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Introduction
The disruption of cell cycle control mechanisms is a recurrent 
theme in tumorigenesis. Uncontrolled progression through mi-
tosis can result in the missegregation of whole chromosomes 
and production of progeny cells with an abnormal chromosome 
content, which is referred to as aneuploidy (King, 2008; Ricke 
et al., 2008). Because most tumors contain aneuploid cells, it 
has long been hypothesized that aneuploidy might be causally 
implicated in tumor development (Boveri, 1902, 1914). Studies 
of mutant mice that are prone to missegregate chromosomes 
have provided some support for this hypothesis (Michel et al., 
2001; Babu et al., 2003; Dai et al., 2004; Jeganathan et al., 2007; 
Weaver et al., 2007; Li et al., 2009). However, these studies also 
underscore the highly complex nature of the relationship be-
tween aneuploidy and cancer. In particular, the effect of aneu-
ploidy on tumor development seems to depend strongly on the 
chromosomal instability gene defect that causes the aneuploidy, 

the extent and the nature of the defect, the tissue or cell type, 
and the context of other cancer-causing gene mutations (Pellman, 
2007; Ricke et al., 2008; Weaver and Cleveland, 2009). These 
initial findings point out that it is critically important to identify 
and characterize the components and networks that regulate 
chromosome segregation and to test whether their dysfunction 
can drive tumorigenesis.

To minimize chromosome missegregation, eukaryotic 
cells have evolved a multiprotein surveillance mechanism 
called the mitotic checkpoint or spindle assembly checkpoint. 
It delays anaphase onset until all chromosomes are properly 
attached to the mitotic spindle and aligned at the metaphase 
plate (Musacchio and Salmon, 2007). Shortly after mitosis on-
set, core mitotic checkpoint components such as Bub and Mad 
proteins accumulate at unattached kinetochores to create inhibi-
tors of Cdc20, one of two activating subunits of the anaphase- 
promoting complex/cyclosome (APC/C; Peters, 2006; Yu, 2007; 
Kulukian et al., 2009). It is believed that a protein complex of 

The anaphase-promoting complex/cyclosome (APC/C)  
E3 ubiquitin ligase functions with the E2 ubiquitin– 
conjugating enzyme UbcH10 in the orderly progres-

sion through mitosis by marking key mitotic regulators  
for destruction by the 26-S proteasome. UbcH10 is over-
expressed in many human cancer types and is associ-
ated with tumor progression. However, whether UbcH10 
overexpression causes tumor formation is unknown. To 
address this central question and to define the molecular 
and cellular consequences of UbcH10 overexpression, we 
generated a series of transgenic mice in which UbcH10 

was overexpressed in graded fashion. In this study, we 
show that UbcH10 overexpression leads to precocious 
degradation of cyclin B by the APC/C, supernumerary 
centrioles, lagging chromosomes, and aneuploidy. Impor-
tantly, we find that UbcH10 transgenic mice are prone to 
carcinogen-induced lung tumors and a broad spectrum 
of spontaneous tumors. Our results identify UbcH10 as a 
prominent protooncogene that causes whole chromosome 
instability and tumor formation over a wide gradient of 
overexpression levels.
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expression on the chromosome segregation process is unclear. 
One study reports that overexpression of UbcH10 in HeLa  
cells compromises the mitotic checkpoint (Rape and Kirschner, 
2004), with follow up work suggesting that UbcH10 might 
function to inactivate the mitotic checkpoint by releasing the 
MCC from APC/CCdc20 through polyubiquitination of Cdc20 
(Reddy et al., 2007). However, an independent study found that 
the mitotic checkpoint is virtually unperturbed when UbcH10 
is overexpressed, leading to the conclusion that UbcH10 is not 
crucial for checkpoint inactivation (Walker et al., 2008). In 
this study, we generated a series of transgenic mice in which 
UbcH10 was overexpressed in a graded manner to determine 
whether this E2 is causally involved in tumor development and 
to examine the molecular and cellular defects associated with 
UbcH10 overexpression.

Results
Generation of transgenic mice with a 
graded increase in UbcH10 expression
Because UbcH10 is overexpressed in a broad range of human 
cancer types, we sought to generate transgenic mice that over-
expressed UbcH10 in a wide variety of tissues and organs. 
We used a transgenic vector containing the CAGGS promoter, 
which consists of the cytomegalovirus immediate enhancer and 
the chicken -actin promoter (Novak et al., 2000). The CAGGS 
promoter drives a floxed -geo-stop cassette consisting of a  
-galactosidase and neomycin-resistance fusion gene and three 
polyadenylation sites (Fig. 1 A). Downstream of this cassette, 
we cloned the coding sequence for the murine UbcH10 protein, 
which we provided with a carboxy-terminal HA epitope tag 
sequence. The CAGGS promoter would express HA-UbcH10 
only after Cre-mediated excision of the -geo-stop cassette. 
EGFP was coexpressed from an internal ribosomal entry site to 
serve as a reporter for HA-UbcH10 expression.

The vector was electroporated into mouse embryonic  
stem (ES) cells, and G418-resistant colonies were selected and  
clonally expanded. Part of each clone was infected with  
Cre-containing adenovirus to verify expression of EGFP and  
HA-UbcH10 by fluorescence microscopy and Western blotting, 
respectively. Positive clones were then further screened for single-
copy transgene integration by Southern blotting to rule out that re-
combination between loxP sites from different integrations would 
cause chromosomal instability. Selected clones were injected  
into blastocysts to generate chimeric mice. Male chimeras 
from two independent ES clones, designated T1 and T2, pro-
duced transgenic offspring. Both strains were then crossed to 
protamine-Cre transgenic mice (Wagner et al., 1997) to excise the 
-geo-stop cassette in the male germline. By breeding double 
transgenic males to wild-type females, we obtained offspring in 
which the CAGGS promoter was juxtaposed with the UbcH10 
coding region in all cells. We refer to these transgenic strains as 
UbcH10T1 and UbcH10T2. By interbreeding UbcH10T1 animals, 
we generated wild-type, UbcH10T1, and UbcH10T1/T1 mice and 
mouse embryonic fibroblasts (MEFs). Likewise, wild-type, 
UbcH10T2, and UbcH10T2/T2 mice and MEFs were produced from 
UbcH10T2 intercrosses.

Mad2, BubR1, and Bub3, referred to as the mitotic checkpoint 
complex (MCC), is the most potent kinetochore-derived in-
hibitor of Cdc20 (Sudakin et al., 2001; Herzog et al., 2009). 
Proper attachment of the last kinetochore to the mitotic spindle 
quenches the inhibitory signals and triggers the release of the 
MCC from Cdc20, thereby activating the APC/C and allowing 
it to catalyze the polyubiquitination and destruction of securin 
and cyclin B. The removal of these mitotic regulators then re-
sults in the activation of separase, a clan D protease of the cas-
pase family which initiates anaphase by opening the cohesin 
ring structures that hold sister chromosomes together (Nasmyth 
and Haering, 2005).

Besides initiating anaphase, APC/C activity also guides 
the cell through other stages of mitosis, at each step trigger-
ing the destruction of specific mitotic regulators (Peters, 2006; 
Sullivan and Morgan, 2007). In prometaphase, for instance,  
APC/CCdc20 targets cyclin A for degradation, whereas in ana-
phase, Cdc20 itself becomes an APC/C substrate when the 
Cdc20-related coactivator Cdh1 binds to the APC/C, although 
recent evidence suggests that Cdc20 is already subjected to 
APC/C-mediated degradation at an earlier stage in mitosis 
(Nilsson et al., 2008). In late mitosis, APC/CCdh1 drives mitotic 
exit through degradation of several mitotic kinases, including  
Plk1 and the Aurora A and B kinases. At least two E2 ubiquitin–
conjugating enzymes (E2s), Ubc5 and UbcH10, are thought 
to collaborate with the APC/C (Sullivan and Morgan, 2007; 
Summers et al., 2008). Ubc5 interacts with various other E3 
ubiquitin ligases and is constitutively expressed throughout the 
cell cycle. In contrast, UbcH10 is believed to be APC/C specific 
and reaches peak expression in mitosis (Rape and Kirschner, 
2004; Summers et al., 2008). Furthermore, UbcH10 has been 
proposed to operate as part of an E2 module in conjunction with 
Ube2S, in which UbcH10 acts to initiate ubiquitin chain forma-
tion and Ube2S serves in chain elongation (Garnett et al., 2009; 
Williamson et al., 2009).

UbcH10 is expressed at relatively high levels in many 
different types of human tumors, including prostate, lung, gas-
tric, esophageal, bladder, breast, ovarian, and uterine carcino-
mas (Okamoto et al., 2003; Wagner et al., 2004; Pallante et al., 
2005; Berlingieri et al., 2007a,b; Jiang et al., 2008). Amplifica-
tion of the UbcH10 gene locus is frequently observed in gastric 
and esophageal carcinomas and has been proposed to underlie 
UbcH10 overexpression in these cancers (Wagner et al., 2004). 
Importantly, UbcH10 overexpression correlates with tumor grade 
and prognosis in several cancer types. In some cancer cell 
lines, knockdown of UbcH10 expression by RNA interference 
has been shown to inhibit cell proliferation (Wagner et al., 
2004; Berlingieri et al., 2007a,b), identifying UbcH10 as a 
potential target for cancer therapy. However, because UbcH10 
transcript levels are low or undetectable in quiescent and dif-
ferentiated cells and relatively high in proliferating cells  
(Yamanaka et al., 2000; Okamoto et al., 2003), the high UbcH10 
transcript levels seen in many human cancers might simply be 
a reflection of the relatively high mitotic index of neoplastic 
versus normal tissue. Thus, the key open question is whether 
elevated UbcH10 expression is a consequence or a cause of 
neoplastic growth. Besides this, the impact of UbcH10 over-
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UbcH10 levels were higher in transgenic MEF lines than in 
wild-type MEFs, suggesting that UbcH10 expression might 
be controlled by a positive autoregulatory feedback loop. As 
for MEFs, exogenous UbcH10 expression was highest in tis-
sues and organs of UbcH10T2/T2 mice and lowest in those of 
UbcH10T1 mice (Fig. 1, C–E; and not depicted). Endogenous 
UbcH10 was undetectable in most wild-type and transgenic 
mouse tissues and organs. Thus, we obtained a series of  

We first measured the level of exogenous UbcH10  
expression in transgenic MEFs by Western blotting. Anti
bodies that detect either endogenous and exogenous UbcH10 
or only exogenous UbcH10 were used in this analysis. Ex-
ogenous UbcH10 levels were highest in UbcH10T2/T2 MEFs 
and lowest in UbcH10T1 MEFs (Fig. 1 B). In turn, exogenous 
UbcH10 levels in UbcH10T1/T1 MEFs were higher than in 
UbcH10T2 MEFs. Furthermore, we noticed that endogenous 

Figure 1.  Generation of UbcH10 transgenic mice. (A) Overview of the generation of UbcH10 transgenic mice. Arrows indicate the direction of tran-
scription. IRES, internal ribosomal entry site. (B) Western blot analysis of lysates from transgenic and control MEFs for endogenous (Endo) UbcH10 and 
exogenous (Exo) HA-UbcH10. Note that endogenous UbcH10 levels increase in transgenic MEFs. Actin was used as loading control. (C–E) Western 
blots of splenocyte (C), lung (D), and skin (E) extracts from mice of the indicated genotypes probed for UbcH10 and HA. Tissues were collected from 
3-mo-old mice.
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considerably, but substantial staining remained during telo-
phase and early G1 phase. UbcH10T2/T2 MEFs showed a similar 
temporal expression pattern, but at each of the aforementioned 
stages, staining was noticeably higher than in wild-type MEFs 
(Fig. 2 A). Western blot analysis of extracts from nocodazole- 
arrested cells confirmed that UbcH10T2/T2 MEFs had much higher 
UbcH10 levels in midmitosis than wild-type MEFs (Fig. 2 B). 
After removal from nocodazole, UbcH10 levels declined in both  
UbcH10T2/T2 and wild-type MEFs simultaneously with cyclin B  
and phospho–histone H3 (P-H3) levels, although residual 
UbcH10 levels remained higher in UbcH10T2/T2 MEFs than 
in wild-type MEFs. To evaluate UbcH10 expression in inter
phase in greater detail, we arrested wild-type and UbcH10T2/T2  
MEFs in G0 phase by serum starvation and then harvested cells 
at various time points after release in serum-containing medium. 
Both endogenous and transgenic UbcH10 levels were very low 

transgenic mice and MEFs in which UbcH10 was overexpressed 
in graded fashion.

UbcH10 is overexpressed throughout the 
cell cycle
UbcH10 levels fluctuate during the mammalian cell cycle, 
with UbcH10 levels increasing before entry into mitosis and 
decreasing in late anaphase (Walker et al., 2008) or G1 (Rape 
and Kirschner, 2004). To examine whether the temporal expres-
sion pattern of UbcH10 was changed by UbcH10 overexpres-
sion, we immunostained wild-type and UbcH10T2/T2 MEFs with 
UbcH10 antibody (Fig. 2 A). Cells were costained for centrin 2 
(not depicted) to allow for distinction between G1 and G2 phase. 
Wild-type MEFs showed low UbcH10 staining in G1 and G2. 
As expected, UbcH10 staining notably increased in mitosis and 
peaked between prometaphase and anaphase. It then dropped 

Figure 2.  Transgenic UbcH10 protein is overexpressed throughout the cell cycle. (A) Immunostaining of wild-type and UbcH10T2/T2 MEFs with anti-UbcH10 
antibody. DNA was visualized with Hoechst. (B) Western blot analysis of extracts from wild-type and UbcH10T2/T2 MEFs arrested in mitosis with nocodazole 
and released in fresh medium for the indicated times. Blots were probed for UbcH10 to monitor its degradation during mitotic exit. Cyclin B and P-H3 were 
markers for mitotic exit. (C) Analysis of UbcH10 levels in wild-type and UbcH10T2/T2 MEFs at various times after release from serum starvation. Cyclin A2 
was a marker for S-phase entry. Bar, 10 µm.
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we harvested splenocytes from 5-mo-old wild-type and transgenic 
mice and counted mitotic chromosomes. As expected, wild-type 
splenocytes had no aneuploidy (Table II). In contrast, UbcH10T1, 
UbcH10T2, UbcH10T1/T1, and UbcH10T2/T2 splenocytes had 4%, 
6%, 13%, and 19% aneuploidy, respectively (Table II). Similar  
to MEFs, splenocytes showed small elevations of PMSCS at the 
highest levels of UbcH10 overexpression (Table II). Collectively, 
these experiments demonstrate that UbcH10 overexpression 
causes aneuploidy and indicate that there is a positive correla-
tion between the level of UbcH10 overexpression and the degree 
of aneuploidy.

To determine the nature of the mitotic defects underlying 
the aneuploidy observed in cells with high UbcH10 levels, 
we followed the chromosome movements of transgenic MEFs 
through an unchallenged mitosis by time-lapse live micros-
copy. To visualize chromosomes, MEFs were transduced with 
lentivirus pTSIN–H2B–monomeric RFP (mRFP). We found 
that the percentage of cells with mitotic defects that can re-
sult in chromosome missegregation increased with increasing  
UbcH10 overexpression, with 32% of UbcH10T2/T2 MEFs showing  
errors compared with 14% of wild-type MEFs (Fig. 3 A). The 
main defect observed in all transgenic MEF lines was chromo-
some lagging (Fig. 3 B). Furthermore, chromosome misalign-
ment was threefold higher in UbcH10T1/T1, UbcH10T2, and 
UbcH10T2/T2 MEFs than in wild-type MEFs but not elevated 
at the lowest level of UbcH10 expression (Fig. 3 A). To test 
whether further escalation of UbcH10 expression would exacer
bate the observed mitotic defects, we transduced UbcH10T2/T2 
MEFs with lentivirus containing a doxycycline (Dox)-inducible  

during quiescence (Fig. 2 C). After adding back serum, UbcH10 
and cyclin A expression concomitantly increased in wild-type 
MEFs, indicating that endogenous UbcH10 levels normally rise 
as cells progress to S phase. In contrast, in UbcH10T2/T2 MEFs, 
UbcH10 overexpression resumed before S-phase entry and 
seemed to escalate further as cells entered S phase. Together, 
the aforementioned results demonstrate that transgenic MEFs 
overexpress UbcH10 throughout the cell cycle but that temporal 
fluctuations in protein levels remain. Proliferation assays sug-
gested that UbcH10 overexpression had no impact on the dura-
tion of the cell cycle (Fig. S1).

UbcH10 overexpression causes 
chromosome lagging and aneuploidy
A key question is whether UbcH10 overexpression leads to in-
accurate chromosome segregation and aneuploidy. To address 
this question, we performed chromosome counts on metaphase 
spreads of transgenic and wild-type MEFs. An abnormal number 
of chromosomes was found in 13% of wild-type MEFs (Table I).  
In contrast, aneuploidy was much more severe in transgenic 
MEFs, with UbcH10T1, UbcH10T2, UbcH10T1/T1, and UbcH10T2/T2  
MEFs showing 28%, 29%, 31%, and 33% aneuploidy, re-
spectively. The range of abnormal chromosome numbers was  
considerably broader in transgenic MEFs than in wild-type 
MEFs. UbcH10T1/T1, UbcH10T2, and UbcH10T2/T2 MEFs showed 
modest increases in incidence of premature sister chromatid  
separation (PMSCS), a defect which has been linked to pre
cocious APC/C activity (Table I). To determine whether  
UbcH10 overexpression would also cause aneuploidy in vivo,  

Table I.  Gradual overexpression of UbcH10 leads to progressive aneuploidy

Mitotic MEF 
genotype

Aneuploid figures  
(SD)

Karyotypes with indicated chromosome number Mitotic figures with  
PMSCS (SD)

37 38 39 40 41 42 43 44 45 46 48 52

% %
+/+ 13 (1) 1 4 6 130 6 3 2 (1)
UbcH10T1 28 (2) 5 2 9 108 9 6 6 2 1 2 3 (0)
UbcH10T2 29 (2) 2 4 10 107 6 9 3 4 1 1 1 2 6 (2)
UbcH10T1/T1 31 (2) 3 4 9 103 16 5 7 3 5 (2)
UbcH10T2/T2 33 (4) 3 13 100 13 7 8 3 2 1 5 (2)

Of each genotype, 50 spreads from three individual cell lines were counted. Aneuploidy and PMSCS were measured at passage 5. Empty cells indicate that there 
were no karyotypes with the indicated chromosome number.

Table II.  Gradual overexpression of UbcH10 in splenocytes leads to progressive aneuploidy

Mouse  
genotype

Age Aneuploid  
figures (SD)

Karyotypes with indicated  
chromosome number

Mitotic figures with  
PMSCS (SD)

37 38 39 40 41 42

mo % %
+/+ 5 0 (0) 150 0 (0)
UbcH10T1 5 4 (0) 1 144 4 1 0 (0)
UbcH10T2 5 6 (2) 1 2 3 141 3 1 (1)
UbcH10T1/T1 5 13 (1) 2 4 130 12 2 4 (1)
UbcH10T2/T2 5 19 (1) 1 3 9 121 13 3 5 (1)

Of each genotype, 50 spreads from three individual mice were counted. Empty cells indicate that there were no karyotypes with the indicated chromosome number. 

http://www.jcb.org/cgi/content/full/jcb.200906147/DC1
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prolonged period of time but eventually exit mitosis and enter 
G1 phase without chromosome segregation. This process is re-
ferred to as mitotic slippage and requires the polyubiquitination 
and degradation of cyclin B (Brito and Rieder, 2006). Earlier 
studies have demonstrated that the rate of mitotic slippage 
is accelerated in cells with a defective mitotic checkpoint  
(Michel et al., 2001; Meraldi et al., 2004; Baker et al., 2006; 
Jeganathan et al., 2007; Perera et al., 2007). The time of arrest in 
nocodazole was reduced by 25% at the highest level of UbcH10 
overexpression (UbcH10T2/T2) and by 7% at the lowest level of 
overexpression (UbcH10T1; Fig. 4 A). MEFs with intermediate 
levels of UbcH10 overexpression had reductions in the range 
of 12–18%. Furthermore, superinduction of UbcH10 in MEFs 
with the highest level of UbcH10 overexpression (UbcH10T2/T2/Dox 
MEFs [+Dox]) further reduced the time of arrest in mitosis from 
25 to 29% (Fig. 4 A). Together, these data indicate that the rate 
of mitotic slippage increases with escalating levels of UbcH10 
overexpression and imply that UbcH10 overexpression causes a 
mild mitotic checkpoint defect.

It has recently been suggested that UbcH10 might func-
tion to inactivate the mitotic checkpoint by promoting the  
dissociation of Mad2 and BubR1 from Cdc20 or Cdc20  
bound to APC/C (Reddy et al., 2007). To test whether UbcH10 
overexpression causes the early release of Mad2 and BubR1 
from Cdc20, we performed immunoprecipitations (IPs) for 
Cdc20 from nocodazole-arrested UbcH10T2/T2 and wild-type 
MEF extracts and analyzed bound proteins by immunoblotting  

HA-tagged UbcH10 transgene (designated UbcH10Dox) and 
performed live cell imaging on induced and noninduced cells. 
Western blotting confirmed that Dox boosted UbcH10 over-
expression of UbcH10T2/T2/Dox MEFs (Fig. 3 C). As expected, 
noninduced UbcH10T2/T2/Dox MEFs had similar mitotic error 
rates as UbcH10T2/T2 MEFs (Fig. 3 A). However, we observed a 
25% increase in mitotic defects in Dox-treated UbcH10T2/T2/Dox 
MEFs, with chromosome lagging being the most prominently 
increased (Fig. 3 A).

UbcH10 overexpression promotes  
mitotic slippage
One possible explanation for the inaccurate chromosome seg-
regation is that UbcH10 overexpression deregulates the mitotic 
checkpoint. However, published results regarding the effect 
of UbcH10 overexpression on mitotic checkpoint function 
are somewhat conflicting, with one study reporting that tran-
sient expression of UbcH10 in HeLa cells causes checkpoint 
inactivation (Reddy et al., 2007) and another reporting that it 
does not (Walker et al., 2008). To further examine the relation-
ship between UbcH10 overexpression and mitotic checkpoint 
function, we performed a live cell imaging–based nocodazole 
challenge assay on mRFP-H2B–positive UbcH10 transgenic 
MEFs. In this assay, the mitotic checkpoint is activated, and the 
time between nuclear envelope breakdown (NEBD) and DNA 
decondensation is measured (Baker et al., 2006). Cells with an 
intact mitotic checkpoint typically arrest in prometaphase for a 

Figure 3.  Chromosome missegregation increases as UbcH10 levels rise. (A) Analysis of chromosome segregation defects in MEFs with increasing amounts 
of exogenous UbcH10. Cells scored as metaphases with misaligned chromosomes displayed congression failure at anaphase onset. UbcH10T2/T2/Dox 
(+Dox) MEFs were grown in medium containing 1 µg/ml Dox for 2 d before live cell imaging. (B) Image of a transgenic MEF with chromosome lagging. 
(C) Immunoblots of asynchronous UbcH10T2/T2/Dox MEFs cultured in the presence (+Dox) or absence (Dox) of 1 µg/ml Dox for 2 d. Blots were probed for 
UbcH10 and actin. Bar, 10 µm.
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seems largely unaffected by UbcH10 overexpression. Consis-
tent with this, timing from NEBD to anaphase onset during an 
unchallenged mitosis, which is thought to depend on binding of 
BubR1 and Mad2 to Cdc20 (Meraldi et al., 2004; Malureanu  
et al., 2009), was unaltered in MEFs that overexpressed UbcH10 
(Fig. 4 D). In addition, immunolocalization of core mitotic 
checkpoint proteins that accumulate at unattached kinetochores 

using BubR1 and Mad2 antibodies. Cdc20 precipitated similar 
amounts of Mad2 and BubR1 from both extracts (Fig. 4 B).  
Furthermore, IPs for Cdc27 from mitotic UbcH10T2/T2 and 
wild-type extracts revealed that binding of Cdc20, Mad2, 
and BubR1 to APC/C was not overtly diminished by UbcH10 
overexpression (Fig. 4 C). Thus, binding of inhibitory mi-
totic checkpoint proteins to Cdc20 or Cdc20 bound to APC/C 

Figure 4.  UbcH10 overexpression enhances mitotic slippage. 
(A) Analysis of mitotic slippage rates of UbcH10 transgenic and 
wild-type MEFs by nocodazole challenge assay. At least three 
independent MEF lines per genotype were analyzed. *, P < 0.05 
versus wild-type MEFs (Log-rank test). (B) UbcH10 overexpression 
does not seem to cause premature release of MCC proteins from 
Cdc20. MEFs were arrested in mitosis by nocodazole treatment 
and harvested by mitotic shake off. Lysates were prepared from 
equal amounts of wild-type and UbcH10T2/T2 cells and subjected 
to IP with antibodies against Cdc20 and analyzed by Western 
blotting with antibodies against Mad2, BubR1, and Cdc27. 
(C) Same as B, but IPs were performed with antibodies against 
Cdc27 instead of Cdc20. (D) Timing of mitosis is normal in 
UbcH10 transgenic MEFs. mRFP-H2B–expressing cells were fol-
lowed through an unchallenged mitosis by live cell imaging, and 
the time between NEBD to anaphase onset was measured. At 
least three MEF lines per genotype were analyzed with a mini-
mum of 43 total cells. (A and D) Error bars represent SEM.
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Figure 5.  Cyclin B is precociously degraded in UbcH10-overexpressing cells. (A) Western blot analysis of wild-type and UbcH10T2/T2 MEFs for APC/C 
substrate levels. MEFs were synchronized in G0 by serum starvation and then released for the indicated durations in serum-containing medium. 100 ng/ml 
nocodazole was added 23 h after cells were released. Blots were probed with the indicated antibodies. We note that even though UbcH10T2/T2 MEFs 
show evidence of mitotic slippage, their P-H3 levels do not drop at the later time points, suggesting that P-H3 is not always a suitable marker for aber-
rant mitotic exit. (B) Immunostaining of wild-type and UbcH10T2/T2 prophases for cyclin B, P-H3, and DNA (Hoechst). P-H3 served as a marker for mitosis 
entry. (C) Cyclin B signals in prophase were quantified using ImageJ software (n = 10 cells per genotype). Error bars represent SD. *, P < 0.0001 versus  
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of APC/C molecules and destabilizing cyclin B. To examine the 
effect of UbcH10 overexpression on APC/C–UbcH10 complex 
formation, we performed IPs for APC/C components on mitotic 
extracts of UbcH10T2/T2 and wild-type MEFs and then used 
immunoblotting to determine the amount of coprecipitating 
UbcH10. Consistent with the transient nature of the UbcH10–
APC/C interaction, Cdc27 and APC6 precipitated only a very 
small fraction of the cellular UbcH10 pool from wild-type ex-
tracts (Fig. 5 D). However, both APC/C components precipitated 
substantially more UbcH10 from UbcH10T2/T2 extracts. In the re-
verse experiment, UbcH10 precipitated much more Cdc27 from 
UbcH10T2/T2 extracts than from wild-type extracts (Fig. 5 E).  
These data indicate that APC/C–UbcH10 complex formation 
increases when UbcH10 is overexpressed, providing a plausible 
explanation for why cyclin B has reduced stability in UbcH10T2/T2 
MEFs. Moreover, the amounts of Mad2 and BubR1 that precip-
itated with UbcH10 relative to Cdc27 were considerably lower 
in UbcH10T2/T2 extracts than in wild-type extracts (Fig. 5 E), 
which is consistent with the idea that UbcH10 overexpression 
increases the amount of active APC/C (Fig. S5).

UbcH10-overexpressing cells have  
extra centrioles
Vihar E2-C, the Drosophila melanogaster homologue of 
UbcH10, localizes at centrosomes during mitosis (Máthé et al., 
2004), which prompted us to investigate whether UbcH10 is 
also associated with centrosomes in mammalian cells. Using a 
mild fixation procedure that allows for the removal of soluble 
protein fractions before immunostaining, we observed UbcH10 
localization at centrosomes of wild-type and UbcH10T2/T2 MEFs 
during mitosis and in interphase (Fig. 6 A). Staining intensities 
at centrosomes were similar for both genotypes. Although nearly 
all wild-type metaphases contained two centrioles per spindle 
pole, 31% of UbcH10T2/T2 metaphases had at least one spindle 
pole that consisted of three or more centrioles (Fig. 6, B and C).  
Superinduction of UbcH10 in these cells (UbcH10T2/T2/Dox 
MEFs [+Dox]) escalated this defect, with 63% of metaphases 
showing supernumerary centrioles. Moreover, superinduction  
considerably increased the number of extra centrioles per cell 
(Fig. 6 D). Extra centrosomes can increase the frequency of 
lagging chromosomes by promoting the formation of mero-
telic kinetochore–microtubule attachments (Ganem et al., 2009;  
Silkworth et al., 2009). Thus, it is possible that the observed 
increase in lagging chromosomes in UbcH10-overexpressing 
cells is caused by the numerical centriole abnormalities. Super-
numerary centrioles (Fig. 6, B–D) and lagging chromosomes 
(Fig. 3 A) both correlated with UbcH10 overexpression, which 
supports this idea. It has been proposed that extra centrioles 
increase the incidence of merotelic kinetochore–microtubule 
attachments by inducing multipolar spindle intermediates 
that resolve into bipolar spindles through centrosome clustering  

to propel MCC formation, including Bub1, BubR1, Mad1, 
Mad2, and CENP-E, was normal in UbcH10T2/T2 MEFs (Fig. S2 
and not depicted).

UbcH10 overexpression reduces  
cyclin B stability
To better understand the molecular basis of the mitotic slip-
page and the chromosomal instability, we screened UbcH10T2/T2 
MEFs for alterations in the levels of key regulators of chromo-
some segregation whose stability is determined by the APC/C. 
Western blot analysis revealed that cyclin B levels were consis-
tently lower in mitotic UbcH10T2/T2 MEF extracts than in those 
of wild-type MEFs (Figs. 2 B and 5 A). Immunostainings of 
wild-type and UbcH10T2/T2 MEFs for cyclin B confirmed this 
reduction (Fig. 5, B and C). When UbcH10T2/T2 MEFs were 
treated for 1 h with the proteasome inhibitor MG132 before cell 
fixation, cyclin B levels increased to normal (Fig. 5, B and C), 
indicating that the observed decline of cyclin B in UbcH10T2/T2 
MEFs was APC/C mediated. In contrast, cyclin A2, Nek2A, and 
securin, three APC/C substrates which are normally degraded in 
prometaphase or metaphase, were present at normal levels in mi-
totic UbcH10T2/T2 MEF extracts (Fig. 5 A and Fig. S3). This also 
holds true for Cdc20, Plk1, and Aurora A and B, four substrates 
which are normally targeted for degradation by APC/CCdh1  
later in mitosis (Fig. 5 A; Sullivan and Morgan, 2007). Aurora B  
functions in the correction of merotelic kinetochore attach-
ments (Andrews et al., 2004; Kline-Smith et al., 2004), and 
its premature degradation would have provided a plausible 
explanation for the high incidence of lagging chromosomes 
in UbcH10-overexpressing cells. We verified that Aurora B 
properly targeted to kinetochores of UbcH10T2/T2 MEFs in mi-
tosis (Fig. S4 A). Furthermore, mitotic centromere-associated 
kinesin (MCAK), a microtubule-depolymerizing protein which 
is essential for resolving merotelic attachments and requires  
Aurora B activity for recruitment to kinetochores, was also prop-
erly targeted to kinetochores of UbcH10-overexpressing cells 
(Fig. S4 B), suggesting that key components of the mechanism 
that act to correct merotelic attachments are intact in cells that 
overexpress UbcH10.

How then might APC/C become prematurely active 
against cyclin B in UbcH10T2/T2 MEFs if UbcH10 over
expression does not seem to interfere with the overall binding 
of MCC to APC/C? It has been proposed that even cells with 
a fully active mitotic checkpoint have a low rate of APC/C- 
mediated cyclin B degradation, implying that the MCC is unable 
to inhibit all of the APC/C molecules (Brito and Rieder, 2006). 
Binding of UbcH10 to APC/C is highly transient, and only a 
very small fraction of the APC/C is UbcH10 bound. UbcH10 
overexpression is expected to shift the binding equilibrium of 
UbcH10 to APC/C to the active APC/C–UbcH10 complex, 
thereby perhaps increasing the activity of the uninhibited pool 

wild type (unpaired t test). (D) Lysates prepared from equal amounts of mitotic wild-type and UbcH10T2/T2 cells obtained by mitotic shake off were subjected 
to IP with antibodies against Cdc27 or APC6 and analyzed by Western blotting with antibodies against the indicated proteins. (E) Lysates prepared as in D 
subjected to IP with antibodies against UbcH10 and analyzed by the indicated proteins. Results shown in D and E are representative for three independent 
experiments. Bar, 10 µm.
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Although spindles of wild-type MEFs were exclusively bi
polar, low percentages of multipolar spindles were indeed found  
in mitotic UbcH10T2/T2 and UbcH10T2/T2/Dox (+Dox) MEFs (1% 
and 7%, respectively; Fig. 6 E).

(Ganem et al., 2009; Silkworth et al., 2009). To examine whether 
such intermediates are formed in UbcH10-overexpressing  
cells, we stained wild-type, UbcH10T2/T2, and superinduced 
UbcH10T2/T2 MEFs for centrioles, microtubules, and DNA. 

Figure 6.  UbcH10-overexpressing cells have supernumerary centrioles. (A) Wild-type and UbcH10T2/T2 MEFs during metaphase and interphase stained 
for UbcH10 and centrin 2. MEFs were fixed in 1% paraformaldehyde for 5 min and then permeabilized in 0.2% Triton X-100. Insets are an enlargement 
of the centrosome region, and arrows point to the centrosome. (B) Wild-type, UbcH10T2/T2, and superinduced UbcH10T2/T2 metaphases stained for centrin 2  
and DNA. Spindle poles with extra centrioles are shown in the insets. (C) Percentage of wild-type, UbcH10T2/T2, and superinduced UbcH10T2/T2 meta-
phases with extra centrioles. Wild-type and UbcH10T2/T2 MEFs infected with lentivirus containing pTRIC empty vector served as controls for the impact of 
lentiviral infection on centrosome amplification. Error bars indicate SD. *, P = 0.0145 versus wild-type MEFs; and **, P = 0.0109 versus UbcH10T2/T2 MEFs 
(unpaired t test; n = 2 lines per genotype). (D) Incidence of wild-type, UbcH10T2/T2, and superinduced UbcH10T2/T2 metaphases with the indicated number 
of extra centrioles. (E) Tripolar UbcH10T2/T2/Dox (+Dox; superinduced UbcH10T2/T2) MEF stained for centrin 2, -tubulin, and DNA. Bars, 10 µm.
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UbcH10 levels are high in human  
lung cancers
Using quantitative real-time PCR, we measured UbcH10 tran-
script levels in 49 lung adenocarcinomas, 47 human squamous 
cell carcinomas, and 7 normal lung samples. We found that 
mRNA levels were extremely high (>50-fold above normal) in 
two adenocarcinomas (4.1%) and four squamous cell carcino-
mas (8.5%; Fig. 9). High transcript levels (10–50-fold) were 
observed in 14 adenocarcinomas (28.6%) and in 16 squamous 
cell carcinomas (34%), whereas 15 adenocarcinomas (30.6%) 
and 14 squamous cell carcinomas (29.7%) showed moderate 
transcript levels (5–10-fold). The data suggest that human lung 
tumors have a high incidence of UbcH10 overexpression and 
that there is quite a wide range in the levels of UbcH10 over
expression in these tumors. However, because UbcH10 expression 
is induced in proliferating cells, it is important to consider that 
increases in UbcH10 transcript levels are at least partly caused 
by increased rates in mitosis of tumor versus normal tissue.

Discussion
UbcH10 is overexpressed in many human cancer types and is 
associated with tumor progression. In this study, we demon-
strate that UbcH10 overexpression is causally implicated in  
tumor development. Direct evidence for this conclusion comes 
from the observation that UbcH10 overexpression in mice leads 
to a wide variety of spontaneous tumors, including lung ade-
nomas and adenocarcinomas, hepatic adenomas and adenocar-
cinomas, lymphomas, skin tumors, and lipomas. These tumors 
were observed in most transgenic strains, indicating that a rather 
broad range of UbcH10 overexpression levels can initiate neo-
plastic transformation. Compared with most other animal 
models for aneuploidy, UbcH10 transgenic mice show a high 
incidence of tumor formation and a broad spectrum of sponta-
neous tumors (Ricke et al., 2008; Holland and Cleveland, 2009). 
Among the tissues that develop tumors, the lung seems to be 
particularly sensitive to the effects of UbcH10 overexpression, 
with both spontaneous and carcinogen-induced tumorigenesis  
being most profound at higher levels of UbcH10 overexpression.  
Given that UbcH10 transcript levels are commonly elevated in 
human lung adenocarcinomas and squamous cell carcinomas, it 
is tempting to speculate that at least a subset of these tumors  
expresses an oncogenic amount of UbcH10.

We find that UbcH10 overexpression causes whole chro-
mosome instability. This, combined with data from recent stud-
ies of various mitotic checkpoint protein–defective mouse strains 
and human cells lines showing that aneuploidy can be causally 
linked to tumorigenesis (Ricke et al., 2008; Holland and Cleveland, 
2009), suggests that the effect of UbcH10 overexpression on  
tumor formation results, at least in part, from chromosome 
missegregation and aneuploidy. Chromosome lagging, which is 
believed to be the primary source of aneuploidy in human can-
cers (Cimini, 2008; Thompson and Compton, 2008), is the main 
chromosome segregation error associated with UbcH10 over
expression. Chromosome lagging is caused by merotelic chromo-
some attachment (Cimini, 2008). Such attachments also occur at 
a low rate in normal cells but are efficiently corrected through a 

UbcH10 overexpression causes  
tumor formation
To address the central question as to whether UbcH10 over
expression can act to promote tumorigenesis, we first performed a 
tumor bioassay with 7,12-dimethylbenz(a)anthracene (DMBA), 
a carcinogen which, when applied to the skin at low dose, predis-
poses wild-type mice to lung tumors and skin tumors (Dawlaty  
et al., 2008). Pups from UbcH10T1 × UbcH10T1 and UbcH10T2 × 
UbcH10T2 intercrosses received a single application of 50 µl of 
0.5% DMBA in acetone to the dorsal skin between postnatal 
day (P) 3 and P5. At 5 mo of age, animals were sacrificed 
and screened for lung and skin tumors. We observed at least 
one lung tumor in 50% of wild-type animals (Fig. 7 A). Lung 
tumor incidence was slightly elevated in both UbcH10T1 and 
UbcH10T1/T1 mice, although the differences were not statistically 
significant. However, as levels of UbcH10 overexpression pro-
gressively increased, the incidence of lung tumors concurrently 
inclined, with 84% of UbcH10T2 and 100% of UbcH10T2/T2  
mice developing this tumor type (Fig. 7 A). The lung tumor 
burden also increased gradually along with increasing levels of 
UbcH10 overexpression, with UbcH10T2 and UbcH10T2/T2 mice 
developing, on average, nearly 6 and 10 tumors per mouse, re-
spectively, compared with 2 in wild-type and UbcH10T1 mice 
(Fig. 7 B). Although UbcH10-overexpressing mice showed a 
trend toward increased DMBA-induced skin tumor incidence, 
there was no statistically significant difference versus wild-type 
mice (unpublished data).

To determine whether UbcH10 overexpression predisposes 
mice to spontaneous tumors, cohorts of wild-type, UbcH10T1, 
UbcH10T1/T1, UbcH10T2, and UbcH10T2/T2 mice were aged to 
12–16 mo and screened for the presence of tumors. Overt 
tumors were collected and subjected to histopathology. As 
shown in Fig. 7 C, all transgenic strains had marked and sig-
nificant increases in tumor incidence compared with wild-type 
mice. The tumor spectrum of UbcH10 transgenic mice was 
broad and included lymphomas, lung adenomas, lipomas, and 
liver and skin tumors (Fig. 7, D and E). None of these tumor 
types were observed in mice of our wild-type cohort. Their 
overall tumor incidence (Fig. 7 C) did not correlate well with 
expected expression levels based on genotypes. Lung tumors 
were seen in all transgenic strains but were more frequent at 
the higher levels of UbcH10 overexpression (Fig. 7 D). Chro-
mosome counts on metaphase spreads of two UbcH10T2/T2 lym-
phomas revealed that these tumors contained a high proportion 
of aneuploid cells (Fig. 8 A). Furthermore, interphase FISH on 
tumor sections using probes for chromosomes 4 and 7 pro-
vided evidence for aneuploidy in five out of seven lung tumors 
(Fig. 8 B) and two out of three liver tumors (not depicted). 
Immunostaining of lung tumor cells with an antibody against 
centrin 2 revealed evidence of substantial numerical centriole 
abnormalities in four out of four lung tumors analyzed (Fig. 8, 
C and D). Collectively, the aforementioned data demonstrate 
that UbcH10 overexpression is causally implicated in tumor 
formation and that it is associated with chromosome number 
instability. Furthermore, these data suggest that the range of 
overexpression levels at which UbcH10 drives tumorigenesis 
is rather wide.
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Figure 7.  UbcH10 overexpression predisposes mice to DMBA-induced and spontaneous cancers. (A) Lung tumor incidence of DMBA-treated mice of the 
indicated genotypes. *, P < 0.05 versus wild-type mice (Fisher’s exact test). Note that UbcH10 expression levels in lung increase from +/+ < T1 < T1/T1 < 
T2 < T2/T2 (see Fig. 1 D). The inset shows gross appearance of DMBA-induced lung tumors. (B) Lung tumor burden of DMBA-treated mice of the indicated 
genotypes. Error bars indicate SEM. *, P < 0.05 versus wild-type mice (Mann-Whitney test). (C) Spontaneous tumor incidence of mice of the indicated geno-
types. The average age of the wild-type, UbcH10T1, UbcH10T1/T1, UbcH10T2, and UbcH10T2/T2 mice used in the study was 15 mo, 16 mo, 12 mo, 16 mo, 
and 13 mo, respectively. *, P < 0.05 versus wild-type mice (Fisher’s exact test). (D) Tumor spectrum of mice of the indicated genotypes. (E) Gross images 
and histological analysis of selected spontaneous tumors from transgenic mice. Dashed lines encircle and arrows point to the tumor region. Bar, 3 mm.
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transgenic MEFs, suggesting that two key components of the 
machinery that corrects merotelic attachments are functioning 
under conditions of supranormal UbcH10 levels. However, it 
cannot be excluded that other components are defective or that 

process that involves recruitment of Aurora B and MCAK to  
inner centromeric regions of duplicated chromosomes (Andrews 
et al., 2004; Lan et al., 2004). We find that both of these proteins 
properly target to the inner centromeric regions of UbcH10 

Figure 8.  Evidence of numerical chromosome and centriole abnormalities in tumors from UbcH10 transgenic mice. (A) Chromosome counts on lym-
phoma cells from two UbcH10T2 transgenic mice. Empty cells in the table indicate that there were no karyotypes with the indicated chromosome number.  
(B) Interphase FISH for chromosomes 4 and 7 on 5-µm lung tumor sections of UbcH10 transgenic mice. Normal lung sections of wild-type mice were used 
as controls. The number of FISH signals was determined for 100 interphase cells per lung tumor/normal lung tissue sample. (C) Interphase cells from normal 
lung tissue of wild-type mice or lung tumors of UbcH10 transgenic mice stained for centrioles (cent.) and DNA. (D) Quantification of centriole numbers in 
normal lung cells and transgenic lung tumor cells. Bar, 10 µm.
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defects were observed in UbcH10-overexpressing cells. This 
implies that abnormal duplication of centrosomes, commonly 
referred to as centrosome amplification (Fukasawa, 2007), is 
the most plausible mechanism by which extra centrioles arise 
in transgenic cells. How UbcH10 overexpression might act 
to perturb the centrosome duplication process remains to be  
determined. A wide variety of proteins can cause centrosome 
number instability when defective, including the APC/C sub-
strates cyclin B, Nek2A, Aurora A, and Plk1 (Fukasawa, 2007). 
Of these, cyclin B is prematurely degraded by the APC/C in 
UbcH10-overexpressing cells during early mitosis. Thus, one 
potential scenario is that UbcH10 overexpression affects nu-
meral centrosome integrity by altering the timing of APC/C-
mediated degradation of cyclin B and possibly other substrates. 
The centrosome duplication cycle spans the entire cell cycle, 
including mitosis, the stage in which sister centriole disengage-
ment (separation) takes place (Salisbury, 2008). Disengagement 
is essential for proper centriole duplication during interphase 
and depends on separase and Plk1 activity (Tsou et al., 2009). 
Although Plk1 is a direct target of APC/C activity, our data suggest 
that its degradation is unperturbed by supranormal UbcH10 levels. 
In contrast, separase activity is partly controlled by Cdk1–cyclin B 

the efficiency with which attachment errors are corrected is re-
duced (Bakhoum et al., 2009a,b).

Interestingly, centrosome amplification has recently been 
identified as an underlying cause of merotely and chromosome 
lagging in cancer cells (Ganem et al., 2009; Silkworth et al., 
2009). It has been proposed that extra centrosomes can lead to 
the formation of multipolar spindles, which, because of their 
abnormal spindle geometry, promote merotelic attachments. 
Centrosome clustering allows for bipolar cell division of these 
cells, but this frequently occurs while merotelic attachment  
errors persist, thereby yielding lagging chromosomes. This 
mechanism of chromosomal instability might apply to UbcH10 
overexpression because supernumerary centrioles and multi
polar spindles are features of cells with high UbcH10 levels. 
Furthermore, the incidence of both of these defects correlates 
well with the level of UbcH10 overexpression and the frequency 
of chromosome lagging. It should be noted that the incidence of 
multipolar spindles was considerably lower than that of centri-
ole supernumerary, which may be because of the transient na-
ture of multipolar spindle intermediates.

Failed cytokinesis and acentrosomal spindles can both 
cause numerical centriole anomalies (Nigg, 2002), but no such 

Figure 9.  UbcH10 is overexpressed in human primary lung cancers. UbcH10 expression in normal lung tissues, lung adenocarcinomas, and squamous 
cell lung carcinomas analyzed by quantitative RT-PCR. Data represent the mean of duplicate measurements. UbcH10 transcript levels were normalized to 
TBP. The relative fold UbcH10 expression was normalized to the average of normal tissue expression.
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grown in a 96-well plate. At confluence, each colony was split into four 
96-well plates. Plate 1 was frozen at 80°C, and plate 2 was stained for  
-galactosidase. Plate 3 was infected with Cre-expressing adenovirus to ac-
tivate HA-UbcH10 and EGFP expression by excision of the floxed -geo-stop 
cassette. EGFP-positive clones were identified by fluorescence microscopy 
and verified for expression of HA-UbcH10 by Western blotting using 3F10 
antibody. Plate 4 was used to extract genomic DNA from clones that were 
triple positive for -galactosidase, EGFP, and HA-UbcH10. This DNA was 
subjected to Southern blot analysis to select clones with a single-copy ZEG 
HA-UbcH10 integration. UbcH10 cDNA was used as a probe in this analysis.  
Single integrants were karyotyped and injected into C57BL/6 blastocysts  
to generate chimeric animals. Chimeric males from two ES clones were  
bred to C57BL/6 females, and offspring were screened for the presence of 
the transgene by PCR. Transgene-positive males were bred to protamine-Cre 
transgenic mice (purchased from The Jackson Laboratory) to excise the  
-geo-stop cassette in the male germline. Protamine-Cre/HA-UbcH10 double 
mutant mice were bred to C57BL/6 females, and offspring were screened for 
transgene activation using a fluorescence stereomicroscope (MZ16F; Leica). 
All transgenic mice were maintained on a mixed 129SV/E × C57BL/6 
genetic background. DMBA tumor bioassays were performed as previously 
described (Babu et al., 2003). Spontaneous tumors were collected and pro-
cessed for standard histopathology. Tumor sections were evaluated with the 
assistance of board-certified Mayo Clinic pathologists. All mice were housed 
in a pathogen-free barrier environment. Mouse protocols were reviewed and 
approved by the institutional animal care and use committee.

Generation and culture of MEFs
UbcH10 transgenic MEFs were generated and cultured as previously de-
scribed (Baker et al., 2004). MEFs were frozen at P2 or P3 and used for 
experimentation between P4 and P6. At least three independently gen-
erated MEF lines per genotype were used. Mitotic MEFs were prepared 
by culturing asynchronous cells for 5 h in medium containing 100 ng/ml  
nocodazole (Sigma-Aldrich) and harvesting cells by shake off. To synchro-
nize MEFs in G0, confluent cultures were washed three times with PBS and 
then cultured in DME containing 0.1% FBS for 14 h. Quiescent MEFs were 
trypsinized and reseeded in DME with 20% FBS to allow their reentry into 
the cell cycle.

Western blotting, co-IP, and immunofluorescence
Western blot analyses, co-IPs, and indirect immunofluorescence were per-
formed as previously described (Kasper et al., 1999). Standard fixations 
for immunostainings were with 3% paraformaldehyde for 12 min at RT. 
For kinetochore and centriole localization experiments, cells were fixed 
with 1% paraformaldehyde for 5 min at RT. For MCAK staining, cells were 
fixed with 4% paraformaldehyde for 10 min at RT followed by incubation 
with methanol for 10 min at 20°C. For microtubule–centriole double 
stainings, cells were permeabilized in PHEM buffer (25 mM Hepes,  
10 mM EGTA, 60 mM Pipes, and 2 mM MgCl2, pH 6.9) containing 0.5% 
Triton X-100 for 5 min at RT followed by incubation with ice-cold 100% 
methanol for 10 min at 20°C. Centriole quantitation on single-cell sus-
pensions of normal lung tissue and lung tumors were as follows. Normal 
lung tissue of wild-type mice was collected and rinsed with 20 ml PBS. 
About 0.5 g of lung tissue was cut into 20–30 pieces and transferred 
into a gentleMACS C tube containing 1 ml PBS/0.5% bovine serum 
albumin/2 mM EDTA (PEB). Individual lung tumors were collected using 
a dissection microscope. Each tumor was cut into small pieces and trans-
ferred into a gentleMACS C tube containing PEB. All samples were minced 
in a gentleMACS Dissociator using program m_impTumor_03 (Miltenyi 
Biotech; the program was run twice). 25 µl of 7 mg/ml Liberase blendzyme 
3 solution (Roche) was added, and samples were incubated for 30 min at 
37°C. Samples were run once more in the gentleMACS Dissociator and 
centrifuged at 1,000 rpm for 15 s. Cell suspensions were collected and 
cleared from undigested tissue using a 70-µm cell strainer. Cells were 
pelleted (1,000 rpm for 5 min) and resuspended in 1 ml DME/10% FCS. 
After two washes in 1 ml DME/10% FCS fixative, cells were resuspended 
in 250 µl DME/10% FCS and attached to chambered microscope slides 
coated with 1% polyethylene amine microscope slides. Fixation and visu-
alization of centrioles were performed as described above for kinetochore 
and centriole localization experiments.

A laser-scanning microscope (LSM 510 v3.2SP2; Carl Zeiss, Inc.) 
with Axiovert 100M (Carl Zeiss, Inc.) with a c-Apochromat 100× oil  
immersion objective was used to analyze immunostained cells and capture 
representative images. For quantification of cyclin B levels, 10 prophases 
were analyzed per MEF line. The mean fluorescence intensity was determined 
after background subtraction of images transformed to 8-bit grayscale using 

phosphorylation (Peters, 2006) and might be impaired in UbcH10-
overexpressing cells because of reduced cyclin B stability. Alter-
natively, the formation of extra centrioles might originate from an 
interphase defect. Normally, UbcH10 levels sharply decline upon 
exit from mitosis. However, in transgenic cells, UbcH10 expres-
sion remains relatively high throughout the cell cycle, which might 
lead to the destabilization of key regulators of centrosome duplica-
tion in interphase.

Given that UbcH10 functions as an E2 for APC/C, it is 
reasonable to assume that UbcH10 overexpression leads to 
uncontrolled APC/C activity. The observation that UbcH10-
overexpressing cells have reduced cyclin B levels in early mi-
tosis supports this assumption. Furthermore, mitotic slippage, a  
mitotic exit process which requires APC/CCdc20-mediated degra-
dation of cyclin B (Andreassen and Margolis, 1994; Brito and 
Rieder, 2006), is accelerated when UbcH10 is overexpressed. 
The idea that UbcH10 overexpression would cause premature cy-
clin B degradation by challenging the mitotic checkpoint seemed 
plausible given that UbcH10 has been suggested to activate  
APC/CCdc20 by triggering the release of BubR1 and Mad2 (Reddy 
et al., 2007). However, we found no evidence for overt changes 
in the binding of Mad2 and BubR1 to Cdc20 or APC/CCdc20 in  
response to UbcH10 overexpression. There was also no evidence 
for mislocalization of mitotic checkpoint proteins to unattached 
kinetochores in early mitosis, suggesting that kinetochore-
derived checkpoint signaling was intact. So, how then might high 
UbcH10 levels act to destabilize cyclin B in the presence of an 
intact mitotic checkpoint? We propose that normally only a small 
fraction of APC/C is bound to UbcH10. However, UbcH10 over-
expression appears to alter this equilibrium, thereby increasing  
the total pool of active APC/C. On the surface, this result  
appears to challenge our finding that UbcH10 overexpression  
has no impact on the binding of BubR1 and Mad2 to APC/C. 
However, because the UbcH10-bound fraction is small relative 
to the total APC/C pool even in transgenic cells, any changes in 
BubR1/Mad2 binding within this fraction would be difficult to 
detect by an IP–Western blot approach (Fig. S5).

Interestingly, of the comprehensive set of known APC/C 
substrates whose levels we analyzed under conditions of high  
levels of UbcH10, only cyclin B showed reduced stability. Although 
this certainly implies that UbcH10 overexpression does not cause 
widespread substrate destabilization, the possibility of premature 
degradation of other regulators of chromosome segregation by 
APC/C cannot be ruled out at this time. That activated APC/C can 
only act against particular substrates at certain stages of mitosis is 
well known (Peters, 2006; Sullivan and Morgan, 2007). The mo-
lecular basis for this selectivity is currently unclear and is a subject 
of intense investigation in the field.

Materials and methods
Generation of UbcH10 transgenic mice and DMBA treatment
UbcH10 transgenic mice were generated via a previously described pro-
cedure developed by the laboratory of C. Lobe (Novak et al., 2000; Liu 
and Lobe, 2007). PCR-amplified mouse UbcH10 cDNA with a carboxy- 
terminal HA tag was cloned into a unique XhoI site of the ZEG expression 
vector and sequence verified. ES cells were electroporated with ScaI-linearized  
ZEG HA-UbcH10 plasmid, and G418-resistant colonies were selected as 
previously described (van Deursen, 2003). ES colonies were isolated and 
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carcinomas (n = 47) using the RNeasy RNA Isolation kit (QIAGEN) accord-
ing to the manufacturer’s protocol (specimens provided by V. Shidhar, Mayo 
Clinic College of Medicine). Complementary DNA was produced using 
random hexamers and SuperScript III reverse transcription (Invitrogen)  
according to the manufacturer’s instructions. Transcript levels were 
determined using the ABI PRISM Sequence Detection System 7900 
(Applied Biosystems). Oligonucleotides were obtained from Applied  
Biosystems. Measurements were performed in duplicate. Amplification 
curves and gene expression were normalized to the housekeeping gene  
TBP. TaqMan primer IDs were Hs 00738962-m1 for UbcH10 and 4333769 
for TBP. The relative fold expression was normalized to the average of 
normal tissue expression.

Online supplemental material
Fig. S1 shows that growth rates are normal in UbcH10-overexpressing 
MEFs. Fig. S2 shows that key mitotic checkpoint proteins properly accu-
mulate at kinetochores during early mitosis in UbcH10-overexpressing 
cells. Fig. S3 shows that timing of securin degradation is normal when 
UbcH10 is overexpressed. Fig. S4 shows that Aurora B and MCAK prop-
erly target to inner centromeric regions in UbcH10-overexpressing cells. 
Fig. S5 shows a model for increased APC/C activity in UbcH10 trans-
genic cells. Online supplemental material is available at http://www.jcb 
.org/cgi/content/full/jcb.200906147/DC1.
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