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We propose a general model for the spherically averaged exchange hole corresponding to a
generalized gradient approximation �GGA� exchange functional. Parameters are reported for several
common GGAs. Our model is based upon that of Ernzerhof and Perdew �J. Chem. Phys. 109, 3313
�1998��. It improves upon the former by precisely reproducing the energy of the parent GGA, and
by enabling fully analytic evaluation of range-separated hybrid density functionals. Analytic results
and preliminary thermochemical tests indicate that our model also improves upon the simple,
local-density-based exchange hole model of Iikura et al. �J. Chem. Phys. 115, 3540 �2001��. © 2008
American Institute of Physics. �DOI: 10.1063/1.2921797�

I. INTRODUCTION

Kohn–Sham density functional theory1,2 �DFT� using
semilocal exchange-correlation �XC� functionals has become
an indispensable tool for computational chemistry and solid
state physics.3 Semilocal exchange-correlation functionals
provide computationally tractable approximations to the
many-body exchange-correlation energy, Exc. The simplest
semilocal functional is the local density approximation
�LDA�, which models the exchange-correlation energy den-
sity at each point r as that of a homogeneous electron gas
�HEG� with electron density n=n�r�. More sophisticated
semilocal functionals include generalized gradient approxi-
mations �GGAs� incorporating ��n�r�� and meta-GGAs in-
corporating the kinetic energy density and/or density
Laplacian.4 These functionals significantly improve upon the
LDA for a wide variety of properties. But while the LDA has
a simple derivation, constructing GGAs and meta-GGAs is
not as straightforward.

One powerful guide to constructing new semilocal
exchange-correlation functionals is the exchange-correlation
hole,5 nxc�r1 ,r2�. Given a test electron located at r1,
nxc�r1 ,r2� represents a one-electron charge distribution—a
“hole” in the N-electron density n�r2�—that adds self-
interaction and exchange-correlation effects to the classical
Coulomb interaction between the test electron and n�r2�.
Functionals built from proper exchange-correlation hole
models ensure satisfaction of additional exact constraints be-
yond those known for Exc itself.

In addition to their important formal properties, model
exchange holes are essential for constructing range-separated
hybrid functionals.6–9 Hybrid functionals incorporate a frac-
tion of exact nonlocal Hartree–Fock-type �HF� exchange,
and can accurately model many properties with moderate
computational effort.10–14 Range-separated hybrids are ob-
tained by partitioning the Coulomb operator into short- and
long-range components,

�1�

and using different fractions of exact and semilocal DFT
exchange for the two components. Range-separated hybrids
that eliminate long-range exact exchange have demonstrated
utility for condensed systems,15–18 in which full range exact
exchange presents computational and formal problems.
Long-range-corrected �LC� hybrids incorporating 100%
long-range exact exchange yield the exact asymptotic
exchange-correlation potential and can accurately model
many properties of finite systems.19–22 A functional incorpo-
rating exact exchange only in the middle range has recently
been introduced23 and shows promise in both extended and
finite systems. Evaluating the range-separated components of
the semilocal DFT exchange energy requires a model for the
corresponding exchange hole. As the number of ranges in-
creases, analytic evaluation of the range-separated exchange
energy becomes important.

There have been many attempts to construct model ex-
change holes that reproduce the energies of a parent ex-
change functional—to “reverse-engineer” an exchange hole
from an exchange energy rather than obtaining an exchange
energy from the exchange hole.19,24,25 Such model exchange
holes are nonunique: even the LDA exchange energy, which
can be directly obtained from the homogeneous electron gas
model system, can also be constructed from nonoscillating
models �Sec. III�. Unfortunately, there is to date no com-
pletely satisfactory prescription for constructing such mod-
els. The widely used model of Iikura et al.19 uses a simple
LDA-based ansatz and fails to satisfy known exact condi-
tions �see Sec. VI B�. Perdew and co-workers have proposed
a variety of exchange hole models, some used to derive ex-
change functionals,26–28 and others designed to reproduce ex-
isting exchange functionals.24,25 The GGA model exchange
hole of Ernzerhof and Perdew24 �EP� is particularly relevant
to the present work. While parametrized to reproduce the
Perdew, Burke, and Ernzerhof �PBE� GGA,29 it provides aa�Electronic mail: th4@rice.edu.
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framework for modeling any GGA exchange hole. However,
the model satisfies some exact constraints only approxi-
mately, and generally does not yield the same exchange en-
ergy as its parent GGA. Nevertheless, it is a helpful point of
departure. The recent work of Bahmann and Ernzerhof30 pro-
vides another construction of the PBE exchange hole which
can be readily generalized to other GGAs.

In this work, we present a general-purpose model for the
exchange hole corresponding to a GGA exchange functional.
Our model refines that of EP, and is particularly designed for
use in range-separated hybrids. The remainder of this paper
is organized as follows. In Sec. II, we briefly review the
exchange hole formalism, before reviewing the EP construc-
tion in Sec. III. After pointing out a few practical concerns
with the EP construction in Sec. IV, we introduce our own
�HJS� exchange hole model in Sec. V. In Sec. VI we compare
our model for the PBE exchange hole to those of EP and
Iikura and co-workers, paying particular attention to impli-
cations for range-separated hybrids. We summarize in Sec.
VII.

II. THE EXCHANGE HOLE

In order to evaluate the exact exchange energy in the
Kohn–Sham �KS� framework, we proceed through the KS
one-particle density matrix n1�r1 ;r2�, defined in terms of the
KS occupied orbitals ��i�r�� as

n1�r1;r2� = �
i=1

N

�i
��r1��i�r2� , �2�

where N is the number of electrons. The exact exchange
energy is given, in the hartree atomic units used throughout
this work, by

Ex = −
1

2
	 dr1dr2

n1�r1;r2�n1�r2;r1�
r12

, �3�

where r12= �r1−r2�. Since the exchange hole represents an
effective charge distribution with which electrons interact
Coulombically, the exchange hole is defined by

n�r1�nx�r1,r2� = − n1�r1;r2�n1�r2;r1� , �4�

where n�r�=n1�r ;r� is the electron density.
The exact exchange hole satisfies several known con-

straints. Among those most important for our purposes are
the following:

• The exchange hole is negative semidefinite.

• As seen from Eq. �4�, for spin-unpolarized systems, the
exchange hole obeys

nx�r,r� = − 1
2n�r� . �5�

• The exchange hole obeys the normalization condition

	 dr2nx�r1,r2� = − 1, �6�

which follows ultimately from decomposing the pair
density n2�r1 ,r2� into Coulomb, exchange, and correla-
tion pieces, and using idempotency of the KS one-

particle density matrix along with the quadrature rela-
tion between the density and the pair density.

• The exchange hole yields the exchange energy via

1

2
	 dr1dr2

n�r1�nx�r1,r2�
r12

= Ex, �7�

which follows from inserting the definition of the ex-
change hole into the energy expression of Eq. �3�.

As a six-dimensional object, the exchange hole is diffi-
cult to visualize, and it is generally easier to work with the
system- and spherically averaged exchange hole,

n̄x�u� =	 dr1
n�r1�

N
	 dr2

��r12 − u�
4�u2 nx�r1,r2� . �8�

This quantity has a simple representation in terms of the
exchange part of the pair distribution function �x-PDF�,
given through

− n1�r1;r2�n1�r2;r1� = n�r1�nx�r1,r2�

= n�r1�n�r2�gx�r1,r2� . �9�

In conventional semilocal exchange-correlation functionals,
one usually writes instead

n�r1�nx�r1,r2� = n�r1�2Jx�n�r1�,r12� . �10�

We seek to model this quantity Jx. We begin by reviewing
the EP model. Note that throughout, we discuss only spin-
unpolarized models; the spin-polarized exchange hole can be
obtained through the spin-scaling relation

n�r�nx�n↑,n↓��r,r + u� = �
�

n��r�nx�2n���r,r + u� . �11�

III. THE EP MODEL EXCHANGE HOLE

A. The LDA exchange hole and a nonoscillating
approximation thereto

Since PBE reduces to LDA for homogeneous densities,
and the LDA exchange hole is exact in this limit, construct-
ing a GGA hole in principle requires only that gradient cor-
rections to the LDA exchange hole be constructed. Within
the LDA, the exchange hole at point r is approximated by
the exchange hole of a HEG with density n equal to the
density at the point r,

nx
LDA�r,r + u� = nx

HEG�n�r�,u� , �12�

with

nx
HEG�n,u� = nJx

HEG�y� , �13�

where y=kFu and the Fermi wave vector kF is given by

kF = �3�2n�1/3. �14�

The x-PDF for the spin-unpolarized HEG is

JHEG�y� = −
9

2

 sin�y� − y cos�y�

y3 �2

. �15�

The long-range oscillations in JHEG are energetically unim-
portant, and are unphysical in finite systems. Therefore, EP
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begin their construction of the PBE hole by building a
nonoscillating approximation to JHEG, denoted here by

J̃LDA�y�. This approximation is constructed to satisfy the ex-
act constraints listed in Sec. II, as well as three additional
constraints. The on-top constraint of Eq. �5� implies that

J̃LDA�0� = − 1
2 . �16�

The normalization constraint of Eq. �6� leads to

4

3�
	

0

�

dyy2J̃LDA�y� = − 1. �17�

The energy constraint of Eq. �7� yields

8

9
	

0

�

dyyJ̃LDA�y� = − 1. �18�

Three further constraints are chosen. First, J̃LDA�y� should
have the same curvature at y=0 as JHEG�y�,

�2

�y2 J̃LDA��y��y=0 =
1

5
. �19�

Second, J̃LDA�y� should have the same behavior at large y as
does the nonoscillating part of JHEG�y�. This implies that

J̃LDA�y� � −
9

4y4 �20�

for large y. Finally, EP eliminate all structure in J̃LDA�y� that
is not needed to fulfill the preceding constraints by maximiz-
ing the information entropy,

S�− J̃LDA�y�� = 	
0

�

dy4�y2J̃LDA�y�ln�− J̃LDA�y�� �21�

of −J̃LDA�y�.
The nonoscillating model in EP, based on an earlier

model of Perdew and Wang,31 writes

J̃EP
LDA�y� = −

9

4y4

Āy2

1 + Āy2
+ 
 9

4

Ā
y2 + B + Cy2 + Ey4�e−Dy2

.

�22�

The first term controls the long-range behavior and guaran-
tees satisfaction of the large y constraint of Eq. �20�, while

the parameters Ā, B, C, D, and E enforce the other con-

straints. In Fig. 1 we show yJHEG�y� and yJ̃EP
LDA�y�, the inte-

grands required to obtain the exchange energy density. Note
that here and in the following, we have renamed a few pa-
rameters or functions in the EP model. Specifically,

• Our parameter Ā is defined as 4 /9A, where A
�1.106 is the parameter of EP.

• Our functions F̄EP�s� and ḠEP�s� �see below� are defined
as, respectively, 1+s2F�s� and 1+s2G�s� as given in
Ref. 24.

• In Eq. �25� of Ref. 24, EP have written �16A2+36�B
−AD�� /36, which is identically equal to −1 /2 due to
the on-top constraint of Eq. �16�.

B. Gradient corrections

Given this zero-gradient limit, EP introduce gradient cor-
rections in terms of the reduced density gradient

s =
��n�
2kFn

�23�

by writing

J̃EP
GGA�s,y� = −

9

4y4

Āy2

1 + Āy2
+ 
 9

4

Ā
y2 + B + CF̄EP�s�y2

+ EḠEP�s�y4�e−Dy2�e−s2HEP�s�y2
. �24�

The function F̄EP�s� is chosen to get a more general on-top
curvature,

�s
2�y

2J̃GGA��s,y�EP�y=s=0 = − 4
27 . �25�

The other two functions, ḠEP�s� and HEP�s�, are chosen to
yield the normalization constraint of Eq. �17� and the desired
enhancement factor

−
8

9
	

0

�

dyyJ̃EP
GGA�s,y� = Fx

GGA�s� , �26�

where the GGA enhancement factor is defined by

Ex
GGA = −

3

4�
	 drn�r�kF�r�Fx

GGA�s� . �27�

These three constraints are not enough to determine

J̃EP
GGA uniquely, since the constraint of Eq. �25� only affects

the small s behavior of J̃EP
GGA. Thus, EP write F̄EP�s� in terms

of HEP�s� as

FIG. 1. Exact and model LDA energy-weighted exchange pair-distribution
functions.
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F̄EP�s� = 1 −
1

27C
s2 −

1

2C
s2HEP�s� . �28�

The EP model is thereby completely specified. Equation �28�
defines F̄EP�s�, the normalization condition Eq. �17� defines

ḠEP�s�, and given those the energy condition can be used to
solve for HEP�s�. Unfortunately, HEP�s� cannot be solved for
in closed form, and, in fact, for the PBE GGA, there is no
solution at all for s�10. Thus, EP recommend simply writ-
ing s=min�s ,10�.

As EP noted in discussing their model, while the param-
eters defining HEP�s� were chosen so that the model reduces
to the PBE GGA �modulo difficulties in solving for HEP�s��,
nothing in the work requires this choice, and the EP proce-
dure can be followed to construct model exchange holes for
any GGA.

IV. CRITIQUE OF THE EP MODEL EXCHANGE HOLE

While the EP model is quite straightforward and simple
to construct, it contains deficiencies which we would like to
remedy. Most importantly, the PBE model exchange hole of
EP does not provide a closed-form expression for the range-
separated PBE energy. Specifically, we may write a range-
separated enhancement factor

Fx
�PBE�s,�,kF� = −

8

9
	

0

�

dyyJ̃EP
GGA�s,y�erfc
 �

kF
y� , �29�

where � is the range-separation parameter of Eq. �1�. Insert-

ing the explicit form of J̃EP
GGA, we see that one term contrib-

uting to Fx
�PBE�s ,� ,kF� is

F�s,�,kF� = −
8

9
	

0

�

dy
9Ā
4

y

�
−
1

y4

y2

1 + Āy2
+

1

y2e−Dy2�e−s2HEP�s�y2

�erfc
 �

kF
y� . �30�

This term has, to date, defied analytic integration. Existing
range-separated hybrids constructed from the EP model ei-
ther approximate this integral or evaluate it
numerically.15,18,21 Further, most of the approximations used
in evaluating F�s ,� ,kF� fail for large � /kF, and these ap-
proximations often complicate the functional differentiation
needed to extract the range-separated exchange potential.

A second problem with the EP model is its behavior at
large s. As the gradient gets large, the EP exchange hole
becomes unphysically deep near y=1. Sufficiently large s
make the EP exchange hole positive for large y, violating the
negativity constraint discussed in Sec. II. Moreover, as pre-
viously alluded to, the energy constraint cannot be satisfied
for s�10. This causes the enhancement factor Fx

EP�s� to vio-
late the local Lieb–Oxford bound. In Fig. 2, we show the
PBE enhancement factor and the enhancement factor due to
the PBE hole of EP. Clearly, they begin to differ significantly
as s gets larger. One consequence is that the exchange energy

from the PBE hole model of EP differs non-negligibly from
the PBE exchange energy. As mentioned, EP were aware of
this difficulty and suggested simply setting s=10 for s	10.
We present a somewhat more sophisticated rescaling in the
Appendix. However, such rescalings remain unsatisfactory.

The divergence of J̃EP
GGA for large s, the inability to obtain

any solution for HEP�s� for large s, and the resulting viola-
tion of the Lieb–Oxford bound are all due to the EP form of

F̄EP�s�, which for large s tends to infinity. When a rescaled

gradient is introduced, F̄EP remains finite for all s.
Our model proposed below sets out to do two things.

First, we desire the GGA hole model to lead to closed-form
expressions for range-separated GGAs. Second, we wish the
GGA hole model to be well behaved for all s, thereby allow-
ing us to satisfy the energy constraint for all s without res-
caling the reduced gradient. With such a model in hand,
building exchange holes for different GGAs reduces to pa-
rameterizing the numerically defined function H�s�, and
building range-separated GGAs becomes trivial.

V. A NEW GGA EXCHANGE HOLE MODEL

Our first concern is to build a non-oscillating LDA ex-

change hole which takes a similar form to J̃EP
LDA�y� �thus

minimizing additional implementation�, but whose range-
separated energy can be evaluated analytically. We accord-
ingly choose the functional form to be

J̃HJS
LDA�y� = −

9

4y4 �1 − e−Āy2
�

+ 
9

4

Ā
y2 + B + Cy2 + Ey4�e−Dy2

. �31�

Comparison with the EP model of Eq. �22� shows that the
only difference lies in the manner in which the long-range

term goes from − 9
4Āy−2 at small y to − 9

4 y−4 at large y. We
impose the same additional constraints as do EP.41

Enforcing the on-top constraint of Eq. �5� gives us

FIG. 2. Enhancement factors from PBE and the EP models of the PBE
exchange hole.

194105-4 Henderson, Janesko, and Scuseria J. Chem. Phys. 128, 194105 �2008�



B = 9
4�ĀD − 1

2Ā2� − 1
2 . �32�

Enforcing the curvature constraint of Eq. �19� yields

C = 1
10 − 9

8Ā�D2 − 1
3Ā2� + BD . �33�

Enforcing the normalization integral of Eq. �6� leads to

E = − 2
5CD − 4

15BD2 − 4
5
��D7/2 + 6

5Ā1/2D3�2D1/2 − Ā1/2� .

�34�

The other two parameters, Ā and D, are obtained by
imposing the energy constraint of Eq. �7� and maximizing
the information entropy. Neither parameter can be solved for
analytically. Numerical solutions, however, are perfectly
straightforward. Plots of yJHEG�y� and various nonoscillating
approximations to it are given in Fig. 1. The parameters de-

fining J̃HJS
LDA are reported in Table I, along with the parameters

defining J̃EP
LDA.

Figure 1 shows that the model of Eq. �31� is similar to
the model of EP, though closer inspection reveals that the

minimum in yJ̃HJS
LDA�y� is deeper than that of either yJ̃EP

LDA�y�
or yJHEG�y�. We do not believe this to be of critical impor-
tance, but we do wish to point out that a range-separated

LDA based on either J̃EP
LDA�y� or J̃HJS

LDA�y� will give different
results from one based on the HEG.

Having built a nonoscillating LDA model, we proceed to
add gradient corrections. Still following the general design of
EP, we have

J̃HJS
GGA�s,y� = 
9

4

Ā
y2 + B + CF̄�s�y2 + EḠ�s�y4�e−Dy2

−
9

4y4 �1 − e−Āy2
��e−s2H�s�y2

. �35�

We part company with EP, however, in writing

F̄�s� = 1 −
1

27C
s2

1 + s2/s0
2 −

1

2C
s2H�s� . �36�

This is similar to the functional form used by Constantin et
al. in their meta-GGA exchange hole model of Ref. 25. By

forcing F̄�s� to be bounded so long as H�s� is bounded, we

eliminate the unphysical large-s behavior of J̃EP
GGA and make

it possible to solve for H�s� for all s. This eliminates the
need to introduce a computational reduced gradient ��s�. At
present, we use s0=2, but with little compelling reason. Note
that, in fact, we could have

F̄�s� = 1 −
1

27C
s2f�s� −

1

2C
s2H�s� , �37�

for any well-behaved function f�s� satisfying f�0�=1.

We must still solve for Ḡ�s� and give the equation for
H�s�. To simplify the expressions, it is helpful to write

s2H�s� = 
 , �38a�

Ā + s2H�s� = � , �38b�

D + s2H�s� = � . �38c�

The normalization integral is then

4

3�
	

0

�

dyy2J̃HJS
GGA�s,y� =

3
��

��
 − ��� +
5

4��

EḠ�s�
�7/2

+
1

2��

CF̄�s�
�5/2 +

1

3��

B
�3/2

+
3

2��

Ā
�1/2 . �39�

Setting this equal to −1 and solving for EḠ�s�, we obtain

EḠ�s� = − 2
5CF̄�s�� − 4

15B�2 − 6
5Ā�3 − 4

5
���7/2

− 12
5 �7/2��
 − ��� . �40�

The energy integral is

−
8

9
	

0

�

dyyJ̃HJS
GGA�s,y� = Ā −

4

9

B
�

−
4

9

CF̄�s�
�2 −

8

9

EḠ�s�
�3

+ 
 ln
 


�
� − � ln
�

�
� . �41�

We set this equal to the target enhancement factor Fx
GGA�s�

and solve for H�s� numerically at each value of s, then fit a
rational function to the numerical solution. We find that a
rational function of the form

H�s� =
a2s2 + a3s3 + a4s4 + a5s5 + a6s6 + a7s7

1 + b1s + b2s2 + b3s3 + b4s4 + b5s5 + b6s6 + b7s7 + b8s8 + b9s9 �42�

TABLE I. Parameters in the smoothed LDA exchange hole models of Eqs. �22� and �31�.

Model Ā B C D E

J̃EP
LDA 0.451 606 −0.371 708 −0.077 2155 0.577 863 −0.051 955 7

J̃HJS
LDA 0.757 211 −0.106 364 −0.118 649 0.609 650 −0.047 796 3
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gives uniformly excellent results.
We have parametrized model exchange holes for the

PBE, PBEsol,32 B88,33 and B97-x �Ref. 34� GGAs. The pa-
rameters defining H�s� for each functional are listed in Table
II; parametrizing other GGAs is straightforward. Substituting
our model into Eq. �29� yields an analytic range-separated
enhancement factor,

Fx
�PBE�s,�,kF�

= Ā −
4

9

B
�

�1 − � −
4

9

CF̄�s�
�2 
1 −

3

2
 +

1

2
3�

−
8

9

EḠ�s�
�3 
1 −

15

8
 +

5

4
3 −

3

8
5�

+ 2���
 + �2 − �� + �2� + 2
 ln
 � + �
 + �2

� + �� + �2�
− 2� ln
� + �� + �2

� + �� + �2� , �43�

where �=� /kF and

 =
�

�� + �2
. �44�

Range-separated hybrids built upon the functionals listed
above will be presented in a following paper. In Fig. 3, we
show our model for the PBE exchange pair distribution func-
tion at various reduced gradients. As the gradient increases,
the exchange hole becomes shorter in range and, in order to
maintain normalization, deeper.

VI. COMPARISON TO OTHER GGA HOLE MODELS

Having now constructed our exchange hole model, we
wish to examine its performance and to compare it to previ-
ous models. The calculations presented here use the large 6
−311+ +G�3df,3pd� basis set and a development version of
the GAUSSIAN electronic structure program.35

A. EP model

We begin by comparing our model for the PBE exchange
hole to that of Ernzerhof and Perdew. As we have followed
many of the same principles, we expect that our model will
yield very similar results for the exchange hole in practical
calculations. This is indeed the case; as seen in Fig. 4, the
two exchange holes are almost superimposable for physically
realistic reduced gradients �s�3�. Figure 5 shows that our
model also yields molecular system- and spherically aver-
aged exchange holes that are essentially identical to EP.42

Both our model and the EP model tend to overestimate the
amount of exchange energy contained in small interelec-
tronic separations as compared to exact exchange. Prelimi-
nary tests on the small AE6 and BH6 sets36 �see below, and

TABLE II. Parameters in the rational functions defining H�s� for various
GGAs.

PBE PBE-sol B88 B97x

a2 0.015 994 1 0.004 733 3 0.009 686 15 0.002 735 5
a3 0.085 299 5 0.040 330 4 −0.024 249 8 0.043 297 0
a4 −0.160 368 −0.057 461 5 0.025 900 9 −0.066 937 9
a5 0.152 645 0.043 539 5 −0.013 660 6 0.069 906 0
a6 −0.097 126 3 −0.021 625 1 0.003 096 06 −0.047 463 5
a7 0.042 206 1 0.006 372 1 −7.325 83�10−5 0.015 309 2
b1 5.333 19 8.520 56 −2.503 56 15.827 9
b2 −12.478 0 −13.988 5 2.796 56 −26.814 5
b3 11.098 8 9.285 83 −1.794 01 17.812 7
b4 −5.110 13 −3.272 87 0.714 888 −5.982 46
b5 1.714 68 0.843 499 −0.165 924 1.254 08
b6 −0.610 380 −0.235 543 0.011 837 9 −0.270 783
b7 0.307 555 0.084 707 4 0.003 780 6 0.091 953 6
b8 −0.077 054 7 −0.017 156 1 −1.579 05�10−4 −0.014 096 0
b9 0.033 484 0 0.005 055 2 1.453 23�10−6 0.004 546 6

FIG. 3. HJS model exchange pair-distribution functions for the PBE GGA at
several reduced gradients.

FIG. 4. Model exchange pair-distribution functions for PBE. Top panel. s
=0. Bottom panel. s=2. The bottom panel also shows the LDA result �iden-
tical to ITYH at s=0�.
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Fig. 7� show that our model gives similar results to that of
EP in long-range-corrected hybrid functionals. More exten-
sive tests of our model in range-separated hybrids will be
reported in subsequent work.

B. ITYH model

Iikura, Tsuneda, Yanai, and Hirao �ITYH� have pre-
sented an LDA-based ansatz for the exchange hole corre-
sponding to any semilocal exchange functional.19 Given an
enhancement factor defined as in Eq. �27�, the ITYH ex-
change hole is obtained by substituting a modified Fermi
wavevector,

kITYH =
kF

�Fx
GGA�s�

, �45�

into the HEG hole of Eq. �13�. The ITYH model possesses
an admirable simplicity, and satisfies the on-top condition of
Eq. �5� and the energy condition of Eq. �7�. However, it
violates the normalization constraint of Eq. �6�, instead being

normalized to −�Fx
GGA�s��3/2. �A “complementary” model

with the correct normalization and incorrect on-top value
was presented in Ref. 37.� The ITYH model also violates the
on-top curvature condition of Eq. �25�, giving −2� /5 for a
GGA with Fx

GGA�s�=1+�s2+ . . . . The model is thus too de-
localized at finite reduced gradient. To illustrate this, Fig. 4
compares the ITYH, EP, and HJS models for the energy-
weighted PBE exchange pair distribution function. While the
three models are nearly identical at s=0, the ITYH model is
far too delocalized at the physically realistic reduced gradient
s=2, and is still quite similar to the LDA exchange hole.
Figure 5 illustrates this excessive delocalization for the
system- and spherically averaged Neon exchange hole.
Though the ITYH model follows the exact exchange curve
rather well for small u, it is significantly too delocalized for
larger interelectronic separations.

The ITYH model has been extensively applied in con-
structing range-separated hybrids.20,38 Unfortunately, results
to date suggest that it gives relatively poor thermochemistry.
For example, an LC-BOP functional with range-separation
parameter �=0.53a0

−1 was recently reported to yield a mean
absolute error �MAE� of 8.6 kcal /mol in the G2 �Ref. 39�
� fH298

o set �148 molecules�.20 A significantly smaller G2
MAE of 3.73 kcal /mol was reported for the LC-� PBE func-
tional constructed from the EP hole model.21 We suggest that
this is a consequence of the ITYH exchange hole’s excessive
delocalization at finite s. This can be seen from Fig. 6, which
shows the N2 dissociation energy De=E�N2�−2E�N� evalu-
ated with long-range-corrected43 PBE functionals that use
the ITYH, EP, and HJS PBE exchange hole models. Results
are also presented for LDA and long-range-corrected LDA
exchange. The calculations use Hartree-Fock orbitals, PBE
correlation, and the experimental N2 bond length, such that
the only difference between the curves is the short-range
exchange energy. Results are plotted as a function of the
range-separation parameter �, with �=0 ��=�� correspond-
ing to 0% �100%� exact exchange. The ITYH model strongly
overbinds when exact exchange is included in the very long
range ���0.2a0

−1�. Because the ITYH exchange hole is too
delocalized in inhomogeneous systems, replacing its long-

FIG. 5. Energy-weighted system- and spherically averaged exchange hole in
the Neon atom, from several models. Top panel. Core-dominated region.
Middle panel. Core-valence and valence-dominated region. Bottom panel.
Tail-dominated region. Note that the HJS and EP curves are essentially
superimposable. Note also the Friedel oscillations in the LDA and ITYH
curves for large u.

FIG. 6. N2 dissociation energy from LC functionals, plotted as a function of
the range separation parameter �. Results are presented for LDA and for the
EP, HJS, and ITYH models for the PBE exchange hole.
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range contribution with exact exchange destabilizes inhomo-
geneous systems and increases atomization energies. The
ITYH exchange hole is similar to LDA at short range �cf.
Fig. 4�, such that the long-range-corrected LDA and ITYH
results become similar at large �.

Figure 7 shows MAE �kcal/mol� in the small, represen-
tative AE6 set of atomization energies and BH6 set of reac-
tion barrier heights36 for LC-PBE with the ITYH, EP, and
HJS PBE hole models, evaluated as a function of �.44 Re-
sults are also presented for a long-range-corrected functional
using LDA exchange and PBE correlation. Again, the exces-
sive delocalization of the ITYH model yields significant
overbinding at small �, and results that are rather similar to
LC-LDA for moderate �. These results indicate that our
GGA exchange hole model provides nontrivial improve-
ments to the simple model of ITYH.

VII. CONCLUSIONS

Semilocal DFT models for the exchange hole have a
great deal of formal and practical value. They provide insight
into the successes and failures of approximate exchange-
correlation functionals: for example, the surprising accuracy
of LDA has been attributed to the exact constraints satisfied
by its exchange-correlation hole.40 They also provide routes
to constructing new approximations, such as range-separated
hybrid functionals. In this work, we have illustrated what we
believe to be important formal and computational difficulties
with some popular exchange hole models. We have presented
a new general-purpose GGA exchange hole model that is
particularly designed for use in range-separated hybrid func-
tionals. Changing from one GGA to another merely requires

one to adjust the parameters defining a component function
H�s�, and the range-separated exchange energy using
erf��r12� to separate ranges can be evaluated analytically. We
believe that this model will be useful for continued investi-
gation of the exchange hole in density functional theory.
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APPENDIX: RESCALED REDUCED DENSITY
GRADIENTS

As discussed in Sec. IV, the EP model exchange hole
violates the local Lieb–Oxford bound for reduced gradients
s�10. Ernzerhof and Perdew fixed this by setting s=10 for
s	10, while Ref. 15 used a different scheme to enforce the
local Lieb–Oxford bound. Other schemes have also been
proposed. These schemes amount to introducing a computa-
tional reduced gradient ��s�. To the best of the authors’
knowledge, it has not been noticed that one can uniquely
define ��s� by writing

Fx
EP���s�� = Fx

PBE�s� . �A1�

We fit the resulting ��s� as

��s� = s
1 + p4s4 + p5s5 + p6s6 + q8s0s7

1 + q4s4 + q5s5 + q6s6 + q7s7 + q8s8 �A2�

with parameters for the PBE hole given by s0=8.572 844,
p4=0.615 482, p5=1.136 921, p6=−0.449 154, q4

=1.229 195,
q5=−0.026 925 3, q6=0.313 417, q7=−0.050 831 4, and q8

=0.017 573 9. The effect of this computational gradient is to

keep F̄�s� finite, and therefore the exchange hole negative
semidefinite and bounded from below.

Note that different GGAs based on the EP form lead to
different computational reduced gradients ��s�. We empha-
size that while introducing a computational gradient resolves
some difficulties, it is not a panacea. The integrations re-
quired to build range-separated hybrids still cannot be done
in closed form, functional derivatives become more compli-
cated, and ��s� must be reparametrized for every GGA.
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