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Abstract
Statistical inference from MEG-based distributed activation maps is well suited to the general linear
modeling framework, a standard approach to the analysis of fMRI and PET neuroimaging studies.
However, there are important differences from the other neuroimaging modalities related to how
observations are created and fitted in GLM models, as well as how subsequent statistical inference
is performed. In this paper, we demonstrate how MEG oscillatory components can be analyzed in
this framework based on a custom ANCOVA modeling that takes into account baseline and inter-
hemispheric effects, rather than a simpler ANOVA design. We present the methodology using as an
example an MEG study of visual spatial attention, since the model design depends on the specific
experiment and neuroscience hypotheses being tested. However, the techniques presented here can
be readily adapted to accommodate other experimental paradigms. We create statistics that estimate
the temporal evolution of attention effects on alpha power in several cortical regions. We present
evidence for direction specific attention effects on alpha activity in occipital and parietal regions and
demonstrate the sub-second timing of these effects in each region. The results support a mechanism
for anticipatory attentional deployment that dynamically modulates the local alpha synchrony in a
network of parietal control and occipital sensory regions.
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1 Introduction
The General Linear Modeling (GLM) framework is a standard approach for fMRI (Friston et
al., 1995) and PET (Worsley et al., 1992) neuroimaging studies, and together with subsequent
statistical inference, is generally referred to as Statistical Parametric Mapping (SPM) (Kiebel,
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2003). Similar analysis techniques can be used to analyze distributed cortical current source
maps computed from MEG data, however there are important differences from the other
neuroimaging modalities related to how observations are created and fitted to GLM models,
as well as how subsequent statistical inference is performed.

The temporal resolution of MEG is on the order of milliseconds, much higher than fMRI and
PET. Standard analysis of MEG data involves the use of stimulus locked averaging over epochs
to produce the evoked response. Recently there has also been a great deal of interest in analysis
of the induced response, which corresponds to stimulus-related variations in power in different
oscillatory bands where the phase is not locked to the stimulus (David et al., 2006). Induced
effects are typically investigated using a time-frequency decomposition such as the Morlet
wavelet transform (Teolis, 1998). The fact that in MEG we often want to identify and localize
experimental effects not only over space, as traditionally done in fMRI with the notion of
voxels, but also in time and possibly frequency, introduces challenges that differentiate MEG
analysis from that of PET and fMRI. The high dimensionality of the data (space ×time ×
frequency × experimental design) presents challenges, in terms of the high computational costs,
but also possibilities, in terms of the greater flexibility that this affords us in the design of the
linear models.

Another important difference relative to fMRI is that MEG offers only limited spatial
resolution. Distributed cortical imaging involves the reconstruction of thousands of elemental
current sources from a few hundred measurements. The problem is highly underdetermined
and requires regularization to produce a stable solution (Hämäläinen et al., 1993; Baillet et al.,
2001). The resulting images are typically of low resolution so that reconstructions of a focal
source are blurred with significant point spread functions (PSF) (de Peralta-Menendez et al.,
1997; Liu et al., 2002). The shape of the PSF will depend on the reconstruction space, cortical
or volumetric, and whether the orientations of the sources are constrained to be normal to the
cortical surface. Unlike in fMRI, the PSFs for MEG are highly asymmetric and can extend
over multiple gyri or sulci. As a result, even after thresholding to control for false positives,
one can still observe false positives at locations within the point spread of truly active regions,
therefore, care must be taken in interpreting these results. An alternative approach, which may
often be acceptable given the limited resolution of MEG, is to divide the cortex into regions
of interest based on hypotheses of where experimental effects are expected.

In this paper, we demonstrate how MEG oscillatory components can be analyzed in a GLM
framework, based on a custom ANCOVA modeling that takes into account baseline effects
and inter-hemispheric effects, rather than a simple ANOVA design. We present the
methodology using as an example an MEG study of visual spatial attention, since the model
design greatly depends on the experiment at hand and the neuroscience hypotheses being tested.
However, the techniques presented here can be readily adapted to accommodate other
experimental paradigms. A preliminary version of this approach was presented in our
conference article (Pantazis et al., 2007).

The cognitive neuroscience-based motivation for the study used to demonstrate this analysis
method was to better understand the role of cortical alpha activity in anticipatory visual
attention. Covert deployment of anticipatory attention to locations in space improves
perception of target stimuli (Posner and Petersen, 1990), and neural mechanisms of visual
spatial anticipatory attention have been studied with several methods. The present report
focuses on posterior regions of parietal and occipital cortex because they have been shown to
be involved in the voluntary deployment of visual spatial attention in fMRI studies (e.g. Kastner
et al. (1999); Gitelman et al. (1999); Hopfinger et al. (2000); Corbetta and Shulman (2002);
Giesbrecht et al. (2003)). Oscillatory EEG activity in the alpha band has been proposed to play
a role in sustaining anticipatory attention (e.g. Worden et al. (2000); Marrufo et al. (2001);
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Sauseng et al. (2005); Kelly et al. (2006); Thut et al. (2006); Rihs et al. (2007); Palva and Palva
(2007). Monkey recordings have revealed that oscillatory activity in the alpha range is lower
when the receptive field of extrastriate neurons is attended versus unattended (Fries et al.,
2001). It is not known whether a similar mechanism occurs in parietal neurons. While human
EEG studies have shown that alpha power over left or right posterior scalp is lower when the
visual hemifield contralateral to the scalp recording is attended versus unattended, it remains
to be determined whether these attention-related alpha effects occur in occipital regions,
parietal regions, or both. Our EEG study (Worden et al., 2000) found alpha effects having scalp
topographic specificity at the visual quadrant level, and this has been supported by findings of
octant-level specificity (Rihs et al., 2007). Activity arising from upper versus lower visual field
representations in parietal cortices are unlikely to be differentiable at the scalp, suggesting that
the alpha effects are generated at least in part by occipital regions. Whether or not there is
direction-specific anticipatory attentional modulation of alpha in parietal regions remains
uncertain. Many studies require anticipatory deployment of attention both to a spatial location
and in anticipation of a pattern discrimination of target stimuli at that location (e.g. (Worden
et al., 2000; Sauseng et al., 2005; Rihs et al., 2007). Under these task demands anticipatory
attention could operate by modulating dorsal occipital regions alone or both dorsal and ventral
regions. The present study uses anatomically defined ROIs to parse the parietal and occipital
lobes into a set of six regions in each hemisphere in order to address these issues.

Our GLM model involves the analysis of dynamic maps of cortical activity over the alpha
frequency range (8–14 Hz). To explore the temporal dynamics of the attention process and
identify the top-down mechanisms that deploy attention, we fit separate linear models over
distinct time regions. Rather than using voxel-based statistics, we limit our analysis to cortical
regions of interest in occipital and parietal lobes. In addition to the general framework described
below, the novelty of this work lies in the exploration of the dynamics of these attentional
effects at the cortical rather than sensor level. By creating statistics that estimate the ipsilateral
vs. contralateral alpha activity in cortical regions, we present evidence for direction specific
attention effects on alpha activity in occipital and parietal regions and demonstrate the sub-
second timing of these effects in each region. The results support a mechanism for anticipatory
attentional deployment that dynamically modulates the local alpha synchrony in a network of
parietal control and occipital sensory regions.

2 Experiment
2.1 Subjects

Eight right handed subjects (6 male, 2 female) participated in the experiment (mean age 27.4
years ± 4.6 years). Two additional subjects were excluded from analysis, due to excessive head
movements. Informed consent was obtained from all subjects, and the experiment was
approved by the Institutional Review Board at the University of California, San Francisco.

2.2 Visual spatial cueing experiment
A liquid crystal projection system displayed stimuli to the subjects using a screen placed 36
cm from the nasion. Subjects were instructed to maintain fixation at all times on a cross located
at the center of their visual field (Fig. 1). Following a variable inter-trial baseline period (2150–
2950ms), a brief central arrow cue (50ms) instructed subjects to covertly deploy their attention
to a location in the lower left or right visual quadrant. After a 1 sec delay, a discrimination task
was performed by the subjects, to ensure they oriented and maintained attention as instructed.
This task was cued by a second stimulus (S2) presented with equal probability to the right or
left visual field (a small circular patch containing a sinewave grating). The subjects were
instructed to press a button with their right index finger only if S2 occurred at the cued location
and was a target (20 degrees clockwise grating pattern).
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2.3 MEG data collection and preprocessing
Continuous MEG signals were recorded using a 275-channel whole-cortex CTF Omega 2000
system. After acquisition, we applied 3rd order synthetic gradiometer correction to remove far-
field noise. A total of 900 trials were collected from each subject in a series of 18 blocks of 50
trials, with acquisition time approximately 80 minutes. The head location within the MEG
helmet was recorded during the short breaks between blocks, and subjects with excessive head
movement (above 5 mm) were excluded from analysis. The MEG recordings were low-pass
filtered at 0–300 Hz, and sampled at 1200 Hz. Eye activity was measured with vertical and
horizontal electrooculographs. All trials were inspected for eye movements and other artifacts
(MEG artifacts, muscle activity) and contaminated trials discarded, leaving around 700 trials
per subject for analysis. Cardiac artifacts on the remaining trials were removed using an
infomax independent component analysis algorithm (Hyvarinen et al., 2001), by identifying
periodic independent components with a characteristic EKG waveform. As our analysis was
focused on low frequencies (alpha band), we then further downsampled the timeseries to 120
Hz to reduce processing time.

3 Methods
Our goal is to develop a model through which we can explore the temporal evolution of human
visual attention and identify the functional role various cortical sites play in directing and
sustaining attention. Spatially localized ipsilateral vs. contralateral changes in alpha activity
with respect to the attended visual field can elucidate the top-down control mechanisms of
visual spatial attention. For this reason, we design statistics that estimate the statistical
significance of the ipsilateral vs. contralateral alpha effect for several cortical and temporal
regions.

We combine minimum-norm imaging (Hämäläinen et al., 1993; K-Yildirim et al., 2006) with
wavelet analysis to compute dynamic images of oscillatory cortical activity. We then select a
number of cortical regions in the parietal, occipital, and temporal lobes that are believed to
play an important role in forming and maintaining attention (Kastner et al., 1999; Gitelman et
al., 1999; Hopfinger et al., 2000; Corbetta and Shulman, 2002; Giesbrecht et al., 2003). To
extract contrast statistics of attention related alpha activity, we follow a univariate approach
and model each subject, region of interest (in bilateral pairs), and time-frequency band
separately with a novel ANCOVA (analysis of covariance) design, where power in rectangular
time-frequency bands forms the observation variables, and baseline power forms the covariate.
We incorporate trial indicator variables in our model to account for the spatially-dependent
data obtained from right and left hemispheres in each trial. The temporal evolution of the
estimated ipsilateral vs. contralateral statistic reveals the top-down control mechanisms of
visual attention. Statistical analysis using permutation tests and false discovery rate
demonstrates the significance of our findings.

3.1 Model
We assume that MEG data are collected as a set of stimulus-related trials (one per cue stimulus),
each consisting of a baseline period and a post-cue interval. Each trial consists of an array of
data M (nchannels × ntimepoints) representing the measured magnetic field at each sensor as a
function of time. The measurements M are linearly related with the brain activation X
(nsources × ntimepoints) as:

(1)

where G (nchannels × nsources) is the forward operator and N represents additive noise in the
channel measurements. The lead field matrix G depends on the shape and conductivity of the
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head (Darvas et al., 2004), and in this study we compute it based on an overlapping spheres
model (Huang et al., 1999) using the BrainStorm electromagnetic software (Mosher et al.,
2005).

A cortical map is computed for each epoch by applying a Tikhonov regularized minimum norm
inverse method (Tikhonov and Arsenin, 1977) to produce an estimate of the temporal activity
at each surface element in the cortex (Fig. 2):

(2)

We write the reconstructed cortical maps as {Xst}, where s and t are indices in space and time
respectively. We use the pre-stimulus data to estimate the baseline mean ms at each spatial
element s, by averaging over time t. We then estimate the centered data as:

(3)

3.2 Wavelet Expansion
We use a continuous wavelet transform (Vetterli and Kovacevic, 1995) to decompose the
source timeseries Yst into their wavelet coefficients. Unlike the Fourier transform, which
decomposes a signal into infinite length sines and cosines and loses all temporal localization
information, the continuous wavelet transform basis functions are scaled and shifted versions
of the temporally-local mother wavelet. The complex Morlet wavelet (Teolis, 1998) is a
continuous time wavelet often used in MEG studies (Tallon-Baudry and Bertrand, 1999;
Tallon-Baudry et al., 1996; Pantazis et al., 2005b; Kiebel et al., 2005). It is a Gaussian-
windowed complex sinusoid defined as:

(4)

where b is the bandwidth parameter and f is the central frequency. The complex Morlet wavelet
has a Gaussian shape in the time domain with standard deviation  and a Gaussian
shape at the frequency domain around its central frequency f with standard deviation σf = 1/
(2πσt) It is characterized by a constant product , which for this paper was set to 2.12. At
f = 10Hz, the wavelet shown in Fig. 3 had temporal resolution 2σt = 300ms and frequency
resolution 2σf = 2.12Hz.

For each source location s we obtain an estimate of the time-varying frequency components
by expanding the time series using Morlet wavelets as:

(5)

where (★) denotes the convolution operator over the time index t, and Cstf are the complex
wavelet coefficients (Fig. 3). Because the wavelet decomposition is linear and computed
entirely in the time domain, while the inverse operator (2) is computed entirely in the spatial
domain, the two operators commute. In practice, it is computationally more efficient to first
compute the wavelet decomposition in the channel domain, and then to apply the inverse
operator (2) to each of the wavelet coefficients.
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3.3 Statistics
Our goal is to detect spatial-temporal-spectral components of cortical activity that relate to
visual attention effects. A statistic that estimates neural activation energy at specific time-
frequency instances, given by the squared wavelet coefficients, can capture such attention
effects:

(6)

To improve the signal to noise ratio, and increase the statistical power by minimizing the total
number of statistics we need to test for significance, we integrate the energy over time T =
[t1, t2], frequency F = [f1, f2], and cortical area S:

(7)

Figure 4 shows how we select rectangular time-frequency bands in the wavelet signal domain.
We divide the 1 sec post-cue time period into several equal length intervals (only a few are
shown), and select bands in the alpha range [8, 14Hz]. We estimate the ESTF statistics on the
six cortical sites shown in Fig. 5. The present approach can use any type of pre-defined
anatomical ROIs, including those defined on the basis of previous functional imaging studies,
PET, fMRI or source imaged MEG, EEG studies. For the present attention study, we identified
regions that have a functional role in voluntary deployment of visual spatial attention, as
identified by neuroimaging studies (Kastner et al., 1999;Gitelman et al., 1999;Hopfinger et al.,
2000;Corbetta and Shulman, 2002;Giesbrecht et al., 2003). The regions were derived by
analysis of published fMRI studies that used cued spatial attention designs related to the present
study. The composite talairach coordinates across studies were used to define large ROIs that
inclusively represent active regions from these studies. The ROIs were then identified manually
on the cortical surfaces of 8 subjects.

3.4 ANCOVA Model
During the visual attention experiment, we acquire many energy observations ESTF in several
spatial-temporal-spectral bands (STF). We introduce new indices to identify the observations:
k ∈ {1 … K} denotes the subject, i ∈ {1, 2} denotes the main effect cue (1 for right, 2 for left),
j ∈ {1, 2} denotes the main effect hemisphere (1 for right, 2 for left), and l denotes the individual
measurements collected over each subject and main effect.

The new indices allow us to arrange the observations into general linear models. We follow a
univariate approach and model each spatial-temporal-spectral band (and subject) separately
with an ANCOVA model. Our approach resembles the statistical parametric mapping
methodology in fMRI data analysis, where a general linear model is fit in each voxel location
(Friston, 1996), with the exception that bilaterally pairs of spatial data are modeled instead of
individual spatial elements. Also, MEG has lower spatial resolution and higher temporal
resolution, so instead of voxels we use cortical regions and instead of a hemodynamic response
function we expand the neural activity in time-frequency bands. We also use a baseline
covariate, because it is reasonable to expect that pre-cue brain state will affect our post-cue
observations; high overall alpha activity before the stimulus may predict high alpha activity
after the stimulus and vice versa. Finally, since observations from the right and left hemisphere
of the same trial are correlated, we incorporate trial indicator variables in our model to
compensate for correlated observations. Note that if there were j > 2 correlated measurements
modeled, this indicator variable only accounts for a compound symmetric correlation structure
(all correlations equal) among sets of j observations. If a more general correlation structure is
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desired, a repeated measures or mixed effects modelling approach would be required (see, e.g.
(Verbeke and Molenberghs, 2000)).

The ANCOVA model we use is:

(8)

where  are the main effects for cue and hemisphere conditions,  are the baseline
covariates (observations of neural energy in the baseline) multiplied by the hemisphere-specific

parameter  accounts for the correlation between the two hemispheres, and

 is the model error term. The superscripts STF, k indicate that we fit the same ANCOVA
model for all spatial-temporal-spectral bands and subjects.

Equivalently, in matrix form:

(9)

where ESTF,k is the vector of all observations, and bSTF,k is the vector of unknown parameters.
Each observation corresponds to a row in the design matrix X, as shown in Fig. 6. We find the
least squares solution of bSTF,k, and then compute a contrast that captures the ipsilateral vs.
contralateral effect for each subject:

(10)

where the first two terms represent the ipsilateral effect (same i and j) and the last two terms
represent the contralateral effect.

At this point we could divide the contrast values by their standard errors, creating time-
frequency t-images for each contrast, for each subject. However, our interest is in inference on
population mean effects, so we simply average over all subjects k,

(11)

We hypothesize that large values of the statistic SSTF in the alpha band indicate increased
attention since in that case the ipsilateral vs. contralateral attention modulation of alpha activity
is more pronounced.

3.5 Statistical Significance
The spatial and temporal evolution of SSTF can reveal the dynamics of visual attention.
However, we need to establish if the observed effects are statistically significant. We could
use either standard parametric inference as part of the GLM, but this is based on normality
assumptions, which are impossible to verify on the small group data that are typical. Instead,
we use a permutation scheme (Nichols and Holmes, 2001; Pantazis et al., 2005a, 2003), which
only assumes that the contrast data SSTF,k are symmetrically distributed and, in the absense of
an effect, mean zero.
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Formally, under the null hypothesis of no cue or hemisphere main effect, we can randomly
mix the labels of our observations and exchange the ipsilateral and contralateral conditions.
Computationally, this is equivalent to randomly multiplying each subject’s response with 1 or
−1 (Eq. 12); we avoid a complete randomization scheme that would require mixing the first 4
columns of the design matrix, because recomputing the least squares solution for each
permutation sample is too computationally demanding.

(12)

Since we have experimental data for 8 subjects, we can generate 28 permutation samples
SSTF*, and use them to evaluate the p-value PSSTF of our original statistic SSTF. The symbol
(*) denotes the statistic is generated by permutation.

By repeating this procedure for each spatial-temporal-spectral band STF, we evaluate a group
of p-values of our original statistics. To find which of these p-values are significant after
multiple comparison corrections, we use a false discovery rate (FDR) procedure. FDR controls
the expected proportion of errors among the rejected hypothesis (Benjamini and Hochberg,
1995; Genovese et al., 2002). For example, FDR at a level α= 0.05 means that if we reject 100
null hypotheses, on average 5 of these will be false positives. We consider this measure suitable,
because when many of our hypotheses are rejected, the error from a single erroneous rejection
is not crucial for drawing conclusions about the ipsilateral vs. contralateral effect. Before
applying FDR, we confirmed that its assumptions hold (Benjamini and Yekutieli, 2001),
namely we have non-negative correlation between the SSTF statistics in the various spatial-
temporal-spectral bands.

4 Results
On average, subjects correctly detected about 80% of all cued targets (81.5% ± 11.4%. Correct
responses were defined by a reaction time within 100 – 900 ms after a cued target. The false
negative rate, defined by a missing response after a cued target, was 17.3% ± 11.1%). The
target detection rate was similar for cue left (79.8% ± 14.2%) and cue right (83.2% ± 10.4%;
t[7] = −0.92, not significant. The mean target reaction time was 500 ms (500.2 ± 79.2 ms); it
was about 20 ms faster for cue right (490.4 ± 80.7 ms) than cue left (510.7 ± 78.9 ms; t[7] =
3.48, p < 0.05). The response data indicated that subjects were attending to the task and
performing with a high level of accuracy.

Each subject was cued to attend to the right or left lower visual quadrant in approximately half
the trials. Figure 7 shows a sensor map of the difference in alpha activity between cue-right
and cue-left trials, averaged over all 8 subjects. Even though these patterns appear dipolar, they
should not be confused as such, since these images are power maps. In the right hemisphere,
the alpha activity in the cue-right trials is greater than the cue-left trials; the opposite holds true
for the left hemisphere. This means that in both hemispheres the ipsilateral is greater than the
contralateral alpha activity. Figure 8 provides an example of mapping the attention-related
differences in alpha activity onto the cortical surface for a snapshot in time. While there are
many commonalities across subjects, Figure 8 also illustrates the variation in activity over time,
brain region and subjects that was a motivating factor for the group statistical model described
above. Subtracting the Cue Left alpha activity from Cue Right produces positive values in the
right hemisphere and negative values in the left hemisphere due to higher alpha levels for
ipsilateral (I) versus contralateral (C) conditions. The figure illustrates some of the individual
commonalities and differences in effects between hemispheres and subjects at a particular time
period (between 500–700 ms, post-cue). It should be noted that these effects are also time-
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varying (see Fig. 11), consequently the maps for a particular point in time (Figure 8) will not
fully reveal the maximal differentiation of each of the multiple cortical foci of activity.
Similarly, the Ipsi greater than Contra difference, may not develop at the same time in both
hemispheres for all subjects, as seen in Figure 8 where subject 1 does not have an Ipsi > Contra
effect in both hemispheres in that time window (but does at a later latency).

We applied our ANCOVA methodology on the 1 s time region following the cue presentation,
since at that time the subjects shift and maintain attention to the cued visual quadrant in
anticipation of S2. Following the procedure in the method section, we divided the 1 sec post-
cue time period into 10 equal intervals, T1 = [0, 100ms], T2 = [100, 200ms], …, T10 = [900,
1000ms], and used the alpha band F1 = [8, 14Hz] and the 6 cortical sites shown in Fig. 5. To
estimate baseline activity, we used the time band [−500, −100ms]. For each subject we
constructed neural energy observations ESTF,k in these bands, and fit multiple ANCOVA
models.

We first investigated how well our model explains the MEG observations. Out of the total
variation of ESTF,k, on average 4% was explained by the cue and hemisphere main effects, 12%
by the baseline covariate, 66% by the inter-hemispheric correlation, and 18% by the error term.
While the error variance is relatively large, we attribute this to large trial to trial variation in
the MEG data which we interpret as additive noise in the model. When constructing the
ANCOVA model, we made the assumption that the baseline alpha activity has an additive
effect on the post-cue activity. If the effect is multiplicative rather than additive, large values
of baseline alpha activity would cause large errors in the model. Figure 9 plots the ANCOVA
error against the baseline alpha covariate. Since no inflation of error occurs for large baseline
alpha activity, a linear model is appropriate for the baseline covariate.

After estimating the ispilateral vs. contralateral statistic SSTF using Eq. 11, we established its
statistical significance using permutations. The p-values are shown in Table 1. All cortical
regions demonstrated significant topographic changes of alpha activity after 200 ms, apart from
the temporal parietal junction that had significant activity after 400 ms. Also, the effect in the
superior parietal lobe was not significant after 700 ms.

The time course of the statistic SSTF are shown in Figure 11. All cortical regions exhibit
significant topographic changes of alpha activity for extended time periods. Alpha band
oscillations were higher in all parietal and occipital regions of the ipsilateral hemisphere
(ignored representation) relative to the contralateral hemisphere (attended representation), as
demonstrated by the positive sign of SSTF. Further, in parietal sites the statistic SSTF reached a
peak much earlier than the presentation of the target stimulus (S2): the superior parietal lobe
reached a peak in ipsilateral vs. contralateral activity at approximately 500 ms post-cue, and
then the effect was suppressed; the temporal parietal junction peaked slightly later at around
700 ms. In contrast, all the cortical occipital sites show increasing alpha topographic changes
until the S2 target stimulus occurred.

At 10Hz central frequency, the complex Morlet wavelet we used had approximately 2Hz
frequency resolution and 300ms temporal width. The above frequency resolution is enough to
guarantee that our analysis in not confounded by nearby frequencies. Furthermore, we
investigate the attention effect in much larger temporal scales (1s) than the temporal width of
our wavelet, and confounding effects present in peristimulus intervals are limited to only
approximately ± 150ms around a stimulus event.

To investigate the effect of the baseline covariate on our ANCOVA model, we removed it and
fit the measurements to the reduced model. The timeseries of the SSTF statistic changed slightly
at the time region after 0s, and the effect was suppressed as we moved away from the baseline
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at close to 1s. This indicates that the baseline covariate has prediction power at time instances
immediately after the cue stimulus, but not later (Fig. 12).

We applied the same ANCOVA analysis for the time period 1–1.7 sec, i.e. after the presentation
of the S2. In this case, we used separate models for cued and uncued trials, indicating whether
the S2 arrived at the cued direction or the opposite location. For baseline activity, we again
used the time band [−500, −100ms]. Notice that the resulting statistic SSTF still represents
ispilateral vs. contralateral alpha activity, defined as before relative to the cue stimulus (and
not the S2 stimulus). Figure 13 shows separate timeseries for the cued and uncued trials, for a
set of 50 ms time bands T1 = [1, 1.05sec], T2 = [1.05, 1.1sec], … T13 = [1.65, 1.7sec]. At the
onset of S2 (t = 1 sec) the timeseries are approximately a continuation of Fig. 11. A few hundred
milliseconds later, though, the attention statistic for cued trials becomes even more positive,
while for the uncued trials the statistic changes sign and becomes negative peaking at 1.3–1.4
sec.

Even though the above analysis used the total power as observations, it is directly applicable
to induced components. The only difference is that, before applying the method, the per
condition averaged trial data (evoked components) are removed from the corresponding trials.
Then, the analysis proceeds exactly the same, by extracting time-frequency components from
each trial and creating observations for a subsequent ANCOVA analysis. In our data, the
analysis of only the induced components produced virtually the same results, with timeseries
differences typically less than 2%. Therefore, the shape of the timeseries is not affected by the
presence of evoked components (N1, P2 and other components from the visual stimulus), but
rather is attributed to attention effects.

5 Discussion and Conclusions
Even though topographic changes of alpha activity during anticipatory deployment of
visuospatial attention have been explored in multiple EEG studies (e.g. Worden et al. (2000);
Sauseng et al. (2005); Marrufo et al. (2001); Thut et al. (2006)), data analyses until now have
focused on the sensor domain. Our ANCOVA modeling, combined with minimum-norm
inverse imaging and wavelet analysis, allowed us to explore the temporal dynamics of visual
attention effects at several cortical sites in the occipital and parietal lobe.

Through the combined use of a cortically-constrained minimum norm mapping and time-
frequency analysis we investigated, at the cortical level, induced changes in oscillatory
neuronal activity in response to different attentional conditions. Using the ANCOVA
framework, we developed a model that includes baseline effects and within trial correlations,
as well as main effects. To account for the high dimensionality of these data we perform
dimensionality reduction by integrating power over appropriately selected spatial, temporal
and frequency regions of interest. Computing contrasts and thresholding to control the false
discovery rate then allows us to test hypotheses regarding the spatial and temporal activity,
controlling for multiple comparisons. While this framework is applied here to a study of
visually cued attention, the approach and model are general and applicable to a broad range of
MEG studies that investigate total or induced changes in oscillatory activity. Generally, the
method can be applied to any cognitive neuroscience design in which there are cortically
specific regions that are expected to vary in accordance with the task conditions. For example,
in a language task the effects could be found between different ROIs within a hemisphere, with
or without inter-hemispheric comparisons.

The pre-stimulus ‘baseline’ period in cognitive neuroscience studies is frequently treated,
either explicitly or implicitly, as a period when physiological activity is zero, or at least as a
referent that is considered neutral with respect to the activity that follows the stimulus.
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However, it is often the case that this referent period could contain activity that reflects a
cognitive state related to the subsequent processing. In the present study, for example, the pre-
cue ‘baseline’ period reflects an attentive state in which the subject is focused upon
discriminating the centrally presented cue stimulus when it arrives. One possible scenario is
that such centrally focused attention may be achieved in part by suppressing the peripheral
locations, resulting in higher alpha levels bilaterally. By using the alpha activity levels during
the baseline as a covariate we can examine whether or not any activity in the baseline
contributes to the subsequent attention effects. In the present study this was not the case.
However, it is easy to imagine cognitive studies in which the level of baseline activity could
be related to the subsequent cognitive processes and our method would be useful in detecting
this.

Interpretation of MEG reconstruction maps is typically confounded by limited spatial
resolution. This is also the case with our results, where signals from the 6 investigated ROIs
can leak to each other, and therefore affect the timeseries extracted in Figs. 11 and 13. However,
due to the relatively large extent of the ROIs, the MEG spatial resolution is sufficient to localize
the underlying attention mechanisms, as indicated by the different temporal profiles of
statistical effects in each cortical ROI.

Scalp EEG studies have provided evidence in support of direction-specific anticipatory
modulation of alpha band activity arising, at least in part, from retinotopically-organized cortex
in the occipital lobe (Worden et al., 2000; Rihs et al., 2007). However, it was unclear from
these studies whether multiple occipital and/or parietal regions are involved. The present results
support a mechanism for anticipatory attentional deployment that dynamically modulates local
alpha synchrony via a network of parietal and occipital regions, substantiating the claim that
occipital sensory cortex is involved in anticipatory attention. Studies of anticipatory attentional
deployment often involve both a spatial cue and a pattern discrimination task (Worden et al.,
2000; Sauseng et al., 2005; Rihs et al., 2007), yet it has been unclear whether this type of
attentional demand induces alpha modulation solely in dorsal occipital regions, or in both dorsal
and ventral occipital regions. The results indicate that alpha band activity in both dorsal and
ventral occipital regions are modulated by attention, suggesting the network subserving
anticipatory visual attention represents both spatial and feature representations. It is known
from fMRI studies that parietal regions are involved in anticipatory visuospatial attention (e.g.
Kastner et al. (1999); Gitelman et al. (1999); Hopfinger et al. (2000); Corbetta and Shulman
(2002); Giesbrecht et al. (2003)), however it is not known whether parietal regions are part of
the network of areas that produces attention-related modulation of alpha activity, and whether
parietal regions operate bilaterally (Thut et al., 2006) or in a lateralized and direction-specific
manner. Our findings indicate that parietal regions are included in the network subserving alpha
modulation during anticipatory attention, in a lateralized and direction-specific manner. Our
statistical model also allowed us to investigate the timing of attention-related modulations of
alpha activity in each cortical region. The results of the present study indicate that the direction-
specific alpha modulation increases during the delay, peaking well into the delay period around
500–700 milliseconds after the cue.

Little is known about attention-related modulation of alpha activity following presentation of
the S2, as it has not been the emphasis of previous anticipatory attention studies (but see
Sauseng et al. (2005). Many of the same questions about the involvement of occipital and/or
parietal regions during deployment of anticipatory attention following the cue also apply to
the attentive processing of the S2. Sauseng et al. (2005) demonstrated modulation of alpha over
posterior scalp similar to the pattern of effects reported in the present study, consistent with
attentive processing of the S2. Our results are consistent with the view that alpha modulation
during S2 processing arises from activity within a network of occipital and parietal regions.
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This paper details a new way of statistically modeling high-dimensional data obtained from
MEG, and demonstrates the value of our approach via application of these methods to a visual
attention study.
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Fig. 1.
Visual spatial cueing experiment. A brief central arrow cue directs covert attention to the lower
left or right visual field, in anticipation of a second stimulus (S2) delivered 1 sec later to the
left or right with equal probability. S2 consists of gratings slanted clockwise from the vertical
by either 5 (non-target) or 20 (target) degrees, with a response required if the S2 appeared at
the cued location and had the target orientation.
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Fig. 2.
MEG model; (a) Sensor arrangement of a 275-channel CTF MEG system, (b) Topography of
sensor measurements M, (c) Min-norm inverse solution X on a tessellated cortical surface
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Fig. 3.
Time-varying frequency components of a source on the visual cortex; we notice alpha activity
around 300–600 ms after stimulus. The Morlet wavelet is a Gaussian-windowed complex
sinusoid with the real part shown in blue, and the imaginary part in red.
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Fig. 4.
Selection of rectangular time-frequency bands in the wavelet signal domain (right figure). Also
shown is the average frequency content of the cue-right and cue-left trials in the right intra-
parietal sulcus (Fig. 5) of a subject. Alpha power is stronger on the cue-right trials (ipsilateral
hemisphere) around 500–800 ms, indicating a topographical change of alpha activity in
anticipation of a target stimulus at 1 sec in the cued direction.
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Fig. 5.
Visual attention effects are explored in 6 cortical regions, selected symmetrically in each
hemisphere; SPL: Superior Parietal Lobe, TPJ: Temporal Parietal Junction, IPS: Intra-Parietal
Sulcus, OM: Occipital Middle, OL: Occipital Lateral, OV: Occipital Ventral.
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Fig. 6.
First few rows of the ANCOVA design matrix X. Each MEG trial produces two observations
(post-cue energy in the right and left hemisphere) that account for two rows in the design matrix.
We place 1s in the appropriate cue and hemisphere indicator variable, and the within trial
correlation term. The baseline energy is placed in the fifth or sixth column depending on
whether it comes from the right or left hemisphere.
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Fig. 7.
Alpha power sensor map showing the difference between cue-right and cue-left trials. The
effect is averaged over 8 subjects at 600 ms post-cue, and demonstrates that ispilateral is greater
than contralateral alpha activity. Spatial accuracy is only approximate, because data has not
been aligned with respect to head position among the subjects.
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Fig. 8.
An example of inter-subject commonalities and variability in attention effects on cortical alpha
levels. Caudal view of cortical maps of eight subjects, displaying attention-related differences
in alpha power (cue-right minus cue-left conditions) during the time period of 500–700 ms
post-cue. Cortical alpha levels are measured during attention conditions when the cued visual
hemifield is ipsilateral (I) or contralateral (C) to the cortical hemisphere. Subtracting the Cue
Left activity from Cue Right will produce positive values in the right hemisphere and negative
values in the left hemisphere if alpha levels are greater for ipsilateral versus contralateral
conditions. Overall, the results show an I > C alpha attention difference in both hemispheres.
The magnitude of the I > C difference varies between hemispheres and across subjects, and
changes over time for each subject (not shown). While the timing of the I > C difference is
similar across subjects, the figure illustrates how the I > C difference may not develop in both
hemispheres at the same time for all subjects, as subject 1 does not have an I > C difference in
the right hemisphere in this time window (but does at a later latency). The locations of the
maximal foci of I > C differences also vary over time (see Fig. 11). Consequently, the maps
for a particular point in time will not fully reveal the differentiation of multiple foci of activity.
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Fig. 9.
Testing model validity. If baseline alpha activity is not an additive effect, as we assume in the
ANCOVA model, large values of baseline alpha activity would cause large errors in the model.
Since no inflation of error occurs for large baseline alpha activity, the baseline covariate can
be included as an additive effect.
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Fig. 10.
FDR procedure for the p-values of the SSTF statistics. The blue line sorts the 60 p-values of
Table 1 in ascending order. The black line is the 0.05 significance line for 60 hypothesis tests.
Based on FDR theory, all p-values below the highest crossing point, i.e. p ≤ 0.0273, are
significant.
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Fig. 11.
Time course of the ispilateral vs. contralateral statistic SSTF during 0–1 sec at 6 cortical regions.
Shaded areas indicate significance after multiplicity correction using a false discovery rate
procedure.
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Fig. 12.
Time course of the attention statistic SSTF at the TPJ for the model shown in Eq. 8 and a reduced

model after forcing the baseline covariate  to zero.
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Fig. 13.
Time series of the ispilateral vs. contralateral activity SSTF during 1–1.7 sec for the cued and
uncued trials at 6 cortical regions. Shaded areas indicate significance after multiplicity
correction using a false discovery rate procedure: 45°clockwise from vertical for cued trials
and counter-clockwise for uncued trials.
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