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Summary

Low folate status may be a consequence of suboptimal intake, transport or cellular utilization of
folate and, together with elevated homocysteine, is a recognized risk factor/marker for several
human pathologies. As folate transport across cell membranes is mediated in part by the reduced
folate carrier (RFC1), variants within this gene may influence disease risk via an effect on folate
and/or homocysteine levels. The present study was undertaken to assess the association between
the SLC19A1 (RFC1) ¢.80G>A polymorphism and folate/homocysteine concentrations in healthy
young adults from Northern Ireland.

The SLC19A1 ¢.80G>A polymorphism was not strongly associated with either serum folate or
homocysteine concentrations in either men or women. However, in women, but not in men, this
polymorphism explained 5% of the variation in red blood cell (RBC) folate levels (P=0.02).
Relative to women with the SLC19A1 ¢.80GG genotype, women with the GA and AA genotypes
had higher RBC folate concentrations. Consequently, compared to women with the SLC19A1 c.
80AA and GA genotypes, women who are homozygous for the 80G allele may be at increased risk
of having a child affected with a neural tube defect and of developing pathologies that have been
associated with folate insufficiency, such as cardiovascular disease.
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Introduction

Folate/homocysteine metabolism supports several important biological processes including
nucleic acid synthesis and the methylation of a variety of substrates (eg. proteins, DNA and
lipids). A low folate, high homocysteine phenotype is a risk factor for, or a marker of, many
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human pathologies including spina bifida and cardiovascular disease (Lucock, 2000). Any
impairment in folate bioavailability as a consequence of intake, transport or cellular
utilization might contribute to the pathogenesis of diseases that have been associated with
low folate status.

Folate transport is facilitated by the reduced folate carrier (MIM:600424; solute carrier
family 19, gene names: SLC19A1, RFC1), organic anion carriers, folate receptors alpha and
beta, and multidrug resistance-associated proteins (Matherly & Goldman, 2003). RFCl is a
high capacity, bi-directional transporter of 5-methyl-tetrahydrofolate (5-methylITHF) (Figure
1) and can also transport folic acid, albeit with lower capacity; it also facilitates transport of
the antifolate drug methotrexate (MTX) (Matherly & Goldman, 2003). The SLC19A1 gene
is polymorphic inhumans (Chango et al., 2000; Whetstine et al., 2002;
http://snp500cancer.nci.nih.gov). The most extensively studied variant of the SLC19A1 gene
is a single nucleotide polymorphism 80G>A in the coding region (SLC19A1 ¢.80G>A,;
rs61510559; often referred to as RFC1 80A>G), which results in the substitution of an
arginine with a histidine at residue 27 in the amino acid sequence.

The relationship between the SLC19A1 ¢.80G>A polymorphism and folate/homocysteine
metabolism is unclear. Several groups have reported a lack of association with red blood cell
(RBC) folate (Vesela et al., 2005; Chango et al., 2000), plasma folate (Winkelmayer et al.,
2003; Chango et al., 2000; Devlin et al., 2006) and homocysteine (Winkelmayer et al.,
2003; Yates & Lucock, 2005; Devlin et al., 2006). However, some studies have shown non-
significant trends between the SLC19A1 ¢.80G>A polymorphism and RBC folate levels
(Morin et al., 2003; Yates & Lucock, 2005), and among patients with thrombotic vascular
disease increased plasma folate concentrations were observed in SLC19A1 ¢.80AA
homozygotes (Yates & Lucock, 2005). In contrast, the largest study to date (N>10 000)
identified a borderline significant decrease in serum folate levels in individuals with
genotypes that included the SLC19A1 c.80A alleles; however, the relationship between the
SLC19A1 genotype and RBC folate levels was not reported for that study (Fredriksen et al.,
2007). Interestingly, two studies have provided evidence that the effect of the SLC19A1 c.
80G>A variant may be influenced by the MTHFR g.677C>T genotype (MTHFR ¢.665C>T;
rs1801133; often referred to as MTHFR 677C>T). Specifically, when SLC19A1 ¢.80G>A
genotype was considered in the context of MTHFR g.677C>T genotype, doubly
homozygous MTHFR g.677TT - SLC19A1 ¢.80GG individuals had elevated homocysteine
(Chango et al., 2000; Devlin et al., 2006), relative to those with other MTHFR/SLC19A1
genotype combinations.

Taken together, the above reports suggest that further investigation of the relationship
between the SLC19A1 ¢.80G>A polymorphism and folate/homocysteine phenotype is
warranted. The aim of this study was to investigate the relationship between the SLC19A1 c.
80G>A genotype and RBC folate, serum folate and homocysteine concentrations in young,
reproductive age adults.

Materials and Methods
Study population

The Young Hearts Project (YH) is an ongoing longitudinal study designed to monitor
cardiovascular disease risk factors in children and young adults living in Northern Ireland
(Boreham et al., 1993). Briefly, a sample of 12 year old (n=509) and 15 year old (n=506)
boys and girls were enrolled from post-primary schools in Northern Ireland between 1989
and 1990 (YHZ1). Between October 1997 and October 1999, all YH subjects were invited to
participate in YH3, a hospital-based screening evaluation (Gallagher et al., 2002). The
participation rate for YH3, which was conducted when the subjects were between 20 and 26
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years of age, was 48.2% (n=489). Compared to non-respondents, YH3 subjects tended to be
from families with higher socioeconomic status and to have had lower body mass indices at
the baseline YH1 examination. In addition, male YH3 subjects were leaner and reported
lower saturated fat intake at baseline relative to the male non-participants (Boreham et al.,
2004). Ethical approval for each phase of the study was granted by the Research Ethics
Committee of Queen’s University Belfast. The current paper is based on self-reported data
on smoking status, use of alcohol and multivitamin supplements, and fasting blood samples
collected as part of YH3.

Laboratory Methods

Blood samples were collected from fasted subjects for the determination of biochemical
parameters and for DNA extraction (Miller et al., 1988). Homocysteine concentrations were
measured by an established high performance liquid chromatography method (Ubbink et al.,
1991). Serum folate concentrations were determined by time-resolved immunofluorescence
on an AutoDelfia analyzer (Wallac, UK), and RBC folate concentrations were determined
by a microbiological assay as previously described (Molloy & Scott, 1997), and are
expressed as nanomoles per liter of packed RBCs.

SLC19A1 c.80A>G genotypes were determined by a modification of a published method
(Skibola et al., 2004) using TagMan 5’ Nuclease Real-Time PCR assay on a PTC-200 DNA
Engine (Bio-Rad, Hercules, CA) with fluorescence detection by a Chromo4 Real-Time PCR
Detector (Bio-Rad). Individual PCR amplification reactions (20 pl) were composed of 2 pl
sample DNA, 1x TagMan Universal PCR Master Mix, No AmpErase® UNG (Applied
Biosystems, Foster City, CA), 0.5 uM forward primer (5’-GGCCTGACCCCGAGCT-3’)
and 0.5 UM reverse primer (5’-AGCCGTAGAAGCAAAGGTAGCA-3’), 100 nM “G”-
specific probe (VIC-CACGAGGCGCCGC), and 50 nM “A”-specific probe (6FAM-
CGAGGTGCCGCCAGQG). The probes were synthesized by Applied Biosystems. PCR was
performed with an initial incubation at 95°C for 10 min followed by 60 cycles of
denaturation at 95°C for 30 sec and extension/5’ nuclease step at 63°C for 1 min. Dual
fluorescence was detected after each completed 70 sec cycle. Genotypes were assigned
using Opticon Monitor 3 analysis software (Bio-Rad). MTHFR g.677C>T genotypes have
previously been reported (Kluijtmans et al., 2003).

Statistical methods

Descriptive analyses of the study variables were conducted using data from all study
subjects, and included medians and percentiles for continuous variables (i.e. RBC folate,
serum folate and homocysteine) and proportions for categorical variables (i.e. smoking
status, use of alcohol and multivitamin supplements, and genotypes). Deviations from
Hardy-Weinberg equilibrium for the SLC19A1 ¢.80G>A and MTHFR g.677C>T genotypes
were assessed by y2 analysis.

Simple and multiple linear regression analyses were conducted using log-transformed RBC
folate, serum folate or homocysteine values as the main outcome measures. These analyses
were restricted to the subset of YH3 study participants for whom there was complete data
for all of the variables in any set of regression analyses. Simple linear regression models
were fitted to the data and the coefficient of determination (R2) estimated from these models
was used to assess the proportion of variation in the outcome variable that was explained by
each predictor variable. SLC19A1 ¢.80G>A genotypes were coded using two dummy
variables, one reflecting the comparison of the GG and GA genotypes and the other the
comparison of the GG and AA genotypes. Each potential behavioral risk factor (i.e. use of
multivitamins, cigarettes or alcohol) was coded as a dichotomous (i.e. yes/no) variable.
Multiple regression models included predictor variables as well as two-way interaction
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Results

terms. Interactions were coded as the product of a dichotomous behavioral variable and the
dummy variables defining genotype. Hence, two interaction terms were included in each of
the models that allowed for interactions. Nested models were compared to determine the
change in the proportion of variation in the outcome variable explained by the addition of a
single predictor variable or interaction term to the model. Specifically, the difference in the
adjusted R? values for a model with and a model without a given variable was calculated.
The significance of individual predictor variables within a model was assessed using the t-
statistic, and P-values<0.05 were considered to be statistically significant. All analyses were
conducted using SAS version 9.1.

The characteristics of YH3 study subjects are summarized, for the whole population and
separately by sex, in Table 1. SLC19A1 ¢.80G>A and MTHFR g.677C>T genotypes in the
population as a whole, and in the male and female subsets, were in Hardy-Weinberg
equilibrium. Data from two study subjects, each of whom had an extreme outlying value for
one of the biochemical measurements made in the YH3 samples (i.e. serum By, = 1230
pmol/l and serum folate = 213 nmol/l), were excluded from all analyses.

In the full study sample, SLC19A1 ¢.80G>A genotype was not a strong predictor of either
serum folate (R2=0.004) or homocysteine concentrations and (R?=0.003), and was only
modestly associated with RBC folate concentrations (R2=0.02, P=0.04) (Table 2). The
median RBC folate concentrations of those with the SLC19A1 c.80AA, GA and GG
genotypes were 699.8, 671.9 and 594.9 nmol/l RBCs, respectively.

As males and females differ with respect to several of the biochemical and lifestyle variables
(Table 1) of interest in this study, further analyses were performed separately for males and
females. Median values of the biochemical variables, by SLC19A1 ¢.80G>A genotype and
sex, are provided in Table 3. The SLC19A1 ¢.80G>A genotype was not strongly associated
with serum folate or homocysteine concentrations in either males or females (Table 2).
Among females, RBC folate levels increased with the number of SLC19A1 c.80A alleles
(Table 3), and the SLC19A1 ¢.80G>A genotype explained approximately 5% of the variation
in RBC folate (P=0.02) (Table 2), Although RBC folate levels in males also increased with
the number of SLC19A1 c.80A alleles (Table 3), SLC19A1 ¢.80G>A genotype explained a
relatively small proportion of the variation (~1%) in RBC folates among males (Table 2).

Multivariate regression analyses were performed to estimate the proportion of RBC folate
variation attributable to SLC19A1 ¢.80G>A genotype in the context of MTHFR ¢.677C>T
genotype, an established determinant of folate/homocysteine phenotype (Jacques et al.,
1996; Harmon et al., 1996; Kluijtmans et al., 2003). Analyses to assess potential interactions
between the SLC19A1 ¢.80G>A and MTHFR ¢.677C>T genotypes were not undertaken due
to the small number of subjects in several of the combined genotype categories. Accounting
for the effects of the MTHFR ¢.677C>T variant, the SLC19A1 ¢.80G>A genotype accounted
for approximately 3% of the variation in RBC folate levels in females, but less than 1% of
the variation in RBC folate levels in males (Table 4). Further, among females, the SLC19A1
¢.80G>A genotype accounted for a higher proportion of the variation in RBC folate than did
the MTHFR g.677C>T variant (i.e. MTHFR g.677C>T genotype accounted for ~1% of the
variation in RBC folate after accounting for the effects of the SLC19A1 ¢.80G>A genotype).
No interactions between the SLC19A1 ¢.80G>A genotype and smoking, alcohol, or
multivitamin use was observed in either males or females (data not presented), although it
should be noted that firm conclusions are precluded by the small number of observations in
several of the categories.
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Discussion

The data presented here indicate that in healthy young Northern Irish women the SLC19A1
¢.80G>A polymorphism is significantly associated with RBC folate concentrations, with
higher levels observed in women with genotypes including the A allele. While a similar
trend was observed in men, this variant explained a smaller proportion of the variation in
RBC folate in males as compared to females. The observed association between the
SLC19A1 c.80A allele and relatively high RBC folate levels in women is consistent with the
trend observed by Morin et al. (2003).

Neither in our study nor in those reported by others is there any apparent impact of the
SLC19A1 ¢.80G>A polymorphism on homocysteine (Winkelmayer et al., 2003; Yates &
Lucock, 2005; Devlin et al., 2006). Furthermore, our study provided no evidence that this
polymorphism significantly influences variation in serum folate concentrations and in this
respect it is similar to several other studies (Winkelmayer et al., 2003; Devlin et al., 2006;
Chango et al., 2000), a notable exception being the very large (N= 10 601) study of
Fredriksen et al. (2007) in which there was a borderline significant effect on serum folate.

Folic acid supplements prevent up to 70% of NTDs (MRC Vitamin Research Group, 1991;
Czeizel & Dudas, 1992) and women carrying fetuses with spina bifida have low folate and
high homocysteine concentrations (Mills et al., 1995; Kirke et al., 2004). The important role
of RFC1 in folate transport has prompted several groups to evaluate the SLC19A1 c.80G>A
polymorphism as a risk factor. Some groups have reported that the SLC19A1 ¢.80GG
genotype is a risk factor for spina bifida (Shaw et al., 2002; De Marco et al., 2003; Pei et al.,
2005; Morin et al., 2003), whilst others have found no evidence to support any such
association (Relton et al., 2004; O'Leary V et al., 2006; Vieira et al., 2005). A single report
has suggested that the SLC19A1 12 c¢.80AA genotype is a maternal risk factor for
anencephaly, but not for spina bifida (Relton et al., 2003). Our observations are biologically
consistent with the former reports.

Our findings may also have relevance to therapies involving the anti-folate drug
methotrexate, which is transported to cells by RFC1. Others have reported that methotrexate
concentrations (Laverdiere et al., 2002; Dervieux et al., 2004) are higher in patients with the
SLC19A1 c.80AA genotype, suggesting that it might be possible to individually tailor dosing
strategies by taking SLC19A1 ¢.80G>A genotype and sex into consideration.

In conclusion, we have demonstrated that the SLC19A1 ¢.80GG genotype is associated with
relatively low folate concentrations in Northern Irish women. As a maternal low folate/high
homocysteine phenotype is associated with increased risk of neural tube defects (NTDs) in
offspring (Mills et al., 1995; Kirke et al., 2004), women with the SLC19A1 ¢.80GG
genotype may have an increased risk of having a child affected by an NTD relative to those
with the GA and AA genotypes. In addition, SLC19A1 ¢.80GG homozygous women may be
at increased risk of a range of other major pathologies, including cardiovascular disease, in
which a low folate/high homocysteine phenotype is a predisposing feature.
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Figure 1.

Schematic representation of homocysteine/folate metabolism. CBS, cystathionine f3-
synthase; DHF, dihydrofolate; DHFR, dihydrofolate reductase; dTMP, deoxythymidine
monophosphate; dUMP deoxyuridine monophosphate; Hcy homocysteine; MTHFDL,
methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate
cyclohydrolaseformyltetrahydrofolate synthetase; MTHFR, 5,10-methylenetetrahydrofolate
reductase; MTR, methionine synthase; MTRR, methionine synthase reductase; RFCL1,
Reduced folate carrier; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine;
SHMT, Serine hydroxymethyltransferase; THF, tetrahydrofolate; TYMS, thymidylate
synthase.
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Table 1

Characteristics of Participants in the Young Hearts 3 Study.

Variable

Biochemical Variables
Homocysteine (umol/l)

N

Median (25"-75t percentile)
RBC folate (nmol/l)

N

Median (25"-75t percentile)
Serum folate (nmol/l)

N

Median (2575 percentile)

Lifestyle Variables

Current use of cigarettes (N, %)
Yes
No

Current use of alcohol (N, %)
Yes
No

Current use of multivitamin
supplements (N, %)

Yes
No

Genotypes

SLC19A1 ¢.80G>A (N, %)
GG
GA
AA

MTHFR g.677C>T (N, %)
cC
CT
TT

All (412)*

401
8.9 (7.5-10.9)

364
644.1 (479.0-844.8)

352
12.8 (9.6-18.9)

156 (38.1)
253 (61.9)

336 (81.8)
75 (18.3)

93 (22.6)
318 (77.4)

122 (29.6)
219 (53.2)
71 (17.2)

178 (43.5)
176 (43.0)
55 (13.4)

Males (N=225)

220
9.2 (7.7-11.0)

193
704.8 (543.6-888.7)

192
12.4 (9.4-18.9)

84 (37.7)
139 (62.3)

192 (85.3)
33 (14.7)

44 (19.6)
181 (80.4)

67 (29.8)
123 (54.7)
35 (15.6)

99 (44.4)
100 (44.8)
24 (10.8)

Females (N=186)

180
8.6 (7.4-11.0)

170
562.9 (428.7-764.7)

159
13.2 (9.6-19.1)

72 (38.7)
114 (61.3)

144 (77.4)
42 (22.6)

49 (26.3)
137 (73.7)

55 (29.6)
95 (51.1)
36 (19.4)

78 (42.2)
76 (41.1)
31(16.8)

*
Information on sex was not available for one subject.
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