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Abstract
The maximum entropy method is a theoretically sound approach to construct an analytical form for
the probability density function (pdf) given a sample of random events. In practice, numerical
methods employed to determine the appropriate Lagrange multipliers associated with a set of
moments are generally unstable in the presence of noise due to limited sampling. A robust method
is presented that always returns the best pdf, where tradeoff in smoothing a highly varying function
due to noise can be controlled. An unconventional adaptive simulated annealing technique, called
funnel diffusion, determines expansion coefficients for Chebyshev polynomials in the exponential
function.
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1. Introduction
Given a sample of statistical data, the maximum entropy method (MEM) is commonly
employed to construct an analytical form for the probability density function (pdf) in myriad
applications across a diverse array of disciplines [1–3]. The classic problem has been posed
as: Given a finite set of power moments over the random variable, x, defined as 〈xj〉, ∀j = 1,
2, …, M; find a pdf that reproduces these power moments. Unfortunately, this problem is ill-
posed because it is clear that a finite number of moments cannot lead to a unique pdf. Moreover,
if a sequence of such moments is arbitrarily specified, it is possible that no pdf can be
constructed because there exists well-known inequality relations that must be satisfied among
the moments when they are derived from any true pdf. For example, if the assumed pdf is
bounded on a finite interval, the construction of the pdf is referred to as the Hausdorff moment
problem, which remains a highly active research area in statistics and probability theory [4–
7] in regards to finding the most faithful pdf when only limited information about the moments
is known.

The problem of interest in this paper is much simpler than the Hausdorff moment problem
because the collected statistical data ensures that a pdf exists. For example, the pdf can be
directly estimated by making a histogram of the statistical data. Although the histogram method
may provide a sufficient estimate for the pdf, its analytical form will be unknown. To determine
an analytical form, a common approach is to calculate the set of power moments {〈xj〉} from
the sampled statistical data, and apply the postulate that the true pdf will maximize entropy
while satisfying the set of constraints that all known moments will be reproduced. As such, the
MEM is useful because it recasts an ill-posed inverse problem into a well-defined calculus of
variation problem. Although other methods are available that do not invoke the maximum
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entropy assumption [8], it has been shown that the MEM generally is able to obtain a pdf with
the same degree of accuracy using less number of moments [9].

Due to the appeal of the MEM, and its connection and origins with statistical physics concepts
[10], many inverse problems encountered in physics have been successfully solved [11] using
a markedly small number of moments. As powerful as the MEM has proven to be, it has been
notoriously difficult to find stable algorithms to reconstruct the pdf when the number of known
empirical moments become more than four [12–14]. This problem is unfortunate, because in
principle a more accurate pdf can be determined the greater number of moments that are known.
The common attribute of numerical methods that have problems with convergence and stability
require employing a Hessian matrix to find a minimum of a function of many variables (being
the set of Lagrange multipliers that appear from the calculus of variation problem).
Interestingly, much greater numerical stability has been achieved by considering moments of
certain types of orthogonal polynomials where the zeros of all the polynomials are within the
domain range of the random variable, x, such as the Chebyshev polynomials [15] appropriately
scaled on a bound interval. Recently, a robust method has been developed that has been
demonstrated to be stable using hundreds of moments [16]. Although using moments of
orthogonal functions achieve greater numerical stability compared to power moments,
convergence problems remain, and this approach is not completely robust. Rather than viewing
a set of moments as characterizing a pdf, the histogram of the sampled data has been directly
used as constraints within the framework of the MEM [17]. The maximum entropy histogram
approach appears to be robust.

In this paper, a combination of the orthogonal function moments and the maximum entropy
histogram approach are combined to yield a novel MEM variant that is robust. The motivation
for developing a new MEM was to determine a pdf with high accuracy that extends deep into
the tails of the distribution function, where the sampling is very sparse. The specific application
of interest is related to the calculation of a partition function at temperature, T, given that the
probability density of finding a system in a state of energy, E, while subject to a thermal bath
at temperature, To, is given by p(E). It is straightforward to derive the partition function is given
as

(1)

where Eo is the lowest possible energy of the system, , and k is the Boltzmann
constant. In this application of interest, the sampling of E was obtained using Monte Carlo
(MC) simulation at To, and from this data, an accurate pdf was sought. Thermodynamic
functions, such as free energy, mean energy, entropy and heat capacity are then calculated from
Z(T). For these quantities to be accurate at temperatures, T, far away from To, the pdf must be
accurate in the tails at both low and high energy, E. The new MEM that was developed to solve
this problem was verified to work well, because the MC simulations were performed at other
temperatures as a direct check. Although it is possible to simply run MC simulation for all
temperatures of interest, the approach defined in Equation 1 provides analytical expressions,
which were desired.

The focus of this paper is to describe the novel MEM in a general context because determining
an accurate pdf from sampled data is ubiquitous. In particular, in many applications the true
answer is not known, and it is impractical to simply sample more to obtain better accuracy
within the tails. Therefore, consider the generic problem that requires re-weighting the pdf with
exponential factors, such that
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(2)

where f(x) is an arbitrary function, p(x) is the unknown pdf that is to be determined, and μ is
essentially a conjugate Laplace transform variable. One problem with Equation 2 is that f(x)
could have high powers of x, or 1/x, making the average 〈f(x)〉μ very sensitive to noise in the
sampling data. More difficult is the exponential re-weighting factor that increases the
significance in the tails of the original pdf that were low probability regions. This sort of
problem had to be solved in some practical way. Obviously, any method will break down at
some point for |μ| too large, or for some misbehaved function. Therefore, the first approach
was to simply smooth the original sampled data using a sliding histogram smoothing technique.
However, when attempting to re-weight the pdf while working with moments dealing with
powers of x2, the smoothing/histogram method failed to yield satisfactory results. Failure in
using a smoothed distribution function was confirmed by performing numerical experiments
where the exact p(x) function is known. This null result suggested to apply some standard MEM
that was already available. Unfortunately, the method that promised to be very robust [16]
failed to work. It was this discouraging result that required reformulating the problem so that
a solution for the pdf, given the existence of the histogram, would always be possible.

In this paper, I present a solution to the problem of constructing the pdf from statistical data
that works remarkably well for applications described by Equation 2. The MEM presented is
pragmatic in nature, using a combination of computational and optimization methods. I provide
no proofs that the method presented is optimal, as it appears one could create many variants
to work just as good. In my original application of interest, no a priori information about the
true pdf is known, except that the pdf exists in the form of a histogram, and the lower limit in
x is bounded, but this value is unknown. In this paper, the method is developed to allow for
either the lower and upper limits in Equation 2 to be finite or not. The conclusion is what one
should expect. First, the method will always return a result. The final pdf that is returned can
reproduce the original statistics observed from the sampled data. Extrapolating the moments
using Equation 2 will almost surely be in error for most problems if one exceeds reasonable
limits on |μ|. However, for reasonable extrapolations, the method is probably the best one can
hope for. That is, an analytical form for the pdf is always constructed that allows for accurate
integration of f(x)-moments, and the sensitivity of the re-weighted moments can be controlled
to a point, which provides a means to estimate uncertainties in the predictions. Thus, the method
presented is a robust way to solve a common problem regarding constructing probability
density functions, and calculating averages of functions.

A key feature of the new method described here is that the constraints are not considered to be
exact. This is because one must realize that the power moments or moments of orthogonal
functions carry with them error bars that reflect the number of independent samples taken. This
error due to limited sampling is also present in the histogram. In particular, when the sampling
is very limited, there is large intrinsic noise due to unavoidable fluctuations. Methods that rely
on exact known values of certain moments can be expected to have problems because of the
uncertainties within the constraints. Recent work has been done in trying to correct for intrinsic
noise that appears due to limiting sampling [18–20]. The approach taken here is to spread errors
due to inconsistencies that originate from fluctuations in sampling over all the constraints being
imposed. In other words, all the constraints are softened by minimizing the least squares error
between the final predicted moments with the empirically derived moments that are
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operationally calculated from the statistical data. The advantages of the least squares approach
in the context of determining a pdf has also been considered before [21].

The new MEM described here yields the “best” pdf for quantitatively representing statistical
data. This claim is made because many constraints are considered simultaneously, which
includes a large number of moments, as well as requiring the pdf to reproduce the histogram.
The method is set up in a generic fashion, meaning nothing special needs to be known about
the nature of the pdf. However, when the sample dataset is small, the predicted pdf can
substantially deviate from the true pdf. Nevertheless, the method is robust in the sense that it
always returns a pdf that reproduces the statistics while gracefully distributing statistical
uncertainties. It is demonstrated that as the number of samples increases, the predicted pdf
converges to the true pdf markedly well, even for difficult cases.

2. Method
This section is broken down into a step-by-step prescription for a novel MEM, where each step
is a straightforward exercise. First, the sampled data is transformed to reside on a finite interval,
which makes the subsequent analysis much easier. Consequently, the pdf of the transformed
data is subject to the Hausdorff moment problem. Second, rather than using power moments
which tend to loose useful information across the entire domain range as the power increases,
the moments for a set of orthogonal level-functions is much more appropriate because all
regions within the domain range of the random variable are covered more uniformly. Third,
the least squares error method is formulated such that the constraints need not be perfectly
satisfied, but rather all constraints should be satisfied as best as possible by distributing the
residual errors over all the imposed constraints. These constraints include matching to the
histogram, where the binning size is properly taken into account. Fourth, a discussion of how
to handle boundary conditions is given. Fifth, a method for smoothing the pdf is described that
adds additional constraints to the least squares method. In this way, smoothing is handled with
ease, and the degree of smoothing can be controlled by the user at the expense of increasing
errors between empirical based moments and the calculated moments from the predicted pdf.
Sixth, a simulated annealing technique is proposed to avoid dealing with ill-behaved Hessian
matrices that cause numerical instability. The method implemented prevents over specifying
Lagrange multipliers, which is determined by monitoring how the least squares error decreases
as more Lagrange multipliers are included. In the seventh step, a novel type of adaptive
simulated annealing technique, called funnel diffusion is described, which was implemented
in this work. The description of these seven prudent steps will hopefully become a valuable
resource for those who would like to either use the method presented as is, or further explore
variations.

2.1. Transforming the sampled data
The situation envisioned deals with statistical data, {xk}N, consisting of N unbiased observed
random events. Whether true or not, initially it is assumed that the range of accessible values
of x is over all reals (−∞, ∞). However, the probability of observing an xk that is an extreme
outlier approaches zero rapidly, and thus the tails of the pdf are not sampled well. The lowest
and greatest observed values define xmin and xmax respectively. All random data is mapped
onto an interval that has a range (−1, 1) through the transformation

(3)
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By setting A = arctanh(ymax) for ymax on the interval (0, 1); Equation 3 maps all N observed
data points onto the smaller interval between (−ymax, ymax), where ymax is free to be set to a
desirable value. Since y ≈ tanh(y) for |y| ≪ 1, selecting a small value for ymax will keep the
transformation essentially linear. However, small ymax will compress all the data into a local
region near the origin, and resolution is lost. Resolution means that if a curve having minimums
and maximums is squeezed down into a very small region, ymax ≪ 1, a set of orthogonal
functions that span the range (−1 ≤ y ≤ 1) will accurately represent the curve only if they vary
rapidly over short scales. Thus, to keep the need to resolve small scales to a minimum, it is
best to spread the data over the entire range available. On the other hand, although large
ymax yields greater resolution for most of the data, resolution in how the curve varies will be
lost in the tails of the distribution where the transformation is non-linear in the regime where
|y| ≈ 1. Keeping the resolution problem in mind on both sides, a value near  for ymax works
well. However, when the data is binned, it is best to not have any possibility that the data falls
exactly on the boundary. To prevent data to lie on the boundary during the binning process, it
is numerically convenient to shift the limiting ymax value to be infinitesimally smaller than the
nominal value would otherwise indicate. A slight shift guarantees that the binning scheme that
is to be employed below will maximally cover the domain range of y, but if the shift is large,
then it is possible that the bins defining the boundary will be unfilled with data. Although
normally these details are not a concern, it was found that careful attention to the boundaries
of bins is necessary in order to maintain high accuracy when singularities are present at a
boundary. To provide a robust generic method, a slight numerical shift proved sufficient to
accurately describe singularities that occur at these boundaries. Denoting ε as a very small
number, such as 5 × 10−7, a value of  is found to work well in transforming the data
while avoiding problematic concerns. Then, A = 0.972954055 with this choice of ymax, and the
sampled data lies on the range ( ). Alternatively, another logical choice is to set xshift = x̄
where x̄ is the mean value of the sampled data, and xspread = 4σx where σx is the standard
deviation. In most cases good results occur using either prescription of change of variable.
However, the transformation presented in Equation 3 is much better when the distribution is
highly skewed to the far left or right.

The transformation of Equation 3 is applied to all input data to produce a new set of random
variables given by {yk}N. Note that the new variables are dimensionless. Let pT (y) define the
pdf for the transformed random variables, {yk}N. The objective now becomes determining
pT (y) using the MEM. The advantage of using the variable y is that it is known to be bound
on the interval (−1, 1). After pT (y) is found, the inverse transformation is applied to arrive at

(4)

The form of Equation 4 makes the tails of p(x) fall off extremely fast for large values of x due
to the cosh2 function in the denominator. This functional behavior at the boundaries is fully
welcomed and desirable to guarantee that the predicted p(x) is normalizable.

2.2. Maximum entropy method applied to level-functions

Consider a set of functions that are labeled as . Based on the dataset {yk}N the empirical
and theoretical moments of these functions are given as
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(5)

Although we do not know what the pdf is, a reasonable constraint to place on the function pT
(y) is for the theoretical and empirical averages of a large set of functions to be equal. Other
than satisfying all these moment conditions and the normalization condition, it is convenient
to assume the functional form of pT (y) will maximize information entropy. There is of course
no justification for this assumption, except what it does pragmatically. By maximizing the
Shannon entropy, given by − ∫ ln (pT (y)) pT (y)dy, the distribution function will be as broad as
it possibly can be to maximize this entropy term, while maintaining the other equalities. As
such, the function pT (y) can be determined using the calculus of variation by finding the
maximum of the functional given by:

(6)

where μ0 and the set, { }, are Lagrange multipliers. Once the Lagrange multipliers are
determined, the general form of pT (y) is simply given by:

(7)

The MEM shows the generic form of the pdf is an exponential of a linear combination of the
moment-functions used in observations. It is common to consider a set of functions that are
elementary powers of y, such as y, y2, …, yn. Alternatively, the moment-functions could also
be polynomials, such as (a + by + cy2 + dy3). Each of these polynomial functions (of all different
sorts) are associated with its own Lagrange multiplier as shown in Equation 6. In either case,
the solution using the MEM for pT (y) is the exponential of a polynomial function. Based on
the generic form given in Equation 7, the Lagrange multipliers can be grouped together in
algebraic combinations to form a single coefficient per power of y to yield a power series,
which in practice is truncated to some highest order term deemed important.

The choice of using polynomials for the moment-functions is not necessary, but the best reason
for this choice is because working with a power series is convenient for a generic solution to
a general problem. Without knowing specific details to motivate using exotic non-analytic
functions, they are best avoided. Having said this, even after the Lagrange multipliers are
grouped together to form a generic power series, the choice of moment-functions is important.
In general, selecting elementary powers of y is not good, since higher powers probe less of the
function pT (y) for |y| ≪ 1. It is better to probe regions of pT (y) as uniformly as possible. To
this end, it is prudent to use multiple level-functions that more uniformly span different regions
in the interval (−1, 1). Note that a level-function means that its absolute value is bound, usually
expressed as . Example level-functions are the Chebyshev polynomials, Tn(y),
Legendre polynomials, Pn(y) and sine,  and cosine functions, , among many
other possible choices. In this work, these four types of level-functions are employed, for
integer n from 0 to 20. Notice that in the four examples, the level functions define an orthogonal
set of functions. Orthogonality is a desirable property, since each additional condition (enforced
through the Lagrange multiplier) is distinct from all previous conditions. Consequently,
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orthogonality provides the desired feature of uniformity, which is not the case when using the
power basis, {1, y, y2, …, ym}.

A polynomial will be obtained regardless of whether a few or multiple sets of orthogonal level-
functions are used to determine the form of pT (y). Moreover, this polynomial is expected to
be truncated to a maximum power, up to ym. In this case, the polynomial is expressed exactly
in terms of the Chebyshev polynomials. Note that there is nothing fundamentally special about
using the Chebyshev polynomials compared to the sine and cosine functions, or the Legendre
polynomials over the interval −1 ≤ y ≤ 1. However, sine and cosine functions have powers to
infinite order, so they were not selected. It is also generally true that Chebyshev polynomials
have the best convergence properties among similar finite power series polynomials.
Nevertheless, any choice of orthogonal polynomials is expected to work, but determining what
the optimal choice is, has not been attempted. With the selection of the Chebyshev polynomials,
the general solution for pT (y) that maximizes the Shannon entropy while all theoretical
moments are constrained to the empirically observed moments is given by

(8)

The coefficients λj reflect the series expansion for the optimal polynomial function needed to
match the empirical moments. Note that if it happens that pT (y) is a Gaussian distribution, then
it follows that Γm(y) = λ0 + λ1T1(y) + λ2T2(y) where

(9)

An important point is that higher power moments of a pdf may be fully described by Equation
8 with Γm(y) found to have m small. In other words, it is not a priori required to have more
non-zero λj just because higher moments are calculated and enforced by Lagrange multipliers.
If more expansion coefficients are necessary, then surely the higher order level-function
moments are critical to determine these coefficients accurately. On the other hand, it can happen
that new information about the form of the pdf may appear when higher moments are
considered, not because of principle, but because of unwanted sampling noise.

Nominally, the best solution for pT (y) is expressed by Equation 8, but the values of the λj
expansion coefficients still need to be determined. Unfortunately, the solution will be sensitive
to noise in the random sampling. For example, for N = 100 sampled data points, a certain set
of m expansion coefficients, {λj}m will fit the specific set of observed points. However, for
another completely independent set of N = 100 sampled data points, a different optimal set of
expansion coefficients,  will in all likelihood be obtained. Thus, sampling noise renders
finding an exact solution impossible. Even within a single dataset sampled, the ability for
Equation 8 to satisfy an arbitrarily large number of moment-functions may become impossible
because m is truncated too soon. Therefore, the criteria of a good representative pdf must be
changed from solving the functional given in Equation 6 with an exact set of Lagrange
multipliers, to finding an optimal approximate set of expansion coefficients {λj}m, and optimal
number of coefficients from Equation 8. This is conveniently implemented by minimizing the
least squares error between all corresponding empirical and theoretical moments
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simultaneously, where the majority of moment-functions considered are not explicitly
represented within the function Γm(y).

2.3. Least squares error method and integral evaluation
The algorithm that is to be applied to determine the expansion coefficients, {λj}m, is based on
an iterative approach of random guessing. Actually, m is guessed, λj is guessed for all j such
that 1 ≤ j ≤ m, and λ0 is determined by the normalization condition. For a given set of expansion
coefficients, a weighted least squares error, E, for a collection of target conditions is calculated,
and used as an objective function. The goal is to guess the set {λj}m such that E = 0. The details
of the employed iterative guessing procedure (funnel diffusion) will be described below. Here,
consider {λj}m as given. The dependence on the expansion coefficients is explicitly expressed
by writing the function as, pT (y|{λj}m).

The generic form of the objective function is given by

(10)

where Es is a separate objective function for smoothing. Take Es = 0 when no smoothing is
desired. The scale factor αj > 0 is used to weight the overall importance of the j-th type of level-
function. The selected level-functions, , include the four types of orthogonal functions
described above (i.e., j = 1, 2, 3, 4). For these four orthogonal functions, the n-index specifies
the mode for which the greater value of n implies a greater degree of oscillation and greater
number of zero crossings on the interval (−1,1). At some point, appreciable oscillations occur
on a scale, Δy, while pT (y|{λj}m) will be approximately constant for the same Δy. This means
that  for large n. The weight factor, wn(j), can formally represent a cutoff, such that
wn(j) = 1 ∀ n ≤ Nj, and wn(j) = 0 ∀ n > Nj. However, better results were obtained when moments
with (lower, higher) n are assigned a (greater, lesser) weight. In particular, for 1 ≤ j ≤ 4 the
scale factors were set as αj = 2500, and wn(j) were set with an identical exponential decay of

. With the mode index range of 1 ≤ n ≤ 20, this exponential decay sets moments
with n = 1 a weight of 1, and for n = 20 the weight factor is .

Two more level-functions related to the frequency counts of sampled data (for j = 5, 6) are also
included in Equation 10. Perhaps the most common way to estimate a pdf from unbiased
sampled data is to construct a histogram using a fixed binning scheme. For the n-th bin, there
will be a count of observations, Nn. The total number of observations, N, is given by the sum
rule, N = Σn Nn. The frequency for finding a random event within bin, n, is given by . With
respect to the transformed y-variable, the binning function Bn(y) is defined as Bn(y) = 1 when
y falls within bin n, and Bn(y) = 0 when y is not within bin n. The empirical estimate is matched
with the theoretical prediction (for j = 5) as

(11)

where Nn is the counts with respect to the y-variable. A similar pair of equations (for j = 6) is
given as
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(12)

where Nn in Equation 12 is understood to represent counts with respect to the x-variable. The
relative weighting to match the empirical frequency based on the normalized histogram method
to the integrated pdf within corresponding bins has in this work been set to αj = 400 for j either
5 or 6.

The number of bins to construct the histogram in the y-variable was selected to be 40, and 50
bins were used for the x-variable. In the former case, the bin width is always 0.05 and the 40
bins cover the range (−1,1). The transformation given in Equation 11 for the y-variable should
be commensurate with the bin boundaries. For example, the bin that spans the y-values between
0.70 and 0.75 is fully sampled because care was given to make sure ymax does not fall anywhere
other than at the very end of this bin. There is no similar concern for the x-variable because no
artifact from a transformation equation is present to cause a problem. Therefore, the number
of bins span the range between xmin and xmax, so that (xmax − xmin)/50 is the bin width. On the
theoretical side, integrals given in Equations 5, 11, 12 are discretized. For the problems
considered here, it was found that using the Riemann sum of calculus with NR = 200 points is
sufficient, where

(13)

Note that because the reference points used in the Riemann sums are centered, the above choice
of bin number and NR give five Riemann terms for every bin estimating pT (y) where Δy = 0.01
and four Riemann terms for every bin estimating p(x), where Δx = (xmax − xmin)/200. Note that
it is necessary to make sure the bin resolution for doing this numerical integration is
commensurate with the bin resolution for histograms in the y- and x-variables. It was found
that this resolution is good enough to make sums and integrals virtually indistinguishable.
However, more sophisticated numerical methods for estimating integrals should be
incorporated if the integrand varies wildly.

2.4. Boundary conditions
There are two possible boundary conditions for pT (y) at negative y-values (i.e., left, L) and at
positive y-values (i.e., right, R). These are either that |y| → 1, or to a limiting value
corresponding to a minimum or maximum value in x for the L- or R-sides respectively. If a
limiting value is known, it can be specified and used directly to scale the sampled data in
Equation 3. In absence of knowing what the limiting value is, other than it exists, the lowest
observed value from sampling is used. In either case, all the sampled data representing pT (y)
always falls between ( ). The consequence of enforcing a finite boundary is that when
calculating the least squares error given in Equation 10—the range is restricted to be within
the physically realizable domain, and pT (y) ≡ 0 ∀ y outside this domain.

When the boundary condition corresponds to an unlimited range in x-values: Say for the R-
side where x → +∞ implying y → 1, the function pT (y) is truly unknown for  since no
random events have been sampled. However, a frequency of  where N is the total number of
samples taken is assigned to all bins in the y-domain that fall beyond the inclusive range of
( ) where data has been observed. This  augmentation to bins with no statistics prevents
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pT (y) to be zero, due to insufficient sampling. Furthermore, because the noisy statistics of
sampling is associated with uncertainty, the value of  is added to any bin within the range
( ) that would otherwise have zero events.

In some applications, the frequency count formula given in Equation 11 was modified such
that

(14)

for all bins considered (based on boundary conditions). However, this augmentation in
frequency is not done for the bins representing p(x) over the x-values. This is because moments
of the level orthogonal functions is calculated and compared only to pT (y) and the observed
y-variables. Note that the minimum number of events of W need not be an integer. In some
applications, when N was large, W = 2 worked well. However, when N is small, this arbitrary
perturbation was not helpful. In all the results presented here, W = 0. This aspect is documented
because it provides another way to impose some a priori known conditions into the problem.

2.5. Smoothing the pdf
It is often desirable to smooth a pdf for aesthetic reasons, or to demand that an unknown pdf
is smooth to hedge against noise due to an insufficient amount of sampling. Smoothing is easily
implemented within the least squares method as an added error term, Es, as introduced above
in Equation 10. The analytical form for the best pdf is given by Equation 8 where the
smoothness of pT (y) will be a direct reflection of how smooth Γm(y) is. Since Γm(y) is an
expansion of m Chebyshev polynomials, it is a continuously differentiable function at all
orders, but only up to order m will it have non-trivial terms. Therefore, the smoothing condition
in this context is to prevent the function from rapidly varying over certain scales. The
smoothness of the function will be based on a local Taylor expansion to second order. With
respect to the finest resolution employed for the Riemann summation process, Δy, consider
δy = sΔy, where s is an integer. Then, the estimate for Γm(y) to second order about the point
yk is given by:

(15)

where  and  are respectively the first and second derivatives of the Chebyshev
polynomial functions. Note that not only is it easy to determine the values of the Chebyshev
polynomials using recursion relations, but also the first and second derivatives are also easy
to evaluate in a similar way. Thus, the expression for A(yk, s) is exactly calculated.

The least square error term for s ≥ 0 is defined as

(16)
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where αs is the relative weighting factor for smoothing, and has been set to 1111 in this work.
When s = 0, Es = 0 because no smoothing is being enforced. We can therefore increase the
degree of smoothing by simply increasing s. In this work, s = 5 implies that the Γm(y) function
will be smooth over scales of 0.05 in the y-variable. Although increasing s allows control over
the degree of smoothness for pT (y), other least square components in Equation 10 will
inevitably increase. Therefore, the deformation in pT (y) that results from demanding greater
smoothness will decrease the overall agreement between empirical and theoretical moments
of the level-functions. Thus, judgment must be exercised to determine which aspect of the pdf
is more important for the problem under consideration.

2.6. Procedure to determine expansion coefficients
Given the objective function to be minimized (defined by Equations 10 and 16)—the number
of unknown expansion coefficients, m, and the expansion coefficients themselves, {λj}m, must
be determined. The first part of the question has been implemented using a conceptually simple
procedure, albeit not algorithmically efficient. Namely, each m is considered sequentially
starting from 1 up to a maximum value, such as 80. Although the efficiency can be readily
improved by replacing this sequential search method with a bisection method, this aspect of
the problem is not of concern since the computational cost of the implemented method is
negligible compared to the time it takes to collect the samples in the actual application that
motivated this work. Nevertheless, the bisection method should be implemented for real-time
applications.

The implemented procedure minimizes the objective function for one expansion coefficient,
then two, then three, and so forth until the root mean squared error (RMSE) reaches a target
value. The RMSE is defined as the square root of the normalized objective function. The
normalized objective function is the least squares error divided by the number of comparison
points. The number of comparison points defines the number of individual squared terms in
the objective function, regardless of the α weight factors. By design, with the numbers selected
above for the α weight factors, the number of distinct types of level orthogonal functions and
number of their moments, the number of histogram level functions and number of their bins,
and, the number of Riemann points used—a RMSE of 1 indicates an excellent solution. In fact,
there is no need to attempt to reduce the RMSE further, albeit it is frequently possible to reduce
RMSE below a tenth. Note that with different numbers of comparison points for various
quantities, the α weight factors can be adjusted so that the RMSE target value of 1 remains
excellent.

In this work, a RMSE of 5 will result in a fair to good solution, while a RMSE > 10 quickly
deteriorates from fair to poor. Consequently, different m are considered, starting from 1, and
sequentially checking greater values until the target goal is reached, or the maximum m is
reached. This approach ensures the function for pT (y) is not over-parameterized. For each trial
m value, an optimization in a m-dimensional space is required to determine the expansion
coefficients. Recall that λ0 is determined by the normalization condition based on the values
of {λj}m for 1 ≤ j ≤ m. Finding the best values for {λj}m is the second aspect of the problem.

The second aspect of finding m parameters is solved by employing a method I call funnel
diffusion. Funnel diffusion is similar in concept to simulated annealing, except direct
comparisons are made against the energy function (or objective function) where temperature
is never used. Although a procedure that does not use the temperature has been implemented
by others, I have refined the method to such a degree that it has evolved into a separate method
of its own that is worth describing here. In my work, funnel diffusion has proven to be a robust
optimization algorithm across several different applications. Therefore, funnel diffusion will
be briefly described here for completeness, although any other method to search for a global
minimum of an objective function in a high dimensional space can be applied.
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2.7. Funnel diffusion: A surrogate for simulated annealing
Given m and an initial guess for {λj}m and the error function, E({λj}m), funnel diffusion consist
of performing a random walk with varying step size to find the minimum error. In particular,
the step size is decreased gradually based on certain acceptance criteria. As the landscape of
the error function is explored, the random walker’s step size starts out at large scales, and then
funnels down into finer scales. To facilitate discussion of this algorithm, let λ ̄ define a vector
in the m-dimensional space, where λj =êj · λ ̄ is a projection for the j-th expansion coefficient.
The algorithm consists of just a handful of steps given as:

Initialization—Set the current position equal to an initial guess: λ ̄ = λ ̄o Define the initial
standard deviation for a zero-mean Gaussian distributed random step for each component to

be . Set the decay rate, r, to control the rate at which the random step size decreases.
In this work, . As funnel diffusion proceeds, the step size will be at the i-th iteration, given

by . In vector notation, the standard deviation for each component is expressed as
σ ̄(i). The criteria for the step size to decrease is that the error does not decrease after many
consecutive failed attempts. Initialize the number of consecutive failed steps, Nfail, equal to
zero. The step size is decreased only after Nfail exceeds a maximum number of consecutive
failed steps, Mfail. In this work, Mfail = 100.

Random step—Generate an independent random step in each of the m directions
characterized by the corresponding standard deviation given by σ ̄(i) to arrive at the vector
displacement, δλ̄. Define a new test position, λ ̄′ = λ ̄ + δλ̄, and evaluate E(λ ̄′).

Acceptance criteria—If E(λ ̄′) > E(λ ̄) the current position does not change, and Nfail is
incremented by 1. Otherwise, accept the move such that the new test position becomes the

current position. In addition, reset Nfail = 0, and also reset  in order to reflect the new
current position. Notice that σ ̄(0) is updated on each successful move in order to provide an
automated adaptive scale for the step size for each component. Consequently, σ ̄(i) is also
updated, although the iteration index, i, remains the same.

Funneling—If Nfail ≤ Mfail continue without doing anything. Conversely, if Nfail > Mfail, the
current step size is too large. Therefore, decrease the step size where σ ̄(i+1) = rσ ̄(i). To reflect
the continual decrease in step size as the bottom of the funnel is approached, the index i is
incremented by 1. Finally, reset Nfail = 0.

Convergence—If ri < tol, the current position, λ ̄ is returned as the final answer. In this work,
the tolerance is set as tol = 2 × 10−4. Otherwise, take the next Random step.

Variants to the funnel diffusion algorithm, such as adding a bias toward directions that
previously decreased error, and/or accepting random test positions that raise the error to a small
degree are easy to incorporate. However, based on experience in applying funnel diffusion to
several types of problems, the specific algorithm presented above (the simplest version)
performs markedly well, and it is a fast method compared to simulated annealing. The above
algorithm will work for hundreds of parameters, albeit there is no guarantee that the solution
obtained is the global minimum (as is the case for simulated annealing). It is worth mentioning
that in this application, funnel diffusion is started for each increment in the dimensionality of
the space (i.e., m → m+1). Therefore, the initial guess for {λj}m+1 is obtained by using the
previously determined solution given by {λj}m for all j ≤ m and for the extra dimension, setting
λm+1 = 0. Surprisingly, it was found (in this application) that funnel diffusion performs at about
the same speed, and same level of accuracy and robustness regardless of the initial guess for
λ ̄.
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3. Results
In this section, the utility of the maximum entropy method as described above is illustrated
using four examples. Three concerns are addressed in each example. How good is the method
for a small number of samples? How robust is the result for p(x) considering that the non-
deterministic method of funnel diffusion is used to determine the expansion coefficients? How
good is the comparison (see Equation 5) between the level-functions calculated from the
proposed pT (y) to those empirically determined? Since in real applications we do not know
what the true pdf is, the random sampling for the four examples given here are generated by
an a priori known pdf. In all cases, the pdf is specified by p(x), and the cumulative probability
distribution  is used to generate random samples in the standard way.
Namely, a uniform random number, r, on the range from (0, 1) is generated, and the random
variable xr is determined by setting P (xr) = r. The statistics of the set {xr}N will reproduce p
(x) in the limit that N → ∞. In all cases presented here, the greatest number of samples
considered is 220 = 1048576, while the least number of samples considered is 26 = 64. The
predicted p(x) based on a given random sampling is monitored as a progression from small
samples to large samples.

Of the four test example p(x), only the first example has an analytical form that agrees with
Equation 8, and then of course pT (y) is transformed to p(x) using Equation 4. This type of
functional form resembles the density of states for solids, as well as the applications of interest
related to biomolecules that motivated this work. The second example has a discontinuous
derivative in p(x), which means it is impossible for the proposed method to result in an exact
solution. The cusp shape may describe a resonance peak encountered in a physical system. In
the third case, a divergence in p(x) of the form  as x → 0 is considered. This example was
based on the density of states for a one-dimensional harmonic oscillator. Finally, in the fourth
case; p(x) is constructed to be bimodal—as a sum of two Gaussian pdf. In spectral analysis it
is common to model the peaks as separate Gaussian distributions. This fourth case is also used
to compare different smoothing requests. After the results are shown for each of the four cases,
a brief discussion will follow summarizing the strengths and weaknesses of the method.

3.1. Test example 1
The function Γm(y) from Equation 8 is specified as:

(17)

where C = 2 × 10−6, a1 = 0.10, b1 = 0.12, c1 = 17.1, a2 = 0.50, b2 = 0.25, c2 = 1.7, a3 = 0.60,
b3 = 0.08, c3 = 3.1, a4 = 0.35, b4 = 0.04, and c4 = 75.0 are the actual parameters used to generate
test example 1. Note that λ0 was determined by the normalization condition numerically (not
selected). The parameters given here were simply adjusted by hand to give a distribution that
showed four well-defined peaks of varying heights, widths and separations. Other than
obtaining an interesting example, nothing special was associated with the selection of these
parameters. The results are shown in Figure 1 corresponding to four different test sets, each
independently generated, for 26, 210, 214, 220 number of samples. It is noted that for the case
of 220 samples (having the least noise) one might expect the method will return a predicted
Γm(y) that will converge to the actual function given in Equation 17. However, it is found that
for 220 samples, the optimal solutions for the least squares error typically contain between 33
to 35 coefficients. This indicates that there are many functions that look very close to Γ9(y) but
not equal, and consisting of a lot more terms (33 versus 9). This result implies Γm(y) is not a
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relevant target function, because the regions of Γm(y) that do not lead to appreciable probability
density are not well characterized as there are many ways to force the exponential toward zero.
As such, there is a family of Γm(y) that can yield regions of low probability, while maintaining
the same values in regions of high probability. Rather than Γm(y), the relevant quantities are
the level-function moments, such that the theoretical predicted values match well with the
empirical values, while maximizing the entropy. In other words, there are indeed an infinite
number of different Γm(y) that will yield virtually indistinguishable results for pT (y), and thus,
indistinguishable results for p(x).

3.2. Test example 2
The pdf for test example 2 is defined as:

(18)

This pdf is a continuous function, but it has a cusp at x = 0 due to the discontinuous first
derivative. The results for this example is shown in Figure 2. Since the function Γm(y) is
continuously differentiable to all orders of m, it is clear that an exact solution is impossible to
achieve. Nevertheless, the method will always return a solution with smallest least squares
error. For this exponential form, the wings for p(x) are matched well, but the cusp is rounded.
It might be expected that greater accuracy will be achieved by including more Chebyshev
polynomials (i.e., greater m). Specifically, the cusp will be better approximated. In principle
this is true, but more samples are required for such a strategy to be successful.

Employing additional orthogonal polynomials (large m) beyond a point for which the data
cannot justify m free parameters yields an undesirable, but interesting result (not shown). The
result is that the sampled data will be effectively clustered by the appearance of many sharp
peaks in the pdf, and outside of these peaks, the pdf is essentially zero. In other words, the
result approaches a simple sum over Dirac-delta functions. The level-function moments will
still yield good comparisons, because essentially this result is approximating a Gauss
quadrature! The location of the sharp peaks are the quadrature points, and the area under their
curves is the Gauss quadrature weight factors for the particular pdf. Thus, arbitrarily adding
more Chebyshev polynomials should not be done. The algorithm that starts with using m = 1,
then m = 2, and so forth will eventually yield a least squares error that is sufficiently small to
terminate exploring greater m, or the least squares error will begin to increase. As such, in
practice it is easy to avoid using too many Chebyshev polynomials. A consequence of this,
however, is that if the pdf of interest has a sharp feature, such as a cusp, it should be expected
that these type of features will be lost. On the other hand, this rounding effect is a natural
smoothing of the pdf.

3.3. Test example 3
The pdf for test example 3 is defined as:

(19)

In this example, C is determined numerically to satisfy the normalization condition. This
particular functional form was motivated by an actual application to a physical system, related
to the density of states for a one-dimensional harmonic oscillator combined with a relative
Boltzmann factor. The important point here, is that the minimum value of xmin = 0 was known
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in advance (zero energy state of the system), and there is a divergence as x → 0. Therefore, in
these calculations, the finite left boundary condition was applied. The results are shown in
Figure 3. The 64 sample case is not shown in order to show the results of the other sample sizes
more clearly. It is seen the method has absolutely no problem in representing this p(x), as given
by Equation 19.

For the largest random data set consisting of 220 samples, the predicted p(x) matches extremely
well to the exact result. To show the level of deviation, the same data is plotted in Figure 4 on
a log scale for the probability. It is seen that the predicted p(x) on the far tail starts to fall off
much faster than the true p(x), which is mainly due to the Jacobian factor in transforming back
from pT (y) to p(x). In this large sample case, the number of terms used is between 23 and 26.
An important aspect of this method, is that for 1024 samples, there already emerges a very
good representative of the true pdf.

3.4. Test example 4
The pdf for test example 4 is defined as:

(20)

Here, pG(x|μ, σ) denotes a Gaussian pdf of mean, μ, and standard deviation, σ. By construction,
the functional form given in Equation 20 cannot be represented by a single exponential, which
places the method outside of its range of applicability. Of course, in real applications this is
not a priori known. Although the relative weighting of each Gaussian distribution, and the
parameters of each Gaussian was arbitrarily selected, this case will provide insight into the
following important question that needs to be answered. Will blindly using the method as
described above provide a reasonable analytical form for p(x) based on the maximum entropy
assumption, albeit this assumption does not mimic the true pdf?

The results are given in Figure 5, and the reconstruction of p(x) is fair. In this case, even as the
number of samples goes to 220 there is a fundamental discrepancy between the actual pdf and
the predicted one. Nevertheless, the comparison between level-function moments are good
enough for practical use. It is worth noting that the entropy of the predicted pdf is greater than
the actual pdf as a consequence of trying to maximize it. In this case, the result cannot be
improved because the entropy is being maximized under the constraints enforced by the various
level-function moments. Because many of these level-functions are being used, the method
still yields a good representation of the true pdf. For relatively small samples, it would be
virtually impossible to distinguish the example 1 with say four Gaussian distributions. The
final output of this method will allow a check on overall errors with respect to the level-function
comparisons. As such, one can make an informed choice as to whether apply the predicted p
(x) or flag the calculation for further analysis.

For this example test function, smoothing was also applied with results shown in Figure 6. In
practice, one may get a lot of oscillations in the pdf, especially when using small number of
random samples. Since the noise in the data will be the main reason for these oscillations, the
additional smoothing criteria is a viable option. It is seen that the agreement between empirical
and theoretical level-function moments is worsened somewhat, compared to no smoothing.
However, at the level of accuracy one can expect from using a small number of random samples
in the first place, the increase in error is insignificant. The user through trial-and-error and
inspection can try different smoothing levels to determine the best compromise between
accuracy and smoothness. Note that the smoother the curves, the number of Chebyshev
polynomials used to represent pT (y) decreases. This process is always subjective, because the

Jacobs Page 15

Entropy (Basel). Author manuscript; available in PMC 2010 January 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



smoothing is never required for the method to reproduce the input sample statistics. The only
sure way to get a better estimate of the pdf is to collect more samples.

4. Discussion
The novel MEM described above has been applied to many application problems that initially
motivated its development. In these applications, the true pdf is unknown. Nevertheless, the
quantitative comparison between empirical and predicted moments consistently returns a
satisfactory pdf, and these results will be published elsewhere in relation to the application of
protein thermodynamics. In the last section, four example cases were considered to illustrate
the results in a general context involving different types of known probability densities, all of
which have a challenging aspect. Comparison of the predictions obtained by the new MEM
for varying amounts of sampled data to the true pdf suggests that the “best” pdf under the
maximum entropy assumption is indeed obtained. That is, the final predicted p(x) faithfully
gives back what is known from the sampled data, and extrapolation is stable. Moreover, the
results show constant improvement in p(x) converging toward a final pdf that is close (or the
same) as the true pdf as the number of samples progressively increases. The success of this
approach is not based on newly discovered principles about MEM. Rather, combining several
novel steps has produced a robust MEM for generic applications.

The most important aspect is to use many different level-function moments, some of which
reflect the histogram (frequency counts). The level-function moments provide superior target
functions, compared to elementary power moments, because taken together they give a much
more uniform representation of all regions of the pdf. Consequently, this balanced
characterization of the pdf makes the prediction for its analytical form robust. It is likely that
the MEM formulated strictly as a Hausdorff moment problem would not yield a solution to
any of the four cases considered here due to numerical instability [4–7,16]. In addition to the
advantages offered by using a multitude of level-function moments, the method developed here
avoids using the Hessian matrix, uses an expansion in terms of orthogonal polynomials, and
attempts to satisfy all the constraints using least squares error. It is worth noting that initially
all the level-function moments were weighted equally. It was found, however, that the empirical
moments associated with lower powers of y are themselves more accurate. Employing an
exponentially decreasing weight factor renders the decision of how many moments to keep a
mute point, since adding more moments will have less and less effect until they become
irrelevant. An improvement will be made in future work, such that the rate of decay in the
exponent will be dependent on the number of random samples used in the analysis.

The method automates the least squares minimization to stop at a reasonable cutoff, so as not
to over-interpret the data. Tuning these criteria was based on applying the method to several
applications. As mentioned above, including more Chebyshev polynomials can often continue
to reduce the least squares error, but the resulting pdf begins to follow clustering in the data,
which is most likely noise. Too close of an agreement with the actual data is over-fitting,
because the uncertainty in the data itself scales as , and the best resolution in the
estimate of probability scales as ~1/N. As such, attempting to exactly fit to the data makes no
sense, and it is better to use only the number of Chebyshev polynomials that can be justified
based on the number of samples on hand. The following heuristic for termination in exploring
greater number of terms is given by:

(21)

was found to work well. When the RMSE reaches 1 the pdf already results in an excellent
reconstruction of p(x) for all test cases. Although lowering the RMSE cutoff may be
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advantageous, it was unnecessary for the applications of interest that motivated this work. No
attempt was made to optimize based on each problem of interest. For example, the number of
bins used to represent the histograms of the y-variables and x-variables could adjust based on
the nature of the statistics. Unequal binning could be incorporated, and different weights could
be applied to the level-functions. Many technical improvements could be made, and work in
this direction is in progress. When finished, the expectation is to release a freeware general
application tool.

The strengths of the current method is that it is robust, where variation in different solutions
for predicted p(x) is much lower than the variation that one gets due to noise when using a
finite number of random samples (when the number is lower than 1000). The fact that different
estimates are obtained for different independent samples is not a weakness. Limiting the
number of samples is effectively adding noise to the true pdf, because a finite number of
samples create feature perturbations due to fluctuations. This approach eliminates the need to
add auxiliary noise, but more importantly it provides insight into the performance
characteristics of determining the true pdf from limited samples. Unless something is a priori
known about the form of the pdf, the sampled data must drive the representative prediction of
p(x). In this context, the funnel diffusion approach is an excellent method to determine the
expansion coefficients, which are related to the Lagrange multipliers. Multiple solutions from
independent funnel diffusion runs yield insignificant deviations in the predicted p(x) compared
to the variation found in p(x) due to limited samples (noise). For a case where m reaches 40
(sequentially trying 1 to 40) the funnel diffusion typically takes less than 20 minutes on a 2.3
GHz computer. Replacing the sequential search with a bisection method will reduce the
calculation time to just a few minutes. The funnel diffusion method has been applied to many
different optimization problems, and has always provided a robust self-adapting simulated
annealing method. In particular, it self determines the degree of randomness needed as the
annealing takes place. In standard simulated annealing, the degree of randomness is controlled
by temperature. In many applications, such as the one considered here (i.e., minimizing a
function) temperature is an artificial concept. Funnel diffusion is conceptually more natural,
and its implementation is embarrassing simple.

The weakness of the presented MEM derives only from the maximum entropy assumption
itself. In particular, the maximum entropy assumption need not be true for the actual data.
Demanding maximum entropy is basically an automatic smoother, since the broadest possible
pdf consistent with the level-function moments will be generated. As such, another
improvement is currently under development that separately applies the MEM into distinct
modes. Each mode will separately be subject to the maximum entropy assumption, but multiple
modes will be considered. In a similar way that the number of terms in the Γm(y) function is
optimized (smallest m that describes the data well), this generalization finds the least number
of modes that describes the data well. The form and procedure of the k-th mode is identical to
this method, since it is a method based on one mode. The number of terms for the k different
Γmk (y) functions will be mk. Then the estimate for the pdf is given as p(x) = Σk wk pk (x) where
wk is the statistical weight of the k-th mode, and pk(x) is calculated using the current method.
This generalization is being implemented into a general user-friendly application tool (to be
published).

5. Conclusions
The method presented in this report provides a model independent way of parameterizing a
probability density function as an analytical function that recovers the original statistics of the
sampled data. The analytical form allows application to obtain re-weighted moments. The
method is robust and works for low numbers of samples, and is stable without a priori satisfying
any particular criteria about the nature of the sampled data. However, small samples may give
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the wrong impression of the form of the true probability density function. Therefore, in cases
of low statistics (high noise), smoothing can be incorporated to change the form of the function
by increasing its overall smoothness. This method provides quantitative measures associated
with least squares error, and relative error between theoretical moments based on the predicted
probability density function, and the empirical moments. Consequently, the method has
versatile utility.
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Figure 1.
Example results for test case 1. The first column shows the exact pdf (black) and four predicted
pdf (red, green, blue, magenta) using independent random samples. The x-axis displays the
range of the random variable in arbitrary units, while the y-axis is dimensionless. From top to
bottom rows the number of random events in each sample were 64, 256, 1024, 4096 and
1048576. The second column is similar to the first, except it shows the result shown in magenta
in the first column, and compares it with four additional results for the same sample — but
from a different funnel diffusion run (black, red, green and blue). The third column shows 80
different level function moments calculated from the empirical data (x-axis) and from the
theoretical prediction (y-axis) as defined in Equation 5. Perfect agreement would fall along the
red line (y = x).
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Figure 2.
Example results for test case 2. The first column shows the exact pdf (black) and four predicted
pdf (red, green, blue, magenta) using independent random samples. The x-axis displays the
range of the random variable in arbitrary units, while the y-axis is dimensionless. From top to
bottom rows the number of random events in each sample were 64, 256, 1024, 4096 and
1048576. The second column is similar to the first, except it shows the result shown in magenta
in the first column, and compares it with four additional results for the same sample — but
from a different funnel diffusion run (black, red, green and blue). The third column shows 80
different level function moments calculated from the empirical data (x-axis) and from the
theoretical prediction (y-axis) as defined in Eqaution 5. Perfect agreement would fall along the
red line (y = x).
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Figure 3.
Example results for test case 3. Top panel: The first column shows the exact pdf (black) and
four predicted pdf (red, green, blue, magenta) using independent random samples. The x-axis
displays the range of the random variable in arbitrary units, while the y-axis is dimensionless.
The top and bottom rows respectively show the results using 256 and 1024 random events.
The second column is similar to the first, except it shows the result shown in magenta in the
first column, and compares it with four additional results for the same sample — but from a
different funnel diffusion run (black, red, green and blue). The third column shows 80 different
level function moments calculated from the empirical data (x-axis) and from the theoretical
prediction (y-axis) as defined in Eqaution 5. Perfect agreement would fall along the red line
(y = x). Bottom panel: The same description as the top panel, except that the number of events
sampled in the top and bottom rows are respectively 4096 and 1048576.
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Figure 4.
Example results for test case 3. This re-plots one of the results from Figure 3 that was shown
as magenta for the 1048576 random samples. Here, we can see the accuracy better using a
semi-log scale.
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Figure 5.
Example results for test case 4. The first column shows the exact pdf (black) and four predicted
pdf (red, green, blue, magenta) using independent random samples. The x-axis displays the
range of the random variable in arbitrary units, while the y-axis is dimensionless. From top to
bottom rows the number of random events in each sample were 64, 256, 1024, 4096 and
1048576. The second column is similar to the first, except it shows the result shown in magenta
in the first column, and compares it with four additional results for the same sample — but
from a different funnel diffusion run (black, red, green and blue). The third column shows 80
different level function moments calculated from the empirical data (x-axis) and from the
theoretical prediction (y-axis) as defined in Equation 5. Perfect agreement would fall along the
red line (y = x).
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Figure 6.
Example results using smoothing on test case 4. The first column shows the exact pdf (black)
and four predicted pdf (red, green, blue, magenta) using smoothing level, s = 10, (defined in
Equation 16) and each case is drawn from independent random samples. The x-axis displays
the range of the random variable in arbitrary units, while the y-axis is dimensionless. The top
and bottom rows contain 256 and 1024 random events. The second column is similar to the
first, except it shows the result shown in magenta in the first column, and compares it with four
additional results for the same sample — but using different smoothing requests with s = 2, 4,
6, 8 shown as (black, blue, green, red). Note that the red curve is essentially indistinguishable
from the curve shown in magenta. Of course, since the objective function changes, this implies
a different funnel diffusion run as well. The third column shows 80 different level function
moments calculated from the empirical data (x-axis) and from the theoretical prediction (y-
axis) as defined in Equation 5. These results correspond to the s = 10 smoothing case shown
in the first column by the magenta curve. Perfect agreement would fall along the red line (y =
x).
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