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Herpes Simplex Virus Tegument ICP0 Is Capsid Associated, and Its E3
Ubiquitin Ligase Domain Is Important for Incorporation into Virions�
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Herpes simplex virus (HSV) immediate-early (IE) protein ICP0 is a multifunctional regulator of HSV
infection. ICP0 that is present in the tegument layer has not been well characterized. Protein compositions of
wild-type and ICP0 null virions were similar, suggesting that the absence of ICP0 does not grossly impair virion
assembly. ICP0 has a RING finger domain with E3 ubiquitin ligase activity that is necessary for IE functions.
Virions with mutations in this domain contained greatly reduced levels of tegument ICP0, suggesting that the
domain influences the incorporation of ICP0. Virion ICP0 was resistant to removal by detergent and salt and
was associated with capsids, features common to inner tegument proteins.

Herpes simplex virus (HSV) particles are composed of three
morphologically distinct structural components. The icosahe-
dral capsid is surrounded by the tegument layer, which is in
turn surrounded by a host-derived lipid envelope (49). After
the viral envelope fuses with the host cell membrane, the bulk
of the tegument appears to remain with the cell membrane
(38). Direct delivery of tegument proteins, such as VP16, can
rapidly stimulate viral gene expression (2). The release of an-
other tegument protein, vhs, leads to degradation of mRNAs
(48). Tegument components can also affect pre-immediate-
early (pre-IE) events, including processes that occur after pen-
etration but prior to IE gene expression (30). The tegument
layer comprises more than 19 viral proteins and trace amounts
of cellular proteins (33). Tegument infected cell protein 0
(ICP0) (58) and ICP4 (57) are present in 100 to 200 copies per
virion. Tegument ICP0 and ICP4 are detected by Western
blotting (13, 14, 35, 45, 52, 56, 58, 59) and mass spectrometry
(35) but not by protein staining (53).

ICP0 is a 110-kDa phosphoprotein that is a promiscuous
transactivator of viral and cellular genes (20, 21, 47). ICP0 is
expressed with IE kinetics and is needed for efficient progres-
sion to lytic infection (20, 27, 51, 54). It is required for growth
during low-multiplicity infections (7) and is needed for efficient
reactivation from latency (9, 28, 29, 34). ICP0 also inhibits the
antiviral response to cellular interferons (42) and may help the
virus bypass innate cellular repression pathways (26). Newly
synthesized ICP0 induces proteasome-dependent degradation
of components of nuclear subdomains called ND10, including
promyelocytic leukemia antigen (PML) and Sp100 (8, 23). The
N-terminal RING finger zinc-binding motif of ICP0 is required
for ND10 disruption. The RING finger functions as an E3
ubiquitin ligase in vitro and induces colocalization of conju-
gated ubiquitin at ND10 (3, 19). The disruption of ND10
structures is thought to facilitate HSV gene expression (6, 37).
Little is known about the ICP0 that is brought in with the
infecting virion. It is not clear whether tegument ICP0 func-

tions in a manner similar to its IE counterpart. IE protein
ICP27 is required for the cytoplasmic localization and the
incorporation of ICP0 and ICP4 into mature virions (52).
VP22 is also necessary for the efficient incorporation of ICP0.
Virions assembled in the absence of VP22 have reduced
amounts of ICP0, ICP4, glycoprotein E (gE), and gD (13, 14).
Here, we characterize fundamental properties of ICP0 that is
present in HSV virions.

We investigated whether ICP0 influences the protein com-
position of mature extracellular virions. All viruses were pro-
vided by R. Everett. Cell-free extracellular virions were prop-
agated on U2OS cells and isolated as described previously
(44). One microgram (Fig. 1A, left) or equivalent VP5 units
(Fig. 1A, right) of virions of parental virus HSV type 1
(HSV-1) Glasgow strain 17 syn� (4) (herein referred to as 17�)
or virions of ICP0 null mutant dl1403 (Table 1) were analyzed
by SDS-PAGE followed by Coomassie blue staining. For each
structural protein of the 17� virions that was detectable by
Coomassie blue staining, there was a counterpart protein de-
tected in dl1403. Although several proteins were detected at
various levels, the overall protein profile of virions released
from U2OS cells was not grossly altered by the absence of
ICP0 (Fig. 1A). Equivalent VP5 units of extracellular virions
were analyzed by Western blotting with antibodies against
ICP0 (mouse monoclonal antibody [MAb] 11060, a gift of R.
Everett) (22), gB (MAb H1817), ICP4 (MAb HIA021), VP5
(MAb HA018), and VP16 (MAb 1-21), all from Virusys
(Sykesville, MD), and gD (MAb DL6) (10) and gH-gL (rabbit
polyclonal antibody R137) (46), gifts of R. Eisenberg and G.
Cohen. The envelope glycoproteins and tegument proteins
tested did not appear to be reduced in the absence of ICP0
(Fig. 1B). By these measures, ICP0 does not appear to grossly
affect the protein content of mature virions. Based on this
analysis, however, we cannot rule out that one or more struc-
tural proteins in addition to ICP0 may be missing from the
ICP0 null virus.

ICP4 is expressed with IE kinetics and is a major transacti-
vator of early and late genes (12). IE ICP0 and ICP4 interact
and have a synergistic effect on gene expression (25, 47). We
used Western blot analysis to determine whether the absence
of ICP0 affected the incorporation of ICP4. ICP4 was detected
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in dl1403 virions (Fig. 1B), suggesting that it can be incorpo-
rated into virions independently of ICP0. Note that these re-
sults do not rule out a role for ICP0 in proper virion assembly.
Tegument assembly involves a complex series of protein-pro-
tein interactions, and individual tegument proteins may serve
redundant functions (40). Other tegument proteins in dl1403
virions may substitute for a structural or assembly role of
tegument ICP0.

We determined whether the RING finger domain influences
ICP0 incorporation into the tegument layer. First, the relative
amounts of VP5 in various ICP0 mutant virions (Table 1)

propagated on U2OS cells were determined for each prepara-
tion of virus (Fig. 2A). The ICP0 contents of virions were then
analyzed by SDS-PAGE and Western blotting with MAb 11060
to ICP0. As expected, the wild-type strain 17� contained teg-
ument ICP0 (Fig. 2A, lane 17�) while the dl1403 mutant did
not (Fig. 2A, lane dl1403). Strain FXE virions did not contain
ICP0 (Fig. 2A, lane FXE), suggesting that the RING finger
domain is important for the association of ICP0 with mature
virions. ICP0 was detected in dl1403 and FXE rescuants (Fig.
2A, lanes dl1403R and FXER), both of which bear the restored
ICP0 gene. Interestingly, K144E virions had greatly reduced
levels of tegument ICP0 whereas N151D virions had wild-type
levels (Fig. 2A, lanes K144E and N151D). Trace amounts of
ICP0 were reproducibly detected in K144E virions upon longer
exposure to film. To confirm that the reduction in tegument
ICP0 in FXE and K144E viruses was not due to lack of ex-
pression of mutant ICP0 in infected cells, the expression of
ICP0 during mutant virus infection was compared to that dur-
ing wild-type 17� infection. U2OS cells were infected with
equivalent VP5 units, corresponding to a multiplicity of infec-
tion (MOI) of 1 for 17�. Cell lysates were prepared 18 h
postinfection. Samples were analyzed by SDS-PAGE and
Western blotting with antibody to ICP0 (MAb H1A027; Viru-
sys, Sykesville, MD) or to �-actin (MAb AC-74; Sigma, St.
Louis, MO) to demonstrate equivalent levels of loading. Mu-
tant ICP0 was readily detected in cells infected with FXE or
the K144E mutant (Fig. 2B) as reported previously (15, 18, 54).
Thus, the RING finger plays an important role in the incor-
poration of ICP0 into virions.

While K144E and N151D mutations in the RING alpha
helix both decrease the ability of ICP0 to activate gene expres-
sion, the K144E phenotype is more pronounced (3, 15). Also,
K144E and N151D mutants both fail to induce the colocaliza-
tion of conjugated ubiquitin, but ICP0 with the N151D muta-
tion may still interact with the ubiquitin machinery (19). It is
not clear whether these activities relate to the inclusion of the

FIG. 1. Protein composition of herpes simplex virions in the ab-
sence of ICP0. (A) The HSV-1 wild type (17�) or �ICP0 strain
(dl1403) was analyzed by SDS-PAGE followed by Coomassie blue
staining. One microgram (left) or equivalent VP5 units (right) of each
virus were loaded. In the center, locations of several HSV structural
proteins are indicated. Numbers to the left are molecular mass mark-
ers in kilodaltons. (B) Equivalent VP5 units of extracellular virions
were analyzed by SDS-PAGE followed by Western blotting with anti-
bodies against the indicated tegument protein or glycoprotein.

TABLE 1. Details of ICP0 proteins expressed by viruses

Virus ICP0 structuref Description

17�a 1–775 Wild type
dl1403b 1–105 ICP0 null mutant
dl1403Rc 1–775 ICP0� rescuant
FXEd 1–105::150–775 RING finger domain

deletion mutant
FXERc 1–775 Rescuant with wild-type

RING finger
K144E mutante Point mutation at

amino acid 144
Mutant with substitution in

RING finger helix
N151D mutante Point mutation at

amino acid 151
Mutant with substitution in

RING finger helix

a Parental virus HSV-1 Glasgow strain 17 syn� (4).
b Has a 2-kb lesion in both inverted repeat copies of the ICP0 gene (54).
c Rescued virus was obtained by cotransfection with mutant virion DNA and a

plasmid containing a fragment comprising the ICP0 gene (18, 50).
d Has a defined lesion in the ICP0 RING finger domain yielding a deletion of

45 amino acids (16-18, 24).
e Has a single amino acid substitution in the alpha helix of the ICP0 RING

finger (15).
f Amino acids included or relevant mutation in ICP0 variant.

FIG. 2. Effect of RING finger mutations on the incorporation of
ICP0 into virions. (A) Incorporation of tegument ICP0 into HSV-1
mutants. The indicated extracellular virions (identified by relevant
mutations where applicable) were analyzed by SDS-PAGE followed by
Western blotting with the 11060 antibody to ICP0. In parallel, VP5 was
detected by Coomassie staining to demonstrate equivalent levels of
particle loading. dl1403R and FXER, dl1403 and FXE rescuants car-
rying a restored ICP0 gene. (B) Expression of ICP0 in cells infected
with wild-type or mutant viruses. U2OS cells were infected with the
indicated virus (MOI � 1) for 18 h. Cell lysates were analyzed by
SDS-PAGE followed by Western blotting with MAb H1A027 to ICP0.
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N151D mutant protein and the exclusion of the K144E mutant
protein from the tegument. Late in infection, newly synthe-
sized ICP0 shuttles from the nucleus to the cytosol (32). ICP0
may be incorporated into the teguments of virions in the cy-
tosol (14, 52). RING finger mutation causes ICP0 to be more
readily retained in the nucleus at late time points in infection
(36). Future studies will investigate the role that the RING
domain plays in the relationship between the cellular localiza-
tion of ICP0 and the incorporation of ICP0 into the tegument
layer.

To determine the position of ICP0 within the tegument
layer, a tegument release assay was employed (1, 41, 55). This
is a measure of how readily detergent and salt can remove a
structural protein from the virion. Typically, outer tegument
proteins are partially released from virions following treatment
with Triton X-100 and up to 1 M NaCl, but capsid-associated
or inner tegument proteins are resistant to such treatment.
Extracellular virions (3 � 109 PFU) were resuspended in 0.2
ml lysis buffer (50 mM HEPES [pH 7.4] and 1% Triton X-100)
containing 0.1, 0.5, or 1 M NaCl and incubated for 30 min at
37°C. The reaction mixtures were then layered onto 0.5 ml of
a 35% sucrose solution (containing 50 mM HEPES [pH 7.4]
and 0.1 M NaCl) and centrifuged at 21,000 � g for 10 min. The
200-�l supernatant above the sucrose cushion was recovered.
Released proteins in the supernatant were heat precipitated
and resuspended in Laemmli buffer. The sucrose cushion was
removed, and the pellet, containing capsids and capsid-associ-
ated tegument proteins, was resuspended in Laemmli buffer.
Pelleted and released samples were separated by SDS-PAGE
and blotted onto nitrocellulose. Western blots were probed
with antibodies against ICP0 (MAb H1A027), gB (MAb
H1817), ICP4 (MAb HIA021), VP5 (MAb HA018), VP16
(MAb 1-21; Santa Cruz Biotechnology, Inc., Santa Cruz, CA),
or VP1-2 (polyclonal antibody R27B4, a gift of R. Courtney)
(39).

As expected, gB was detected in the supernatant, indicating
that it was removed along with the virion envelope (Fig. 3). In

contrast, ICP0 remained in the pellet along with VP5, the
major capsid component, even at high salt concentrations (Fig.
3). ICP0 was not detected in the supernatant even after longer
exposures to X-ray film (data not shown). VP1-2 is a known
inner tegument protein and remained associated with capsids
in the pellet (Fig. 3) (5, 41, 55). In contrast, a fraction of VP16
was readily removed by 1% Triton X-100, consistent with the
presence of VP16 in the outer tegument (41, 43, 55). Interest-
ingly, detectable amounts of ICP4 were released by detergent
and increasing salt concentrations (Fig. 3), suggesting that
ICP4 is an outer tegument component. The presence of tegu-
ment ICP4 near the viral envelope may facilitate rapid release
into the cytoplasm upon viral penetration and play a pre-IE
role in HSV infection. In contrast, ICP0 is capsid associated.
Although specific functions have not yet been ascribed to
virion ICP0 and ICP4 proteins, it is tempting to speculate that
their different positions in the tegument layer reflect distinct
roles in pre-IE events.

We previously showed that HSV entry requires 26S protea-
some activity at a postpenetration step, likely the transport of
incoming capsids to the nucleus (11). We are currently inves-
tigating whether tegument ICP0 and its E3 ubiquitin ligase
domain play a role in proteasome-dependent entry of HSV.
There is also potential for functional interaction of ICP0 with
the inner tegument protein VP1-2, which has an N-terminal
ubiquitin-specific protease domain (31). Ongoing studies are
aimed at delineating the fate and function of tegument ICP0
during viral entry.
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