group and covariate effects to the CIF is more difficult because of the
relationship in (5–6). We alternatively model the hazard of the CIF directly. Fine and Gray
[11] define the improper failure time, T*, that provides the foundation for proportional
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subdistribution hazards modeling. Briefly, we allow T* = T for XT = 1 and T* = ∞ for XT =
2. The subdistribution hazard is then:

(7)

This is directly comparable to the hazard defined in (3). We then may estimate the CIF
directly from the hazard of the subdistribution

(8)

By modeling the CIF as a function of the subdistribution hazard, we may then interpret the
model and covariate effects, βSUB, directly in terms of the marginal failure probabilities.

In the following analysis, an event other than the target event terminates the subject’s
participation in the study. We demonstrate that the differences between treating this event as
a censoring event in a cause-specific proportional hazards model and treating the event as a
competing risk event in the proportional subdistribution hazards model can be substantial.
We now illustrate and compare these methods using mortality and nursing home placement
data from a randomized controlled trial of patients with dementia and their spouse-
caregivers.

3. THE NYUCI STUDY OF NH PLACEMENT
A randomized controlled trial examined the effectiveness of an enhanced counseling and
support intervention compared to usual care for spouse caregivers of persons with
Alzheimer’s disease [22–26]. A primary hypothesis of this study was that the intervention
would enable caregivers to provide care in the home longer and therefore delay placement of
their spouses in NH facilities [12]. Between 1987 and 1997, 406 caregivers were enrolled
into the study. A family counselor was assigned to the caregivers upon study enrollment and
the caregivers were then randomly assigned to intervention or usual care. Regular structured
interviews were completed, which made it possible to identify some of the mechanisms
through which the intervention delayed NH placement. Baseline assessments were collected
at enrollment but before randomization, with follow-up assessments of the caregivers
occurring every 4 months during the first year after enrollment and every 6 months
thereafter. Participation ended with severe caregiver illness, caregiver death, or refusal to
continue, or 2 years after the death of the spouse with dementia.

Time to NH placement was measured in years from enrollment to the actual date of NH
placement. Follow-up extended through July 1, 2007. Over the course of follow-up, NH
placement occurred for 211 of the 406 patients. Dates of death were obtained for 128 of the
195 (65.6%) patients who were not placed in the NH (Table 1). Patients whose caregivers
were lost to follow-up and for whom dates of NH placement and/or patient death were not
known were right-censored at the last follow-up interview. Thus we assume independent
censoring.

Patient and caregiver demographic information was obtained at baseline assessments. The
Global Deterioration Scale (GDS) was used to measure mild (GDS = 4), moderate (GDS =
5), and severe (GDS = 6,7) dementia. Both patient and caregiver physical health scores were
determined from a subjective rating of overall health scored 1–4 (excellent/good/fair/poor)
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from a questionnaire adapted from the OARS Physical Health Form [27]. The 30-item
Memory and Behavior Problems Checklist (MBPC) [27] was used to measure the frequency
of patient memory and behavior problems and caregiver appraisals of the stress involved.
Caregiver burden was assessed by the 22-item Burden Scale [28]. Caregiver depression was
assessed using the 30-item Geriatric Depression Scale [29] and satisfaction with social
support was assessed with the mean score of 3 questions ranging from 1 (very dissatisfied)
to 6 (very satisfied) from the Stokes Social Network Questionnaire [30]. Year of study entry
(1987–1997) was included as a predictor to account for possibly changing trends in overall
NH placement rates at the time of enrollment.

4. ANALYSIS
As a primary goal of the NYUCI study is to evaluate the effectiveness of the caregiver
intervention in delaying the time to NH placement, we examine this effect both without and
with covariate adjustments. In all, we estimate six different models. In the first three models,
intervention group is the only predictor. We first examine the role of the intervention on the
CSH of both NH placement and patient death. By simultaneously studying the effect of the
intervention on the CSH of the target event and the competing risk event, we assess
intervention effectiveness more completely. We then model the proportional hazards of the
subdistribution and compare the findings with the cause-specific Cox model for NH
placement. Plots of the CIFs for both treatment groups complement the estimated
intervention effects. The assumptions of proportional hazards and proportional
subdistribution hazards were evaluated visually with residual plots and interactions with
time were tested.

Next we extend our analytic comparisons to include multiple baseline covariates. Three
models were estimated to parallel the intervention-only models: cause-specific proportional
hazards model of NH placement, cause-specific proportional hazards model of death, and a
proportional hazards model of the subdistribution for NH placement. Several baseline
measures were included as covariates as in a previous Cox proportional hazards model for
these data [12]. Covariates were included either because of clinical importance or because of
imbalances in the characteristics in the two treatment groups at baseline despite
randomization. All covariates are investigated in all models for a complete comparison.

Cox proportional hazards models are estimated using the PHREG procedure in SAS version
9.1 (SAS Institute, Cary, N.C.). Proportional hazards models for the subdistribution were
estimated with the CRR function available in the CMPRSK library for R
(www.r-project.org). Code used for programming in SAS and the R language is included in
the appendix. Modeling the hazard of the subdistribution is straightforward with the CRR
function in the CMPRSK package available for the R software package. This function
allows the inclusion of several covariates to be included in the model and is also able to
adjust for covariate interactions with time. At present no analogous procedure is available in
SAS.

5. RESULTS
In the univariate cause-specific Cox proportional hazards models, the intervention group
showed a statistically significant lower hazard of NH placement compared to the usual care
control group (HR = 0.73, p = 0.025) and no difference in the hazard of death (HR = 0.85, p
= 0.352). The absence of an intervention effect on the CSH of death and the presence of an
effect on the CSH of NH placement is reflected in the CIFs of both events (Figure 2) where
we see that the intervention group does have a lower incidence of NH placement. Despite
the observed CSH effect, the effect on the CIF is a function of both CSHs and thus we
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cannot directly assign the observed CSH difference to the CIF. The proportional hazards
model of the subdistribution does allow us to test and estimate the intervention effect (HR =
0.77, p = 0.052) on the CIF directly while treating patient death as a competing risk event.
As we would expect, the probability of NH placement is lower for those in the intervention
group. This reflects the lower hazard of NH placement for those in the intervention group
and no difference in the hazard of death. Visual inspection of the proportional hazards
assumption indicated minimal concern about non-proportional hazards and tests for an
interaction with time were not statistically significant in either analysis of NH placement.
Hence, no adjustment for non-proportional hazards was required.

The covariate-adjusted cause-specific proportional hazards models for NH placement (Table
2) and death (Table 3) should be interpreted jointly. For each variable investigated, we may
simultaneously examine the effects on each CSH, holding all other covariate values
constant. Consider, for example, the effect of male gender on both outcomes. Males have a
higher hazard of death (HR = 1.75, p = 0.016) than females, but males do not have a
statistically significantly higher hazard of NH placement (HR = 1.28, p = 0.164). For most
variables, we see a significant effect on at most one CSH. Moderate dementia and severe
dementia are the exceptions, where more severe dementia increases the cause-specific
hazards of both death and NH placement.

The parameter estimates from the proportional subdistribution hazards model of NH
placement are presented in Table 4. Here we have tests of statistical significance that are
largely in agreement with the cause-specific NH placement hazards analysis for the majority
of covariates. For example, the effect of male gender on the subdistribution hazards is not
statistically significant. This is not surprising since we observed that males had a
significantly higher CSH of death, but not NH placement. In addition, the effect of the
intervention in delaying NH placement is still statistically significant (HR = 0.75, p < 0.05).
Inconsistent results are noted for patient physical health, frequency of memory and behavior
problems (although marginal), severe dementia, and satisfaction with the support network.
Patient physical health is particularly interesting, as it was not found to be statistically
significant (HR = 0.979, p = 0.852) for the CSH of NH placement, but in the subdistribution
hazards analysis, poorer patient health at baseline (higher scores of the measure)
significantly lowered the hazard of the NH placement (HR = 0.796, p = 0.037). This is
largely explained by the significant increase in the CSH of death. Consider the CIFs for
patients with good (collectively including those evaluated as excellent, good, or fair) and
poor health as identified on the OARS Physical Health Form at baseline (Figure 3). We see
graphically that those in poor health have a higher incidence of death than those in better
health, and initially have a higher incidence of NH placement until being surpassed after 2
years of follow-up. That is, over time patients in poor physical health at baseline are more
likely to die (and hence not be placed in a nursing home) than those in better physical health.
Our analysis reveals no effect of patient physical health on the instantaneous rate of NH
placement, but does affect the cumulative probability of NH placement in the presence of
death as a competing risk. This effect can be interpreted correctly only after considering
both cause-specific hazards analyses and following with the subdistribution hazards
analysis.

By modeling the subdistribution hazards directly, we may also estimate the cumulative
incidence at a given time t and covariate values Z = Z0. Fine and Gray [11] describe the
estimation procedure and the probabilities may be estimated with the PREDICT.CRR
function in the CMPRSK package for R. Suppose, for example, that we are interested in
predicting the probability of NH placement for a male AD patient with moderate dementia
who enters the study in year 4 in excellent physical health and is assigned to the
intervention. We can estimate the cumulative incidence at a specific time or generate the
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estimated CIF (Figure 4).We can also compare this estimate with that for a similar patient
who enters the study with poor physical health (Figure 4). The estimated CIFs in Figure 4
are evaluated at the covariate values specified above, and the remaining covariates are
evaluated at the observed sample means. As we can see in the plot, the patient in better
physical health has a much higher probability of NH placement than the patient in poorer
physical health. This is not surprising, since the CSH for death was high for patients in poor
physical health, indicating that these patients have a higher rate of death and hence are less
likely to be placed in the NH.

6. DISCUSSION
In these analyses, we compared cause-specific proportional hazards modeling and
proportional subdistribution hazards modeling when analyzing the predictors of time to
nursing home placement in a sample of older adults with dementia. Observation of the
outcome in this study was complicated by the frequent occurrence of patient death as a
terminal endpoint in the study. In practice, the analysis of such data is limited to only the
cause-specific proportional hazards model for NH placement, with death usually treated as a
noninformative censoring event and without considering the cause-specific death model. By
including this component and the accompanying proportional hazards model of the
subdistribution in the composite analysis, the researcher gains thorough understanding of the
factors affecting the cumulative incidence of the target event.

The univariate models suggested that the method of handling death (either as a censoring
event in a Cox proportional hazards model or a competing risk event in the proportional
subdistribution hazards model) had only a minimal effect in estimating the intervention
effect. This similarity is largely explained by the lack of an intervention difference on the
CSH of death. The estimated intervention effect for delaying nursing home placement then
can be interpreted as the effect on the CSH (HR = 0.73) or on the subdistribution hazards
(HR = 0.77). In the models incorporating covariate effects we are able to consider known
imbalances in the two treatment groups that affect the target event, and we once again saw
minimal differences on the test for treatment effect. However, the examination of multiple
predictors revealed that covariates deemed non-significant for the cause-specific analyses
may be significant in the subdistribution hazards analysis (and vice versa). This is consistent
with examples of group effects examined elsewhere [18,19]. Specifically, we saw that
treating death as a censoring event resulted in a non-significant effect of patient physical
health on NH placement. After conducting the cause-specific analysis of death where poorer
patient physical health showed a significantly increased the hazard of death, and then
analyzing the subdistribution hazards model, did we uncover the significant effect of poor
patient health in reducing the probability of NH placement.

Subdistribution hazards modeling is appealing because of its close relationship to the Cox
proportional hazards model. Although the hazard constructs, risk sets, and partial likelihood
functions differ somewhat, the two share the familiar proportional hazards modeling
methodology. A researcher faced with competing risk events should pursue both analysis
strategies: cause-specific analyses of all event types and proportional subdistribution hazards
analyses.

The Fine and Gray model of the subdistribution hazard is restricted to the proportional
hazards framework and other modeling methodologies of the CIF may be considered. Fine
[31] presents a more flexible semi-parametric regression model for the cumulative incidence
that is applicable to any transformation model. Similarly Sheike et al. [32] develop a
semiparametric regression model for the CIF based on binomial regression methods.
Andersen et al. [33] and Klein and Andersen [34] model the CIF based on pseudovalues
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from a jackknife statistic from the estimated cumulative incidence. Alternative inferences
for differences in CIFs based on general summary measures, including risk ratios and odds
ratios, are presented by Zhang and Fine [35]. A thorough description of these methods is
beyond the scope of this paper.

In some instances, competing risk events that do affect the probability of the target event of
interest may be present, but occur so infrequently that the effects on the Cox proportional
hazards model parameter estimates may be negligible. The minimum frequency at which the
researcher should be concerned is subjective. However, this may be assessed by conducting
both the CSH and subdistribution hazards analyses and comparing the results. Latouche et al
[20] studied the robustness of the subdistribution hazards analysis under a misspecified
model and found, as we have seen here, that the estimates of the Fine and Gray model are
impacted by the CSH of the competing risk. This further emphasizes the need for a complete
analysis. In summary, we advise researchers to consider conducting both types of analyses
in situations where competing risk events are common.
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Appendix
The following R code was used to determine the cumulative incidence curves (CUMINC)
and conduct proportional subdistribution hazards analysis (CRR). These functions are
available in the CMPRSK package. Before these functions can be used, the package must be
loaded. The SAS code that follows was used for the cause-specific proportional hazards
models (note that R may be used for the cause-specific hazards analysis as well).

# read data into the table
×<- read.table("C:/analysis_dataset.txt",header=T,sep="\t")

# assign variable names

ftime <- x$years # follow-up time to
censor, death, or NH

fstatus <- x$fstatus # status: 0=censor,
1=NH, 2=Death

pat_age <- x$pat_age # patient age

pat_inc <- x$log_pat_income # log patient income

pat_health <- x$pat_health # patient health

gender <- x$pat_gender # patient gender: female
= 0 male = 1

freq <- x$freq_mb # freq of M & B
problems

gds5 <- x$gds5 # moderate dementia =
1, 0 otherwise

gds6 <- x$gds6 # severe dementia = 1, 0
otherwise

age <- x$caregiver_age # caregiver age

c_hlth <- x$caregiver_health # caregiver health

sat <- x$satisfaction # satisfaction with
support
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react <- x$reaction # reaction to M & B
problems

dep <- x$depression # depression scale

burden <- x$burden # caregiver burden

entry <- x$entry_year # year of study entry

tx <- x$group # group: 0=usual,
1=intensive

# assign labels 0='usual', 1='intensive'

tx_lab <- factor(tx,label=c('usual tmt','intensive'))

# assign labels 0='censor',1='NH',2='Death'

fstatf <- factor(fstatus,label=c('censor','NH','Death'))

# get the CIFs for each intervention group

x <- cuminc(ftime,fstatf,tx_lab,cencode='censor')

plot.cuminc(x,main="CIFs",xlab="Years",ylab="Probability",lty=1, lwd=2, color=1:6)

# multiple covariate analysis for proportional subdistribution hazards

y <- crr(ftime, fstatf, cov1=cbind(pat_age, pat_inc, pat_health, gender, freq, gds5, gds6,

+ age, c_hlth, sat, react, dep, burden, entry, tx_lab), failcode='NH', cencode='censor')

# produce the estimated cumulative incidence function for a male Alzheimer’s patient

# with moderate dementia (excellent health vs poor health) with caregiver receiving the

# intensive support. This patient is assumed to be average with respect to the other

# covariates and enters the study in year 4.

y.plot <- predict.crr(y,cov1=rbind(cbind(74, 3.6, 1, 1, 44, 1, 0, 71, 2, 4, 24, 10, 36, 4,
+ 1),cbind(74, 3.6, 4, 1, 44, 1, 0, 71, 2, 4, 24, 10, 36, 4, 1)))

plot(y.plot,ylim=c(0,1),xlab="Years",ylab="Probability")

# produce the estimated cumulative incidence function without covariate adjustment

z <- crr(ftime, fstatf, cov1=cbind(tx_lab), failcode='NH', cencode='censor')

z.plot <- predict.crr(z,cov1=c(0,1))

plot(z.plot,ylim=c(0,1),xlab="Years",ylab="Probability")

SAS code for Cox Proportional Hazards Models

* This code conducts cause-specific hazards analysis in SAS;

* treatment effect only;

proc phreg data=new;

    model years*fstatus(0,2) = group/ risklimits;

    title 'cause specific hazards for NH placement - treatment effect only';

run; quit;

proc phreg data=new;

    model years*fstatus(0,1) = group/ risklimits;

    title 'cause specific hazards for death - treatment effect only';

run; quit;

* treatment effect with covariates;

proc phreg data=new;

    model years*fstatus(0,2) = pat_age log_pat_income pat_health pat_gender freq_mb gds5 gds6 caregiver_age
caregiver_health satisfaction reaction depression burden entry_year group / risklimits;

    title 'cause specific hazards for NH placement ';

run; quit;

proc phreg data=new;

Szychowski et al. Page 10

Stat Med. Author manuscript; available in PMC 2011 February 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



    model years*fstatus(0,1) = pat_age log_pat_income pat_health pat_gender freq_mb gds5 gds6 caregiver_age
caregiver_health satisfaction reaction depression burden entry_year group / risklimits;

    title 'cause specific hazards for death ';

run; quit;
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Fig 01.
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Fig 02.
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Fig 03.
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Fig 04.
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Table 1

Patient Outcomes.

Sample size NH Placement Deaths (without
NH placement)

Total Deaths
(overall)

Usual Care 203 111 61 193

Intensive 203 100 67 192

Total 406 211 128 385
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Table 2

Covariate-adjusted hazard ratios for the cause-specific Cox proportional hazards model of nursing home
placement. Death is treated as a censoring event.

Hazard ratio
(95% CI)

p
value

Patient Variables

  Patient Age 1.016 (0.990, 1.043) 0.2292

  Log(1+Patient Income) 0.843 (0.764, 0.930) 0.0007

  Patient Physical Health 0.979 (0.786, 1.220) 0.8515

  Patient Gender (male vs female) 1.278 (0.905, 1.805) 0.1634

  Frequency of Memory and Behavior Problems 0.987 (0.975, 1.000) 0.0498

  Global Deterioration Scale

    moderate vs mild 1.906 (1.311, 2.772) 0.0007

    severe vs mild 2.431 (1.535, 3.850) 0.0002

Caregiver Variables

  Caregiver Age 1.005 (0.980, 1.030) 0.7071

  Caregiver Physical Health 1.080 (0.838, 1.393) 0.5515

  Satisfaction with Support Network 1.137 (1.004, 1.288) 0.0426

  Reaction to Memory and Behavior Problems 1.013 (0.999, 1.027) 0.0720

  Depressive Symptoms 1.013 (0.986, 1.042) 0.3505

  Caregiver Burden 1.008 (0.996, 1.021) 0.1904

Other Effects

  Year of Study Entry (0 = 1987 – 10 = 1997) 0.901 (0.854, 0.951) 0.0002

  Group (intervention vs usual care) 0.746 (0.559, 0.997) 0.0478

Stat Med. Author manuscript; available in PMC 2011 February 10.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Szychowski et al. Page 19

Table 3

Covariate-adjusted hazard ratios for the cause-specific Cox proportional hazards model of death. Nursing
home placement is treated as a censoring event.

Hazard ratio
(95% CI)

p
value

Patient Variables

  Patient Age 1.042 (1.010, 1.075) 0.0101

  Log(1+Patient Income) 1.164 (0.969, 1.398) 0.1053

  Patient Physical Health 1.423 (1.114, 1.819) 0.0048

  Patient Gender (male vs female) 1.748 (1.108, 2.757) 0.0164

  Frequency of Memory and Behavior Problems 1.007 (0.991, 1.023) 0.4132

  Global Deterioration Scale

    moderate vs mild 1.728 (1.057, 2.825) 0.0291

    severe vs mild 2.708 (1.505, 4.873) 0.0009

Caregiver Variables

  Caregiver Age 1.015 (0.985, 1.045) 0.3373

  Caregiver Physical Health 0.826 (0.588, 1.161) 0.2711

  Satisfaction with Support Network 0.980 (0.837, 1.148) 0.8013

  Reaction to Memory and Behavior Problems 1.007 (0.988, 1.026) 0.4685

  Depressive Symptoms 0.986 (0.950, 1.024) 0.4622

  Caregiver Burden 1.002 (0.985, 1.018) 0.8423

Group Effect

  Year of Study Entry (0 = 1987 – 10 = 1997) 0.958 (0.894, 1.028) 0.2328

  Group (intervention vs usual care) 1.064 (0.736, 1.539) 0.7404
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Table 4

Covariate-adjusted hazard ratios of nursing home placement from a proportional hazards model of the
subdistribution.

Hazard ratio
(95% CI)

p
value

Patient Variables

  Patient Age 1.003 (0.978, 1.028) 0.8327

  Log(1+Patient Income) 0.824 (0.746, 0.910) 0.0001

  Patient Physical Health 0.796 (0.642, 0.986) 0.0370

  Patient Gender (male vs female) 1.039 (0.746, 1.448) 0.8199

  Frequency of Memory and Behavior Problems 0.988 (0.976, 1.000) 0.0504

  Global Deterioration Scale

    moderate vs mild 1.510 (1.081, 2.109) 0.0156

    severe vs mild 1.525 (0.973, 2.389) 0.0654

Caregiver Variables

  Caregiver Age 1.000 (0.977, 1.024) 0.9935

  Caregiver Physical Health 1.148 (0.894, 1.473) 0.2794

  Satisfaction with Support Network 1.108 (0.980, 1.253) 0.1006

  Reaction to Memory and Behavior Problems 1.009 (0.996, 1.023) 0.1831

  Depressive Symptoms 1.009 (0.982, 1.037) 0.5022

  Caregiver Burden 1.012 (0.999, 1.025) 0.0774

Group Effect

  Year of Study Entry (0 = 1987 – 10 = 1997) 0.924 (0.877, 0.974) 0.0032

  Group (intervention vs usual care) 0.748 (0.561, 0.999) 0.0494
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