Inositol 1,4,5-tris-phosphate activation of inositol tris-phosphate receptor Ca^{2+} **channel** by ligand tuning of Ca^{2+} **inhibition**

DON-ON DANIEL MAK*, SEAN MCBRIDE*, AND J. KEVIN FOSKETT*†‡

*Department of Physiology and †Institute for Human Gene Therapy, University of Pennsylvania, Philadelphia, PA 19104-6100

Edited by Roger Y. Tsien, University of California at San Diego, La Jolla, CA, and approved October 18, 1998 (received for review July 31, 1998)

ABSTRACT Inositol 1,4,5-tris-phosphate (IP3) binding to its receptors (IP3R) in the endoplasmic reticulum (ER) activates Ca^{2+} release from the ER lumen to the cytoplasm, **generating complex cytoplasmic Ca2**¹ **concentration signals including temporal oscillations and propagating waves. IP3** mediated Ca^{2+} release is also controlled by cytoplasmic Ca^{2+} **concentration with both positive and negative feedback. Single-channel properties of the IP3R in its native ER membrane were investigated by patch clamp electrophysiology of isolated** *Xenopus* **oocyte nuclei to determine the dependencies of IP3R** on cytoplasmic Ca^{2+} and IP₃ concentrations under rigorously **defined conditions. Instead of the expected narrow bell**shaped cytoplasmic free Ca^{2+} concentration $([Ca^{2+}]_i)$ response centered at ≈ 300 nM–1 μ M, the open probability remained elevated (≈ 0.8) in the presence of saturating levels (10 μ M) of IP₃, even as $[Ca^{2+}]$ _i was raised to high concen**trations, displaying two distinct types of functional Ca2**¹ **binding sites: activating sites with half-maximal activating** $[Ca^{2+}]$ **i** (K_{act}) of 210 nM and Hill coefficient $(H_{act}) \approx 2$; and **inhibitory sites with half-maximal inhibitory** $\left[Ca^{2+}\right]$ (K_{inh}) **of 54** μ M and Hill coefficient (H_{inh}) \approx 4. Lowering IP₃ concen**tration was without effect on Ca2**¹ **activation parameters or** *H***inh, but decreased** *K***inh with a functional half-maximal activating IP3 concentration (***K***IP3) of 50 nM and Hill coefficient** (H_{IP_3}) of 4 for IP₃. These results demonstrate that Ca^{2+} is a **true receptor agonist, whereas the sole function of IP3 is to relieve** Ca^{2+} **inhibition of IP₃R. Allosteric tuning of** Ca^{2+} **inhibition by IP₃ enables the individual IP₃R Ca²⁺ channel to respond in a graded fashion, which has implications for localized and global cytoplasmic Ca2**¹ **concentration signaling and quantal Ca2**¹ **release.**

Modulation of cytoplasmic free Ca^{2+} concentration ($[Ca^{2+}]$ _i) is involved in the regulation of numerous cell physiological processes in which the second messenger inositol 1,4,5-trisphosphate (IP_3) plays a central role in most cell types (1) . Binding of extracellular ligands to G protein- or tyrosine kinase-linked receptors in the plasma membrane activates phospholipase C to generate IP_3 , which binds to its receptors $(IP₃R)$ in the endoplasmic reticulum (ER), activating them as Ca^{2+} channels to release stored Ca^{2+} from the ER lumen into the cytoplasm. The complex control of $[Ca^{2+}]_i$ is manifested temporally as repetitive spikes or oscillations (with frequencies often tuned to the level of stimulation) and spatially as propagating waves (1–3) and displays ''adaptation'' and ''quantal release", which are poorly understood $(4, 5)$. IP₃-mediated Ca^{2+} release is regulated by $[Ca^{2+}]$ _i, with positive and negative feedback acting in a bell-shaped manner with peak Ca^{2+} release activity at ≈ 300 nM Ca²⁺ (6, 7); however, the mechanisms underlying this biphasic response—a fundamental component of $[Ca²⁺]$ oscillations and wave propagation models (1, 3, 8)—are still poorly defined. The intracellular location of the IP_3R channel has necessitated the use of indirect measurements to infer its activity and has restricted studies of its single-channel properties (9–11). For this report, we systematically investigated the dependencies of single IP_3R channels on $[Ca^{2+}]$ and IP₃ concentration under rigorously defined conditions by using nuclear patch clamp of the IP_3R in its native ER membrane environment (12–15). Our results provide insights into the mechanism of channel activation by IP₃: whereas Ca^{2+} is a true receptor agonist, the sole function of IP₃ is to relieve Ca^{2+} inhibition of the channel. Ligand tuning of feedback inhibition by the permeant ion endows individual IP₃R Ca²⁺ channels with the ability to respond in a graded fashion to stimulus intensity.

METHODS

Patch clamp of the outer membrane of individual nuclei mechanically isolated from *Xenopus laevis* oocytes was performed as described (12–14). The oocyte expresses only a single IP_3R isoform (type 1) and lacks other (e.g., ryanodine receptor) Ca^{2+} release channels (16). The cytoplasmic aspect of the IP_3R channel faced into the patch pipette. All experimental solutions contained 140 mM KCl, 10 mM Hepes (pH adjusted to 7.1 with KOH), and 0 or 0.5 mM $Na₂ATP$ as indicated. By using K^+ as the current carrier and appropriate quantities of the high-affinity Ca^{2+} chelator 1,2-bis(2aminophenoxy)ethane-*N,N,N',N'*-tetraacetic acid (BAPTA), the low-affinity Ca^{2+} chelator, 5,5'-dibromoBAPTA, or ATP alone to buffer Ca^{2+} in the experimental solutions, concentrations were tightly controlled in our experiments. Total Ca^{2+} content in the solutions was determined by induction-coupled plasma mass spectrometry (Mayo Medical Laboratory, Rochester, MN). Free Ca^{2+} concentrations were calculated by using the MAXCHELATOR software (C. Patton, Stanford University, Palo Alto, CA). Pipette solutions contained various concentrations of IP_3 as stated. All experiments were performed at room temperature with the pipette electrode at $+20$ mV relative to the reference-bath electrode. Each data point shown is the mean of results from at least four separate patch-clamp experiments performed under the same conditions. Error bars indicate the SEM. Single-channel currents were amplified by an Axopatch-1D amplifier (Axon Instruments, Foster City, CA), filtered at 1 kHz, digitized at 5 kHz, and recorded directly on hard disk by using Pulse+PulseFit 8.02 (HEKA Electronics, Lambrecht/Pfalz, Germany) on a PowerMac 8100 with an ITC-16 interface (Instrutech, Great Neck, NY). Channel dwell times and P_0 s were obtained by

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked ''*advertisement*'' in accordance with 18 U.S.C. §1734 solely to indicate this fact.

^{© 1998} by The National Academy of Sciences 0027-8424/98/9515821-5\$2.00/0 PNAS is available online at www.pnas.org.

This paper was submitted directly (Track II) to the *Proceedings* office. Abbreviations: IP₃, inositol 1,4,5-tris-phosphate; IP₃R, IP₃ receptor; [Ca²⁺]_i, cytoplasmic free Ca²⁺ concentration; *P*₀, open probability; ER, endoplasmic reticulum; BAPTA, 1,2-bis(2-aminophenoxy)ethane-*N,N,N',N'*-tetraacetic acid.

[‡]To whom reprint requests should be addressed at: Department of Physiology and Institute for Human Gene Therapy, Stellar Chance Laboratories, Room 313B/6100, University of Pennsylvania, Philadelphia, PA 19104-6100. e-mail: foskett@mail.med.upenn.edu.

using TAC 3.03 (Bruxton, Seattle, WA). Data were fitted and modeled by using IGOR PRO 3.12 (WaveMetrics, Lake Oswego, OR).

RESULTS AND DISCUSSION

 $[Ca^{2+}]$ **i Dependence of the Gating of the IP₃R Channel.** To examine the effects of $[Ca^{2+}]_i$ on IP₃R channel activity without possible Ca^{2+} effects on IP₃ binding, a functionally saturating IP₃ concentration of 10 μ M (17) was applied to the cytoplasmic (pipette) side of the channel to fully stimulate it at various $[Ca^{2+}]_i$. With $[Ca^{2+}]_i$ corresponding to resting levels in cells (10–100 nM), the P_0 of the IP₃R was low (<0.2, Fig. 1 *a* and *c*), with short open intervals (τ ^o < 3 ms) separated by long closed intervals ($\tau_c \approx 100$ ms; Fig. 1*b*). When $[Ca^{2+}]$ _i was increased from 100 nM to 1 μ M, P_o increased dramatically to 0.8 as the result of a marked decrease of τ_c to \approx 2 ms, whereas τ_0 increased moderately to ≈ 10 ms. Similar $\left[Ca^{2+}\right]_i$ in the absence of IP_3 did not activate the channel (data not shown). Because saturating IP₃ concentrations were used, the Ca^{2+} requirement is not caused by Ca^{2+} enhancement of IP₃ affinity (18). Surprisingly, instead of the expected narrow bell-shaped $[Ca^{2+}]_i$ response centered at ≈ 300 nM–1 μ M (9, 10, 15, 19), P_0 remained very high (≈ 0.8) even as [Ca²⁺]_i was raised to quite high levels (1–20 μ M); with long open bursts lasting >1 sec, during which the channel only closed very briefly. As $\lbrack Ca^{2+}\rbrack$ was increased beyond 20 μ M, P_0 decreased sharply, mainly the result of τ_c increasing to \approx 100 ms, whereas τ_o decreased to \approx 1 ms. In the presence of saturating concentrations of IP_3 , there were no systematic effects on the P_0 -vs.- $[Ca^{2+}]$ _i response of the species or concentration of Ca^{2+} chelator used (Fig. 1*c*), or the luminal Ca²⁺ (between 0.2 and 1.5 μ M) or ATP (0 or 0.5 mM; Fig. 1*d*) concentrations.

The IP₃R P_0 -vs.-[Ca²⁺]_i response in 10 μ M IP₃ could be fitted to a biphasic Hill equation (Fig. 1*c*) so that:

$$
P_o = P_{\text{max}} \bigg\{ 1 + \bigg(\!\frac{K_{\text{act}}}{[\text{Ca}^{2+}]_i} \!\bigg)^{\!H_{\text{act}}} \bigg\}^{-1} \bigg\{ 1 + \bigg(\!\frac{[\text{Ca}^{2+}]_i}{K_{\text{inh}}} \!\bigg)^{\!H_{\text{inh}}} \bigg\}^{-1} \quad \text{ [1] }
$$

This suggests that a tetrameric IP_3R channel can achieve a maximum open probability P_{max} of 0.81, with two distinct types of functional Ca^{2+} binding sites, activating sites with halfmaximal activating $[Ca^{2+}]$ _i, K_{act} , of 210 \pm 20 nM and Hill coefficient H_{act} of 1.9 \pm 0.3, and inhibitory sites with halfmaximal inhibitory $[Ca^{2+}]_i$, K_{inh} , of 54 \pm 3 μ M and Hill coefficient H_{inh} of 3.9 \pm 0.7. The large Hill coefficients, H_{act} and H_{inh} , indicate that activation and inhibition of the IP₃R by $Ca²⁺$ are both highly cooperative processes and suggest a requirement for Ca^{2+} binding to two of four monomers to open the channel in the presence of IP₃ and for Ca^{2+} binding to all four monomers to inhibit channel opening.

IP3 Dependence of the [Ca2¹**]i Sensitivity.** The striking insensitivity of P_0 to increases of $[Ca^{2+}]_i$ until quite high levels results in a P_0 -vs.-[Ca²⁺]_i curve with a broad plateau. Previous models of complex temporal and spatial $[Ca^{2+}]$ _i signaling have assumed a much higher affinity of the inhibitory Ca^{2+} binding sites than is suggested by our data. We examined whether this discrepancy arose from our use of saturating IP_3 concentrations. However, there was no significant change in the $[Ca^{2+}]$ _i dependence when the IP_3 concentration was varied between 0.1 and 180 μ M (Fig. 2). Thus, there is no evidence that the IP_3R channel possesses a low-affinity IP_3 binding site with binding coefficient >100 nM, consistent with biochemical determinations (17, 18, 20, 21). Contrary to earlier observations (22–24), no inhibitory effects of the Ca^{2+} chelator BAPTA on Ca^{2+} activation of the IP₃R were detected, even at low (20–33 nM) IP₃ concentrations (Fig. 2). At IP₃ concentrations $<$ 100 nM, however, the IP₃R became more sensitive to Ca²⁺ inhibition: at 33 nM IP₃, K_{inh} decreased to 9.5 μ M, although H_{inh} and Ca^{2+} activation were not affected. Further

FIG. 1. $[Ca^{2+}]_i$ dependence of the IP₃R in the presence of 10 μ M IP3. (*a*) Typical single-channel current traces of the IP3R at various $[Ca^{2+}]$ _i. Arrows indicate closed-channel current level in all traces. (*b*) Dependence on $[Ca^{2+}]_i$ of mean closed-channel duration τ_c and open-channel duration τ_0 of the IP₃R. (*c*) Dependence of IP₃R P_0 on $[Ca²⁺]$. Experiments were performed with different $Ca²⁺$ chelators $(\Box, \text{ BAPTA}; \triangle, 5,5'$ -dibromo BAPTA, \bigcirc , ATP) in the pipette solutions. Bath solution contained 1.5 μ M Ca²⁺ and 0.5 mM ATP. Numerical labels indicate calculated concentrations (in μ M) of free $Ca²⁺$ chelators present in the pipette solutions for the corresponding data points. The solid curve is the Hill equation fit for the biphasic $[Ca^{2+}]_i$ effect on IP₃R P_o . (*d*) IP₃R P_o vs. $[Ca^{2+}]_i$ in various bath solutions. Small open symbols: 0.8 μ M luminal [Ca²⁺], 0.5 mM ATP; large open symbols: $0.2 \mu M$ luminal [Ca²⁺], 0 ATP; solid symbols: 0.2 μ M luminal [Ca²⁺], 0.5 mM ATP. Convention for symbols and the solid curve are the same as in *c*.

decreases in IP_3 to 10 and 20 nM caused pronounced reductions of both the maximum P_0 and the range of $[Ca^{2+}]_i$ over which the IP₃R was active. The enhanced Ca^{2+} inhibition at low IP₃ concentrations cannot be explained by inhibition of IP₃ binding, because a \approx 300-fold increase in [Ca²⁺]_i (from 1 to 300 μ M) was required to counter the effect of only a 5-fold increase in IP₃ from 20 to 100 nM, indicating that the IP₃ relief of $[Ca^{2+}]$ _i inhibition is a highly cooperative process.

The measured P_0 at all concentrations of IP₃ were fitted well by using the biphasic Hill equation (1), with *K*inh being the only IP_3 -concentration-sensitive parameter (Fig. 2). Even the observed reductions of maximum P_0 and the range of $[Ca^{2+}]_i$ over

FIG. 2. IP₃-concentration dependence of the $[Ca^{2+}]_i$ sensitivity of the IP₃R. Different symbols denote data for various IP₃ concentrations as tabulated. Data points for 10 $\mu\dot{M}$ IP₃ were combined from experiments using various bath solutions with the same pipette [Ca²⁺]. Data points for other concentrations of IP₃ were obtained in bath solutions containing 220 nM Ca²⁺ and no ATP. The curves are Hill equation fits using Eq. 1, with K_{inh} varying with IP₃ concentration with values as listed in the graph, whereas P_{max} , K_{act} , H_{act} , and H_{inh} remained independent of IP₃ concentration, with the values tabulated in the graph. Numerical labels indicate calculated concentrations (in μ M) of free Ca²⁺ chelator BAPTA present in pipette solutions used for the corresponding data points.

which the channel is active at very low $IP₃$ concentrations can both be accounted for in this model by a continuous decrease in K_{inh} with decreasing IP₃, whereas the other parameters: P_{max} , K_{act} , H_{act} , and H_{inh} all remain unchanged by IP_3 concentration. These data lead to an unexpected conclusion: the effect of IP₃ binding is not to enable activation of the IP₃R by $Ca²⁺$, as expected for co-agonist ligands and as generally assumed (17, 18, 20, 21), but rather it is to ameliorate inhibition of the channel by Ca^{2+} . The derived values of K_{inh} ranged from 160 nM at 10 nM IP₃ to 59 μ M at 100 nM IP₃. This IP₃ dependence of *K*inh was well fitted with a simple Hill equation so that

$$
K_{\rm inh} = K_{\infty} \left\{ 1 + \left(\frac{K_{\rm IP_3}}{\left[\text{IP}_3 \right]} \right)^{H_{\rm IP_3}} \right\}^{-1}
$$
 [2]

This equation, represented in Fig. $3a$, implies that the IP₃R has a single class of functional IP_3 binding sites with a half-maximal activating IP₃ concentration, K_{IP_3} , of 50 \pm 4 nM, a Hill coefficient H_{IP_3} of 4 \pm 0.5, and a maximum inhibitory Ca²⁺ binding coefficient K_{∞} of 52 \pm 4 μ M at a saturating IP₃ concentration. The K_{IP_3} derived from this model is similar to both the dissociation constant K_D (10–100 nM) in IP₃ binding assays and IP₃ concentration required (\approx 10–100 nM) for stimulation of Ca^{2+} release (17, 20, 21, 25). The large Hill coefficient H_{IP_3} of 4 indicates that IP₃ activation of the IP₃R is highly cooperative (25–28) even in the absence of positive feedback from cytoplasmic Ca^{2+} , requiring IP₃ binding to perhaps all four monomers of the channel to relieve the Ca^{2+} inhibition and gate the channel open. Because IP_3 binding to the IP₃R is not cooperative $(17, 18, 20, 21)$, the similar Hill coefficients H_{IP_3} and H_{inh} (both \approx 4) may suggest that IP₃ binding to each IP₃R monomer influences the inhibitory Ca^{2+} site in that same monomer.

According to these results, cytoplasmic Ca^{2+} at low concentrations and IP₃ both activate the IP₃R channel (Fig. 4), but they affect the channel in fundamentally different ways. Ca^{2+} binding to the IP₃R at low $\left[Ca^{2+}\right]$ directly activates the channel—like a conventional agonist. In contrast, IP_3 binding to the channel activates it indirectly, solely by decreasing the affinity of the Ca^{2+} inhibitory site, with no direct stimulatory effect itself. Under conditions of low IP₃ concentration, Ca^{2+} preferentially binds to the inhibitory site because of its higher affinity $(K_{\text{inh}} < K_{\text{act}})$, causing the channel to be inactive. Under conditions of stimula-

FIG. 3. (*a*) Dependence on IP₃ concentration of K_{inh} as derived from Fig. 2. The curve is a simple Hill equation fit. (*b*) Bell-shaped normalized P_0 -vs.-[Ca²⁺]_i curves calculated by using Eqs. 1 and 2 for various low concentrations of IP₃ (dotted curve, 10 nM IP₃ with maximum P_0 of 0.09; dashed curve, 15 nM IP₃ with maximum P_0 of 0.49; and solid curve, 20 nM IP₃ with maximum P_0 of 0.71). (*c*) Theoretical P_0 (calculated by using the model) vs. IP₃ concentration at various $[Ca^{2+}]_i$, as labeled. Dashed curves, $[Ca^{2+}]_i \leq 1 \mu M$; thin solid curves, $[Ca^{2+}]_i \ge 10 \mu M$.

FIG. 4. Calculated P_0 vs. $[Ca^{2+}]_i$ and IP₃ concentration according to our model. (*a*) Projection showing P_0 -vs.-IP₃ concentration curves at various activating $[Ca^{2+}]_i$. (*b*) Projection showing P_0 -vs.- $[Ca^{2+}]_i$ curves at various IP_3 concentrations. (*c*) Projection showing P_0 vs. IP₃ concentration curves at various inhibitory $[Ca^{2+}]$ _i.

tion associated with higher IP_3 concentration, K_{inh} becomes $>K_{\text{act}}$, so Ca²⁺ binds preferentially to the Ca²⁺ activation site, activating the channel. A recent study of reconstituted IP3R also observed an IP₃ dependence of Ca^{2+} inhibition (11). However, the results and interpretations are fundamentally different from ours. First, the IP₃ required to observe relief from Ca^{2+} inhibition was \approx 180 μ M, three orders of magnitude higher than that measured here. Furthermore, P_{max} was 0.03 vs. 0.81 in our studies. Second, inhibitory effects of Ca^{2+} on the channel were not observed at 180 μ M IP₃, in contrast to our results. Third, an additional low-affinity (10 μ M) IP₃ binding site was invoked to account for the IP₃ relief of Ca^{2+} inhibition, whereas our data indicate that only one functional IP_3 binding site is involved, with the affinity expected (\approx 50 nM) from biochemical studies. Importantly, our data indicate that IP_3 mediates its effects by modulating the affinity of Ca^{2+} inhibitory sites, which is conceptually distinct from agonist activity caused by IP_3 binding to a second low affinity site.

Implications for IP₃-Mediated [Ca²⁺]_i Signaling. Our results provide another interpretation of the role of IP3, thus warranting reconsideration of previous observations of IP₃-mediated $[Ca^{2+}]$ _i signals in cells. Our model predicts a bell-shaped relationship between P_0 and $\left[Ca^{2+}\right]_i$, with a sharp peak at $\left[Ca^{2+}\right]_i$ <1 μ M (9, 15, 19), although only under conditions of low (\leq 20 nM) IP₃ (Fig. 4*b*). The low P_0 and the bell shape, as well as the range of $[Ca^{2+}]$ _i over which the channel is active observed for reconstituted IP_3R channels at high (2 μ M) IP₃ (9–11), are remarkably similar to the predicted channel behaviors according to our model, albeit at much lower (IP₃ \approx 10 nM) concentration, suggesting an IP₃ insensitivity of the reconstituted channels in those studies. Although neither the IP₃ binding coefficient K_{IP_3} nor the Hill coefficient H_{IP_3} is $[Ca^{2+}]_i$ -dependent in our model, the interplay between the effects of $[Ca^{2+}]_i$ and IP₃ concentration on P_0 can be manifested as an apparent increase in IP₃ sensitivity as $[Ca^{2+}]$ _i decreases at low $[\hat{Ca}^{2+}]$ _i (Fig. 3*c*) and an apparent decrease in cooperativity of IP₃ activation as $[Ca^{2+}]$ _i increases (Fig. 3*c*). Thus, our results may qualitatively explain previous observations that submicromolar $[Ca^{2+}]$ lowered the functional sensitivity of the IP₃R for IP₃ (29, 30) and that the Hill coefficient for IP₃ activation of Ca²⁺ release decreased as $\lbrack Ca^{2+}\rbrack$ increased from the submicromolar to tens of μ M range (27, 28, 31).

A major paradox has been $[Ca^{2+}]$ _i responses that are graded in proportion to the intensity of the stimulus, because the process of Ca^{2+} -induced Ca^{2+} release should lead to an all-or-none signal (32, 33). One proposed mechanism suggests that increased IP_3 concentration recruits more individual elementary release units that each contribute a quantized amount of Ca^{2+} (32–35). Our model suggests another mechanism for achieving graded responses involving the IP3R itself. Because IP₃ binding to the IP₃R relieves Ca²⁺ inhibition of the channel, higher IP_3 concentration shifts the peak of the P_0 -vs.-[Ca²⁺]_i curve to higher [Ca²⁺]_i (Fig. 3*b*). A [Ca²⁺]_i that can inhibit channel activity at low IP_3 will be insufficient to inhibit it when IP₃ is increased (Fig. 4*b*). Higher $\left[Ca^{2+}\right]_i$ at the mouth of the channel pore can therefore be achieved before reaching levels that terminate release. This process therefore generates graded Ca^{2+} release from IP₃-sensitive stores through a mechanism intrinsic to the individual IP₃R. By enabling higher $[Ca^{2+}]_i$ to be achieved at the mouth of individual channels, higher IP_3 concentration associated with more intense stimuli would promote greater diffusive spread of the local $[Ca^{2+}]$ signal to other sites, thereby transforming highly localized signals at low levels of stimulation to more global coordinated Ca^{2+} release signals as the intensity of the stimulus is increased, without the need to invoke channels with different IP_3 sensitivities or clusters of higher channel densities (13, 32–34), although our results in no way exclude these or other mechanisms. By similar reasoning, our model can also account for the transformation of oscillating $[Ca^{2+}]$ _i at relatively low levels of agonist stimulation to sustained $[Ca^{2+}]$ increases during intense stimulation. Quantal Ca^{2+} release elicited by IP₃ (4, 5) has been described as a unique signaling mechanism that enables cells to retain complete responsiveness to changes in stimulus intensity (36). Our model suggests that this property can be intrinsic to the IP_3R . Because our experiments investigated the steady-state properties of the $IP₃R$, future kinetic studies will be required to determine the relevance of this model for quantal release in cells, as well as for other aspects of $[Ca^{2+}]$ _i signaling, including IP₃R desensitization (37) and inactivation (12, 13, 38).

We thank Dr. S. K. Joseph for reading the manuscript. This work was supported by grants from the Cystic Fibrosis Foundation and the National Institutes of Health.

- 1. Berridge, M. J. (1993) *Nature (London)* **361,** 315–325.
- 2. Meyer, T. & Stryer, L. (1991) *Annu. Rev. Biophys. Biophys. Chem.* **20,** 153–174.
- 3. Toescu, E. C. (1995) *Am. J. Physiol.* **269,** G173–G185.
- 4. Bootman, M. D. (1994) *Mol. Cell. Endocrinol.* **98,** 157–166.
- 5. Parys, J. B., Missiaen, L., De Smedt, H., Sienaert, I. & Casteels, R. (1996) *Pflu¨gers Arch.* **432,** 359–367.
- 6. Iino, M. & Tsukioka, M. (1994) *Mol. Cell. Endocrinol.* **98,** 141–146.
- 7. Taylor, C. W. & Marshall, I. C. B. (1992) *Trends Biochem. Sci.* **17,** 403–407.
- 8. Putney, J. W., Jr., & Bird, G. S. (1993) *Endocr. Rev.* **14,** 610–631. 9. Bezprozvanny, I., Watras, J. & Ehrlich, B. E. (1991) *Nature*
- *(London)* **351,** 751–754. 10. Bezprozvanny, I. & Ehrlich, B. E. (1995) *J. Membr. Biol.* **145,**
- 205–216. 11. Kaftan, E. J., Ehrlich, B. E. & Watras, J. (1997) *J. Gen. Physiol.* **110,** 529–538.
- 12. Mak, D.-O. D. & Foskett, J. K. (1994) *J. Biol. Chem.* **269,** 29375–29378.
- 13. Mak, D.-O. D. & Foskett, J. K. (1997) *J. Gen. Physiol.* **109,** 571–587.
- 14. Mak, D.-O. D & Foskett, J. K. (1998) *Am. J. Physiol.* **275,** C179–C188.
- 15. Stehno-Bittel, L., Lückhoff, A. & Clapham, D. E. (1995) Neuron **14,** 163–167.
- 16. Kume, S., Muto, A., Aruga, J., Nakagawa, T., Michikawa, T., Furuichi, T., Nakade, S., Okano, H. & Mikoshiba, K. (1993) *Cell* **73,** 555–570.
- 17. Mauger, J.-P., Lièvremont, J.-P., Piétri-Rouxel, F., Hilly, M. & Coquil, J.-F. (1994) *Mol. Cell. Endocrinol.* **98,** 133–139.
- 18. Taylor, C. W. & Traynor, D. (1995) *J. Membr. Biol.* **145,** 109–118. 19. Iino, M. (1990) *J. Gen. Physiol.* **95,** 1103–1122.
- 20. Taylor, C. W. & Richardson, A. (1991) *Pharmacol. Ther.* **51,** 97–137.
- 21. Joseph, S. K. (1995) *Cell. Signalling* **8,** 1–7.
- 22. Richardson, A. & Taylor, C. W. (1993) *J. Biol. Chem.* **268,** 11528–11533.
- 23. Combettes, L. & Champeil, P. (1994) *Science* **265,** 813.
- 24. Combettes, L., Hannaert-Merah, Z., Coquil, J.-F., Rousseau, C., Claret, M., Swillens, S. & Champeil, P. (1994) *J. Biol. Chem.* **269,** 17561–17571.
- 25. Meyer, T., Holowka, D. & Stryer, L. (1988) *Science* **240,** 653–655.
- 26. Carter, T. D. & Ogden, D. (1997) *J. Physiol. (Lond.)* **504,** 17–33.
- 27. Finch, E. A., Turner, T. J. & Goldin, S. M. (1991) *Science* **252,** 443–446.
- 28. Dufour, J. F., Arias, I. M. & Turner, T. J. (1997) *J. Biol. Chem.* **272,** 2675–2681.
- 29. Hirose, K., Kadowaki, S. & Iino, M. (1998) *J. Physiol. (Lond.)* **506,** 407–414.
- 30. Missiaen, L., De Smedt, H., Droogmans, G. & Casteels, R. (1992) *J. Biol. Chem.* **267,** 22961–22966.
- 31. Combettes, L., Claret, M. & Champeil, P. (1992) *FEBS Lett.* **301,** 287–290.
- 32. Bootman, M. D. & Berridge, M. J. (1995) *Cell* **83,** 675–678.
- 33. Berridge, M. J. (1997) *J. Physiol. (Lond.)* **499,** 291–306.
- 34. Horne, J. H. & Meyer, T. (1997) *Science* **276,** 1690–1693.
- 35. Callamaras, N., Marchant, J. S., Sun, X. P. & Parker, I. (1998) *J. Physiol. (Lond.)* **509,** 81–91.
- 36. Kindman, L. A. & Meyer, T. (1993) *Biochemistry* **32,** 1270–1277.
- 37. Oancea, E. & Meyer, T. (1996) *J. Biol. Chem.* **271,** 17253–17260.
- 38. Hajno´czky, G. & Thomas, A. P. (1994) *Nature (London)* **370,** 474–477.