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Abstract The ability of elastic tissues to deform
under physiological forces and to subsequently
release stored energy to drive passive recoil is vital
to the function of many dynamic tissues. Within
vertebrates, elastic fibres allow arteries and lungs to
expand and contract, thus controlling variations in
blood pressure and returning the pulmonary system to
a resting state. Elastic fibres are composite structures
composed of a cross-linked elastin core and an outer
layer of fibrillin microfibrils. These two components
perform distinct roles; elastin stores energy and drives
passive recoil, whilst fibrillin microfibrils direct
elastogenesis, mediate cell signalling, maintain tissue
homeostasis via TGFβ sequestration and potentially
act to reinforce the elastic fibre. In many tissues
reduced elasticity, as a result of compromised elastic
fibre function, becomes increasingly prevalent with
age and contributes significantly to the burden of
human morbidity and mortality. This review considers
how the unique molecular structure, tissue distribu-
tion and longevity of elastic fibres pre-disposes these
abundant extracellular matrix structures to the accu-
mulation of damage in ageing dermal, pulmonary and

vascular tissues. As compromised elasticity is a
common feature of ageing dynamic tissues, the
development of strategies to prevent, limit or reverse
this loss of function will play a key role in reducing
age-related morbidity and mortality.
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Introduction

Elastic fibres are highly insoluble structures, which
are composed of elastin and fibrillin microfibrils
(Kielty et al. 2002) (Fig. 1). They are major
components of the extracellular matrix (ECM) in
dynamic tissues such as blood vessels (Davis 1993),
skin (Braverman and Fonferko 1982) and the lungs
(Pierce and Hocott 1960). This tissue distribution,
combined with the low modulus of elasticity and high
resilience of elastin (Gosline et al. 2002), allows
elastic fibres to complement the tensile strength of
fibrillar collagens (Kielty et al. 2002). Elastic fibre-
rich dynamic tissues are therefore able to deform and
store energy under normal physiological loads and to
use this energy to drive recoil back to a resting state
(Gosline et al. 2002). The maintenance of these
mechanical properties is central to the function of
dynamic tissues within the cardio-respiratory system
and it has been suggested that the age-related failure
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of elastic fibres may underpin the apparent 100- to
120-year limit on human life expectancy (Robert et al.
2008)

Although much progress has been made in recent
years in defining elastic fibre composition, many

questions remain as to the precise macro-molecular
structure of fibrillin microfibrils and the functional
roles played by distinct elastic fibre components in
both mediating tissue elasticity and maintaining tissue
homeostasis. This review considers how age-related
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Fig. 1a–e Elastic fibre tissue distribution and composition. a, b
The major elastic fibre components: elastin (a) and fibrillin
microfibrils (b). a Environmental scanning electron microscopy
(ESEM) image of the linear arrays and globules formed by
coacervated recombinant tropoelastin. b AFM height image and
high-resolution inset of a fibrillin microfibril isolated from
young human skin (27-year-old male). The bright beads are
raised 7–8 nm above the mica surface and are spaced 56 nm
apart. c-e Composite elastic fibres are abundantly distributed in
major arteries (c), whilst fibrillin microfibrils alone transmit
forces between the ciliary muscle and the lens in the eye (d, e).
c Fluorescence microscope image of haemotoxylin and eosin-

stained ferret aorta. The green auto-fluorescence of elastic
fibres, which are arranged into concentric lamellae in the
medial (M) layer, is considerably enhanced by prior haemotox-
ylin and eosin staining (deCarvalho and Taboga 1996). The
outer advential and inner intimal layers are indicated by A and
I, respectively. d, e ESEM (d) and TEM (e) images of human
ciliary zonules (CZ), which originate in the ciliary body (CB),
intercalating with the lens capsule (LC) holding the lens in
dynamic suspension. Scale bar 20 μm (a), 200 nm (b), 50 μm
(c, d) and 500 nm (e). For interpretation of coloured elements
within this figure please refer to the electronic version of the
manuscript
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changes in the elasticity of tissues such as skin, lungs
and blood vessels impact upon human morbidity and
mortality, and discusses the effects of ageing on
elastic fibre structure and function. Further character-
isation of the molecular mechanisms which underlie
age-related changes in tissue elasticity is a vital first
step in the development of preventative or reparative
interventions.

Elastic fibre structure, function, longevity
and degradation

Elastogenesis (elastic fibre deposition)

The deposition of elastic fibres is highly regulated
during development and this complex process is
summarised in Fig. 2a (for reviews see Handford
et al. 2000; Kielty et al. 2002, 2005; Mithieux and
Weiss 2005). The three known fibrillin isoforms
(fibrillin-1, -2 and -3) exhibit distinct spatial and
temporal expression patterns (Corson et al. 2004;
Zhang et al. 1995). Fibrillin-2 (FBN-2) is predomi-
nantly expressed during early development, whilst
fibrillin-1 is the most abundant isoform in mature
tissues (Ramirez and Pereira 1999). Both fibrillins are
secreted from cells as profibrillin dimers or trimers
which subsequently undergo N- and C-terminal
processing (Cain et al. 2006; Raghunath et al. 1999;
Wallis et al. 2003). Subsequent microfibril assembly,
which occurs pericellularly, is critically dependent on
interactions with heparin, heparan sulphate and
fibronectin (Kinsey et al. 2008; Tiedemann et al.
2001). Elastin, which is secreted as the soluble
precursor, tropoelastin, aggregates at the cell surface
prior to transfer onto the microfibril scaffold and
enzymatic conversion to the mature cross-linked form
via lysyl oxidase (LOX) or LOX-like proteins
(Lemaire et al. 2007; Mithieux and Weiss 2005). In
the mature elastic fibre, the elastin core comprises
over 90% of the volume whilst the fibrillin micro-
fibrils are largely to confined to an outer mantle
(Mecham and Davis 1994).

Structure and function

Tropoelastin is an alternatively spliced, 60– to
70-kDa, highly hydrophobic protein, which is present
in solution in both globular and extended forms

(Mithieux and Weiss 2005; Toonkool et al. 2001).
The structure of tropoelastin is characterised by
repeating hydrophobic domains, which are rich in
Pro, Val, Gly, Leu, Ile and Ala residues, and cross-
linking domains, which are rich in Lys and Ala
residues (Keeley et al. 2002) (Fig. 2b). The insolu-
bility of cross-linked elastin precludes high-resolution
structural determination by techniques such as X-ray
crystallography and solution nuclear magnetic reso-
nance, and as a result the molecular structure of cross-
linked elastin and hence the mechanisms which drive
elastic fibre elasticity remain to be determined
(Daamen et al. 2007; Keeley et al. 2002; Urry et al.
2002). Transmission electron and atomic force mi-
croscopy (TEM and AFM) investigations, however,
have revealed that the apparently amorphous elastin
core is actually composed of thin rope-like filaments
and globular assemblies (Ronchetti et al. 1998),
whilst similar features are observed by environmental
SEM in coacervated recombinant human tropoelastin
(Cain et al. 2008) (Fig. 1a). There is strong evidence
supporting the hypothesis that elastin is both a highly
compliant and a resilient protein (Gosline et al. 2002).
Gross mechanical testing studies on recombinant
elastin membranes and rehydrated bovine nuchal
ligaments, which had been subjected to repeated
autoclaving to remove associated proteins, demon-
strated that even small forces produce large exten-
sions (Aaron and Gosline 1981), whilst stress-strain
curves for extensions up to 50% demonstrated the
ability of recombinant elastin peptides to recoil
elastically (Keeley et al. 2002). Although the primary
role of elastin appears to be mechanical, cell-
signalling functions have also been identified, which
include the direction of vascular and airway branch-
ing (Wendel et al. 2000) and the modulation of
smooth muscle cell proliferation via the elastin-
laminin receptor (Ito et al. 1997).

The fibrillins are large glycoproteins whose struc-
tures are dominated by disulphide-bonded and
calcium-binding epidermal growth factor-like
(cbEGF) domains (Kielty et al. 2002) (Fig. 2c).
Whilst the supra-molecular conformation of fibrillin
within the microfibril remains a matter of debate, with
published experimental evidence favouring both 1/3
staggered (Downing et al. 1996; Lee et al. 2004) and
hinged arrangements (Baldock et al. 2001; Kielty
et al. 2005), it appears clear that, in the mature
microfibril, an average of eight processed monomers
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are present within each repeat (Baldock et al. 2001;
Sherratt et al. 1997). It is likely that interactions of
fibrillin-1 with itself and with MAGP-1, tropoelastin
and fibulin-2, as demonstrated in vitro, play a central

role in elastogenesis and elastic fibre function in vivo
(Jensen et al. 2001; Kielty et al. 2005; Reinhardt et al.
1996; Rock et al. 2004; Tiedemann et al. 2001). In
addition to mediating matrix/matrix interactions,
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Fig. 2a–c Elastic fibre composition and assembly. a Assembly
of fibrillin into microfibrils and the association of microfibrils
with tropoelastin to form elastic fibres is a highly organised
process which is limited to foetal and early neonatal develop-
ment. i Secreted profibrillin is processed and assembled into
pericellular microfibrils and microfibril bundles. ii Elastin
globules which have assembled at the cell surface coalesce on
the microfibril scaffold. iii In the core of the mature elastic
fibre, ultrastructural analyses reveal twisted rope-like structures
of highly cross-linked elastin (Ronchetti et al. 1998). Fibrillin
microfibrils are mostly located at the microfibril periphery,
where they can interact with cellular integrins via an RGD site
on fibrillin-1 (Bax et al. 2003). b The structure of tropoelastin
consists of alternating hydrophobic and cross-linking domains.
Exon 21, for example, encodes a cross-linking domain in which
pairs of lysine residues (K) are separated by two or three

alanine (A) residues. In contrast, hydrophobic domains are
characterised by repeating PGVGVA motifs (Keeley et al.
2002). c Fibrillin-1 is large (~320 kDa) modular glycoprotein,
which, in addition to unique N- and C-terminal regions (N-term
and C-term) and a potentially flexible proline-rich region
(PRR), is predominantly composed of repeating eight-cysteine
(also known as TB modules) and EGF-like domains, which may
(cbEGF) or may not (EGF) bind calcium. The cbEGF domains
play a major role in maintaining fibrillin microfibril structure.
Each domain is stabilised by three cys-cys disulphide bonds
(indicated in blue on the ribbon model of two contiguous
fibrillin-1 cbEGF domains) and by a single bound Ca2+

(Downing et al. 1996; Wess et al. 1998). For interpretation of
coloured elements within this figure please refer to the
electronic version of the manuscript
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fibrillin microfibrils communicate with cells via an
RGD (Arg-Gly-Asp) recognition site, which is bound
by α5β1 and αvβ3 integrins (Bax et al. 2003). The
importance of fibrillin in maintaining tissue function
is highlighted by the severe ocular, skeletal and
cardiovascular pathologies experienced by individuals
suffering from Marfan syndrome, a heritable connec-
tive tissue disorder caused by mutations in fibrillin-1
(Robinson and Booms 2001).

In addition to their role within elastic fibres,
fibrillin microfibrils also function in isolation in
tissues such as the ciliary zonules which hold the
lens in dynamic suspension (Fig. 1d, e). The nature of
the contribution made by fibrillin microfibrils to
tissue biomechanical properties remains, however,
controversial. Elastin is not expressed in the tissues
of invertebrates and it is thought that fibrillin micro-
fibrils mediate elastic recoil in the low-pressure closed
circulatory system of the lobster, and in the jellyfish
mesoglea and sea cucumber dermis (Faury 2001;
Megill et al. 2005; Thurmond and Trotter 1996). The
stiffness, or conversely, the compliance, of a material

is quantified by determination of the elastic modulus
(also known as Young’s modulus) (Fig. 3). Gross
mechanical testing of microfibril-rich invertebrate
tissues suggested that, with a Young’s modulus of
0.2–1.0 MPa, the stiffness of fibrillin microfibrils was
similar to that of elastin (McConnell et al. 1997;
Thurmond et al. 1997). Subsequent molecular comb-
ing studies carried out in our laboratories on isolated
microfibrils from vertebrate tissues, however, sug-
gested that the Young’s modulus of microfibrils was
two orders of magnitude greater (78–96 MPa) than
that of elastin (Sherratt et al. 2003). From these
observations we suggested that fibrillin microfibrils
act to reinforce the elastic fibre and that a relatively
high Young’s modulus allows microfibrils, which
comprise the ciliary zonules, to transmit forces
between the lens and the ciliary muscle (Burd et al.
2002; Sherratt et al. 2003). In a subsequent study,
Megill and co-workers calculated a stiffness of about
0.9 MPa for the fibrillin-containing elastic fibres in
the mesoglea of the hydromedusa Polyorchis pen-
icillatus (Megill et al. 2005). Using fibre-reinforced
composite models they were unable to reconcile this
stiffness value of 0.9 Mpa with the reported stiffness
of 78–96 MPa for individual fibrillin microfibrils.
Megill and co-workers therefore suggest that the
stress-strain curve of individual microfibrils is unlike-
ly to be linear, and that microfibril stiffness will be
less than our estimate at low strains and greater than
our estimate at high strains. This scenario strengthens
the hypothesis that fibrillin microfibrils are stiffer than
elastin at the higher strains (0.22 in human aorta)
which are experienced during normal physiological
function (Faury 2001). The resistance of microfibrils
to axial tension is further emphasised by recent X-ray
diffraction studies of zonular microfibrils during
extension which demonstrated that microfibril peri-
odicity and diameter remain unchanged even at
strains approaching 2 (Glab and Wess 2008). A direct
experimental determination of the stress-strain re-
sponse of isolated microfibrils is, however, required
to resolve this issue.

Although elastin and fibrillin dominate the struc-
ture of the elastic fibre other ECM components are
sporadically (decorin, biglycan, versican and emilins)
or frequently [microfibril associated glycoproteins
(MAGPs), latent transforming growth factor beta
binding proteins (LTBPs) and fibulins] co-localised
with microfibrils and/or elastin (for reviews see
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Fig. 3 Quantifying elasticity. The elastic modulus defines the
degree to which a material deforms when a tensile force is applied.
Where a rod of length l0 and cross-sectional area A is stretched to
a length l by a force F, the elastic modulus (E) is calculated from
the stress divided by the strain. The value of E relates to the
biological function of a macromolecules; the elastic modulus of
fibrillar collagen (1,200 MPa), for example, is relatively high
reflecting the role of collagen fibrils in resisting tensile forces
(Gosline et al. 2002), in contrast E for elastin is low (1.1 MPa)
(Aaron and Gosline 1981) and a small force will produce a large
extension. The elastic modulus of fibrillin microfibrils, however,
remains controversial with estimates ranging from 1.0 MPa
(Aaron and Gosline 1981) to 96 MPa (Sherratt et al. 2003)
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Gallagher et al. 2005; Hubmacher et al. 2006; Kielty
et al. 2002). The MAGPs are small proteins which, in
the case of MAGP-1, appear to be essential for the
maintenance of microfibril structure (Lemaire et al.
2007). The carboxy-termini of MAGP-1 and -2 are
thought to bind to the amino-terminal regions of
fibrillin via disulphide bonds (Penner et al. 2002).
Once associated with fibrillin, MAGP-1 may act to
stabilise fibrillin/fibrillin interactions within the mi-
crofibril (Henderson et al. 1996; Trask et al. 2000), to
mediate microfibril/elastin binding (Gibson et al.
1991) or to anchor the elastic fibre within tissues via
interactions with other ECM components such as type
VI collagen (Finnis and Gibson 1997). The four
known LTBPs are remarkably similar in structure to
the fibrillins, and the predominance of multiple
contiguous cbEGF domains and the possession of
apparently unique TB modules in both protein
families led to the proposal that collectively the
LTBPs and fibrillins should be grouped into a fibrillin
super-family (Hubmacher et al. 2006; Hyytiainen
et al. 2004). LTBPs appear to fulfil dual roles as both
structural components of the ECM (Dallas et al. 1995)
and as TGFβ trafficking molecules (Miyazono et al.
1991). Furthermore, the association of LTBPs with
fibrillin microfibrils (Raghunath et al. 1998; Unsold
et al. 2001) and the perturbations of normal TGFβ
signalling in FBN1-mutant mice led to the hypothesis
that fibrillin microfibrils play a major role in main-
taining tissue homeostasis via LTBP-mediated se-
questration of TGFβ (Denton and Abraham 2001;
Neptune et al. 2003). Fibulins are small ECM
glycoproteins which appear to play important roles
during development and wound healing (for a review
see Chu and Tsuda 2004). As with the LTBPs, their
structure is based in contiguous cbEGF domains and
three of the five fibulins (fibulin-1, -2 and -5) are
known to be elastic fibre components (Kielty et al.
2002). Fibulin-1 is primarily localised to the elastin
core (Kostka et al. 2001) whilst fibulin-2 and -5 are
located at the microfibril/elastin interface (Nakamura
et al. 2002; Reinhardt et al. 1996).

Homeostasis and elastic fibre longevity

Intracellular proteins have short life-spans: the half-
lives of intracellular enzymes, for example, are
usually measured in hours, whilst even the longest-
lived intracellular structural proteins, such as nuclear

histones, have a mean half-life of 18 days (Jennissen
1995). In contrast, the half-lives of many ECM
proteins are measured in years. Aspartic acid racemi-
zation (AAR) studies estimate that the half-lives of
types I and II collagen in human skin, articular
cartilage and intervertebral disc are 15, 95 and
117 years, respectively (Sivan et al. 2008; Verzijl
et al. 2000). The lower turnover rates and hence
longer half-lives of cartilage collagens compared with
dermal collagens may be a consequence of the lower
cell densities and hence lower catabolic and anabolic
rates which prevail in mature cartilage (Antoniou
et al. 1996). The stability of the tissue collagens is
matched and in many cases exceeded by the
longevity of elastic fibres and their molecular
components. ECM proteins in general, therefore,
and structural ECM proteins of the elastic fibre
system in particular, exhibit a remarkable longevity
in vivo when compared with intracellular proteins
and this longevity allows these proteins to gradually
accumulate damage.

In the aorta, tropoelastin synthesis is under close
developmental control. Elastin deposition commences
in utero and reaches a maximum during early post-
natal development in response to hemodynamic
factors (Berry et al. 1972; Davidson et al. 1986;
Bendeck and Langille 1991). Fibrillin microfibrils are
thought to direct these elastogenic processes in an
isoform-specific manner (Zhang et al. 1995) with
FBN-2 expression preceding both tropoelastin and
FBN-1 synthesis in most mammalian tissues (Ramirez
and Pereira 1999). This developmental burst of
tropoelastin and fibrillin expression is substantially
down-regulated in humans within a few months of
birth (Davidson et al. 1986; Ramirez and Pereira
1999). In mature tissues, elastin synthesis is repressed
by post-transcriptional mechanisms (Zhang et al.
1999), whilst FBN-1 and FBN-2 are expressed
continuously, albeit at very low levels, in adult human
skin (Ashcroft et al. 1997). These observations
suggest that elastic fibres, which are deposited during
early development, must remain within tissues for the
lifetime of the organism and there is compelling
evidence, using multiple methodologies, that this is
indeed the case.

In the mouse aorta, elegant auto-radiographic
approaches demonstrated that tritiated valine, which
was incorporated into the aortic elastic lamellae
during the first month of life, remained in situ within
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the mature elastic fibres only for the lifetime of the
animal (Davis 1993). From these studies, and from
previous work in the rat, it was estimated that rodent
arterial elastin, with a half-life of 27–40 years (Davis
1993; Rucker and Tinker 1977), has an expected
longevity many times greater than the longevity of the
host organism. AAR studies in humans indicate that
aortic elastin is much more metabolically stable than
the fibrillar collagens (Powell et al. 1992) and that
elastin in skin, although not replaced, may undergo
age-related damage (Ritz-Timme et al. 2003). The
most compelling evidence for elastic fibre longevity
in a human tissue was presented by Shapiro and co-
workers (Shapiro et al. 1991). Using AAR techniques
in combination with mass-spectrometry to assess
incorporation of 14C into both the elastin and
glycoprotein (fibrillin microfibril) fractions, this study
demonstrated that the age of elastic fibres in the lung
corresponded to the age of the individual. Taken
together with the data on elastin and fibrillin
synthesis, these studies provide strong evidence that,
following initial synthesis during development, elastic
fibre proteins function without replacement through-
out the lifetime of the organism. For tissues such as
the aorta, therefore, elastic fibres must, over the
course of a 70-year life, maintain the ability to
mechanically recoil 3 × 109 times. These stringent
functional demands, coupled with their remarkable
longevity, leave elastic fibres particularly vulnerable
to the accumulation of age-related damage.

Degradation

The accumulation of damage by biological molecules
has long been recognised as a potential contributing
factor to functional decline in ageing organisms
(Bailey 2001; Partridge and Gems 2002; Vijg and
Campisi 2008). The low turnover of extracellular
structural proteins in particular, as discussed in the
previous section, exposes these macromolecular as-
semblies to degradation by enzymatic, chemical and
biophysical mechanisms.

Remodelling and homeostasis of the ECM is
mediated primarily by a large group of zinc-
dependent endopeptidases, the matrix mettaloprotei-
nases (MMPs) and their inhibitors, the TIMPs (tissue
inhibitors of MMPs) (Chakraborti et al. 2003).
Although up-regulation of ECM protease expression
is a unifying feature of age-related inflammatory

conditions such as emphysema (Robbesom et al.
2008), atherosclerosis (Robert et al. 2008) and UV-
induced photoageing (Fisher et al. 1996), the consti-
tutive expression of MMPs in non-inflamed lung,
aorta and skin (Chen et al. 2005; McNulty et al. 2005;
Meyer et al. 1998) may be sufficient, given the
longevity of ECM assemblies, to gradually degrade
proteins over many years. To date, eight MMPs have
been shown to degrade elastic fibre proteins in vitro:
insoluble elastin is degraded to soluble fragments by
MMP-2, -7, -9, -10, -12 and -14 (Chakraborti et al.
2003; Taddese et al. 2008), whilst fibrillin microfibrils
and peptides are catabolised by MMP-2,-3,-9,-12 and
-13 (Ashworth et al. 1999; Tsuruga et al. 2007). In
addition, both elastin and fibrillin are substrates for
the serine protease neutrophil elastase (Kielty et al.
1994). The proteolytic activities of these enzymes and
the structural consequences of their actions are highly
variable; MMP-2 and -9, for example, fragment
fibrillin microfibrils, whilst MMP-12 and -13 have a
significant effect on microfibril periodicity (bead to
bead distance) but not on length (Ashworth et al.
1999). Given the up-regulation of MMP expression
by cultured cells in response to fibrillin fragmentation
(Booms et al. 2005), microfibril degradation and
protease expression may form part of a positive
feedback loop which sustains chronic tissue damage.
Although protease-mediated alterations in fibrillin
structure are likely to have profound effects on
fibrillin microfibril and hence elastic fibre function,
the influence of MMPs on other microfibril associated
components, such as the MAGPs, LTBPs and
fibulins, remains to be characterised. Given the low
substrate specificity of many MMPs, however
(Chakraborti et al. 2003), and the structural similar-
ities between the fibrillins, LTBPs and fibulins, it
seems likely that, collectively, fibrillin- and elastin-
degrading MMPs will be capable of degrading most
elastic fibre components. In addition to their roles in
directly mediating tissue remodelling via ECM
degradation, MMPs also regulate ECM/cell signalling
events and MMP-14 (also known as membrane type 1
MMP) has been shown to release bound TGFβ from
LTBP-1 (Tatti et al. 2008).

The accumulation of oxidative damage by biolog-
ical macromolecules, including lipids, proteins and
nucleic acids is thought to play an important role in
the ageing process (Partridge and Gems 2002; Vijg
and Campisi 2008). Reactive oxygen species (ROS)
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including O2
−, H2O2,

1O2 and •OH (Chakravarti and
Chakravarti 2007), which are generated either as
products of normal metabolism (Haenold et al.
2005) or by interaction with environmental factors
such as UV radiation (Yaar and Gilchrest 2007), are
the primary agents of protein oxidation. The influence
of ROS on cellular metabolism has been the subject
of intense study and it has become evident that cell-
mediated perturbations in elastic fibre homeostasis, as
a result of ROS-induced tropoelastin and MMP
transcription (Wlaschek et al. 2001), contribute to
tissue ageing. In addition to these cell-mediated
anabolic and catabolic mechanisms, ROS are known
to act directly on ECM collagens (Verzijl et al. 2000),
but the influence of oxidation on the structure and
function of elastic fibre components remains poorly
understood. To date, there are two published studies
which address the susceptibility of elastin to direct
ROS mediated degradation: Umeda et al. (2001)
characterised the oxidation and solubilisation of
elastin by H2O2 in the presence of Cu2+, whilst
Cantor et al. (2006) suggested that prior ROS (H2O2)
exposure could enhance the susceptibility of elastic
fibres to subsequent elastase-mediated degradation.
These observations indicate that in vivo oxidation
may, in part, be responsible for the reduced cross-
linking which is characteristic of aged elastic fibres
(Umeda et al. 2001). The influence of ROS on other
elastic fibre components is, as yet, undefined.

In addition to degradation by proteolytic and
oxidative mechanisms, the structure, and hence
function, of ECM proteins in ageing tissues may be
compromised by the accumulation of pathological
cross-links. The structural integrity of supra-
molecular ECM assemblies such as collagen fibrils
and elastic fibres relies heavily on the precise
enzyme-driven formation of developmentally regulat-
ed cross-links (Bailey 2001). The first stage in
collagen cross-linking relies on the deamination of
N- and C-terminal lysine and hydroxylysine residues
by lysyl oxidase to form aldehydes (Kadler et al.
1996). The nature of the subsequently formed
cross-links varies between tissues and with develop-
mental stage; in skin, for example, divalent dehydro-
hydroxylysinonorleucine (deH-HLNL) cross-links in
immature tissues subsequently react with histidine
to form histidino-hydroxylysinonorleucine (HHL)
(Bailey 2001). In general, the mechanical strength of
collagen-rich tissues increases during maturation and

ageing due to the formation of non-reducible cross-
links (Yamauchi et al. 1988). Elastin cross-linking,
which also proceeds via the lysyl oxidase mediated
deamination of lysine, occurs extensively through-
out the protein and results in the formation of
tetravalent desmosines and isodesmosines (Csiszar
2001; Kielty et al. 2002). Transglutaminase is
thought to mediate further cross-linking events
within the maturing microfibril (fibrillin-fibrillin
and fibrillin-MAGP) and between microfibrils and
tropoelastin (Brownaugsburger et al. 1994; Qian and
Glanville 1997; Rock et al. 2004).

The developmentally regulated formation of en-
zyme driven intra- and inter-molecular cross-links
gives way, however, to the uncontrolled accumulation
of glucose and glucose-metabolite-derived cross-links
in ageing tissues (Bailey 2001). These non-enzymatic
cross-links undergo sequential modifications, culmi-
nating in the formation of advanced glycation end
products (AGE) (Paul and Bailey 1996) which
increase tissue stiffness (Sims et al. 1996), inhibit
collagen assembly (Tsilibary et al. 1988) and impair
collagen/cell binding (Haitoglou et al. 1992). The
abundance of these pathological cross-links is posi-
tively correlated with both age and with the incidence
of chronic hyperglycaemia as found in conditions
such as diabetes mellitus (Bruel and Oxlund 1996;
Mikulikova et al. 2008; Paul and Bailey 1996).
Although the structural and functional consequences
of AGE formation within ageing collagen-rich tissues
have been well characterised in recent years (DeGroot
2004) less attention has been paid to the impact of
AGE formation on elastic fibre function (Bailey
2001). Two recent studies have demonstrated that
AGE accumulate in the elastin of both ageing human
aorta (Konova et al. 2004) and yellow ligament (Chen
et al. 2000), but the hypothesis that AGE formation
within ECM proteins contributes to age-related
cardio-vascular stiffening was questioned by Shapiro
and co-workers in a study which localised AGE to
smooth muscle rather than ECM-rich areas in the
vasculature (Shapiro et al. 2008).

In addition to these major degradative mechanisms,
the structure of elastic fibres in ageing tissues may
also be altered by calcification, aspartic acid racemi-
zation, lipid accumulation and mechanical fatigue
(Bailey 2001; O’Rourke and Hashimoto 2007; Robert
et al. 2008). Calcium accumulates in ageing blood
vessel walls and is strongly bound to the micro-
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fibrillar component of elastic fibres (Robert et al.
2008). In vitro studies have demonstrated that micro-
fibrillar structure is highly sensitive to the concentra-
tion of calcium in the local environment (Wess et al.
1998). This bound calcium may also play a role in
mediating the uptake of lipids by elastic fibres in the
ageing arterial wall (for a review see Robert et al.
2008). In addition to binding extracellular ions and
biomolecules, L-forms of aspartic acid within elastic
fibre proteins spontaneously convert to D-forms at a
predictable rate (Shapiro et al. 1991). Both elastin and
fibrillin accumulate D-aspartic acid by aspartic acid
racemization, but the consequences for the structure
and function of the ageing elastic fibre remain poorly
defined (Bailey 2001). Mechanical fatigue has also
been postulated as a mechanism of age-related elastic
fibre failure, with indirect evidence suggesting that
the microfibril/elastin interface may be the main weak
point in the composite elastic fibre (Lillie and Gosline
2007; O’Rourke and Hashimoto 2007). The following
section considers the effects of this multitude of
degradative mechanisms on not only the structure of
the elastic fibre system in ageing skin, lungs and
blood vessels but also the clinical impact which the
resultant compromised tissue elasticity may, in many
cases, have on human morbidity and mortality.

Elastic fibres in ageing tissues

Many of the degradative mechanisms discussed in the
previous section are thought to operate systemically
and, as a consequence, age-related changes in the
structure of elastic fibres would be expected to impact
on the functions of most dynamic tissues. However,
the exposure of tissues such as the lungs and skin to
unique environmental degradative mechanisms
ensures that the rate and nature of age-related elastic
fibre damage varies both between anatomical sites
and between individuals.

Cutaneous

The elastic fibre system in skin is highly ordered
(Fig. 4a). In the reticular dermis, large-diameter
elastic fibres lie parallel to the skin surface. These
fibres are connected to smaller-diameter elaunin fibres
in the papillary dermis and eventually to oxytalan
fibres which connect the papillary dermis and

epidermis via the dermal-epidermal junction (DEJ)
(Braverman and Fonferko 1982). The ratio of elastin
to fibrillin decreases with proximity to the epidermis
and the oxytalan fibres appear to be solely micro-
fibrillar (Cotta-Periera et al. 1978; Dahlback et al.
1990). The ageing process has a profound effect on
the structure and function of this elastic fibre system
but, as with the ageing lung, human skin accumulates
damage due to both the action of normal metabolic
processes and also as a result of interactions with
environmental factors. In areas exposed to ultraviolet
light, acute or “extrinsic” ageing processes are super-
imposed on underlying chronic or “intrinsic” ageing
mechanisms (El-Domyati et al. 2002). These two
processes have distinct cosmetic and structural con-
sequences for ageing skin. The smooth appearance
and fine wrinkles of intrinsically aged skin are
associated with a gradual fragmentation of the elastic
fibre network (Braverman and Fonferko 1982;
Suwabe et al. 1999; Tsuji and Hamada 1981). In
contrast, mildly photoaged skin appears roughened
and deeply wrinkled and is characterised histological-
ly by the loss of fibrillin microfibrils (Watson et al.
1999) and fibulin (Kadoya et al. 2005) from the
papillary dermis. In severely photoaged skin, howev-
er, abundant deposits of highly disorganised, elastic
fibre material are distributed throughout the dermis
(Warren et al. 1991; Watson et al. 2001; Werth et al.
1996; Yaar and Gilchrest 2007)

Early attempts to quantify the effects of ageing on
the mechanical properties of skin were hampered by:
the use of terminology which was open to mis-
interpretation (Doubal and Klemera 2002), the diver-
sity of both mechanical tests (Diridollou et al. 1998;
Rodrigues 2001) and anatomical sites (Escoffier et al.
1989), and most importantly by the heterogeneity and
anisotropy of the skin layers themselves (Diridollou et
al. 1998; Pierard 1999). The mechanical response of
skin to the application of tensile and torsional forces
and to deformations induced by indentation and
suction have all been reported in the literature (see
Rodrigues 2001 for an excellent review). Of these
techniques, torsional approaches, which may be used
in vivo, have the advantage of applying mechanical
stresses parallel to the plane of the skin, thereby
minimising the influence of tissue anisotropy and
underlying tissue structures on the measured mechan-
ical parameters (Escoffier et al. 1989). The device
rotates a disk which has been adhered to the skin and
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records the torque (rotational force) and degree of
rotation (Fig. 4b). By introducing guard rings of
variable diameter, it has been proposed that the depth
of mechanical deformation can be controlled (Batisse
et al. 2002). Since their introduction in the 1970s
(Finlay 1970) torsional approaches have been applied
to the study of both intrinsic (Escoffier et al. 1989)
and extrinsic ageing (Agache et al. 1980; Batisse et al.
2002; Sanders 1973) and a commercial device, the
Dermal Torque Meter is now in use (Batisse et al.
2002). Suction methods which use a negative pressure
to deform the skin (Fig. 4c) are perhaps the most

widely used (Diridollou et al. 1999; Pierard 1999;
Rodrigues 2001; Smalls et al. 2006; Takema and
Imokawa 1998; Takema et al. 1994). Diridollou and
co-workers suggest that this technique enables the
measurement of mechanical responses which origi-
nate primarily from the dermis rather than sub-
cutaneous structures (Diridollou et al. 1998).
Commercially developed devices include the Cutom-
eter, which measures skin deformations optically, and
the Dermaflex A, which measures vertical skin
displacements by changes in capacitance (Diridollou
et al. 1998; Smalls et al. 2006). Interpretation of the

DEJ

ox
yt

al
an

el
au

ni
n

el
as

tic

el
as

ti
n

fi
b

ri
lli

n

pa
pi

lla
ry ep

id
er

m
is

de
rm

is

re
tic

ul
ar

Disc Disc

Guard ring

C
yl

in
de

r

C
yl

in
de

r

Po

Pext

Skin

Force Deformation

Rapid - Elastic (UE)
Slow - Viscoelastic (UV)

Total – (UF)
UE

UR

UF

UV

Torque/
Suction

Time

D
ef

or
m

at
io

n
(m

m
) 

/ (
o )

Force Recovery

Rapid - Elastic (UR)

b

d

a

keratinocytes

fibroblasts

c

e

Fig. 4a–e Structure and
mechanical function of the
skin. a The elastic fibre
system in skin is confined to
the dermis where composite
elastic fibres in the reticular
dermis give way to arrays of
fibrillin microfibril bundles
at the DEJ. The fibrillin
microfibrils of the elastic
fibre system are synthesised
by both keratinocytes and
dermal fibroblasts. b, c
Methods for testing the me-
chanical properties of skin
include: torsion, induced by
a rotating disk (b), where
the area of skin may be
restrained with a guard ring
and suction (c), where the
lowered external air pres-
sure (Pext) in a cylinder
causes skin deformation due
to the internal pressure of
the tissue (Po). d, e Both
methods induce a total de-
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biomechanical properties measured by these techni-
ques requires quantitation of skin thickness. Early
attempts to measure skin thickness using callipers
(Agache et al. 1980) have largely been superseded by
the use of ultrasound (Diridollou et al. 1999; Escoffier
et al. 1989; Takema et al. 1994).

Applying either suction or torsional forces to skin
induces a rapid elastic deformation (UE), followed by
a slower viscoelastic deformation (UV) until finally
the total skin deformation (UF) is reached (Fig. 4d, e)
(Escoffier et al. 1989; Leveque et al. 1980; Rodrigues
2001; Takema et al. 1994). Removing the force
allows the skin to recover and the ratio of the
recovery to initial deformation quantifies the ability
of the skin to elastically recoil. Both the ratio of the
rapid elastic recovery to the elastic deformation
(where UR/UE is defined as the elastic function) and
the ratio of the rapid elastic recovery to the total skin
deformation (where UR/UF is defined as relative
elastic recovery) have been quoted in the literature
(Escoffier et al. 1989; Rodrigues 2001; Smalls et al.
2006). The ability of skin to recoil is significantly
reduced by both the intrinsic (Escoffier et al. 1989;
Smalls et al. 2006; Takema et al. 1994) and extrinsic
ageing processes (Agache et al. 1980; Smalls et al.
2006; Staloff et al. 2008; Takema et al. 1994) and by
exposure to UV-A and UV-B radiation in vitro
(Takema and Imokawa 1998). In most studies, skin
stiffness [as determined from a decrease in elastic
(UE) or total deformation (UF)] also increased
significantly in both intrinsically (Escoffier et al.
1989; Smalls et al. 2006) and extrinsically aged tissue
(Agache et al. 1980; Smalls et al. 2006; Takema et al.
1994) and in UV radiation-exposed tissues (Takema
and Imokawa 1998). In contrast to intrinsically aged
skin, which is characterised histologically by the loss
of elastic fibre components, extrinsically aged skin is
characterised by the gain of disorganised elastotic
material. Despite these striking differences in ECM
composition, the elastic moduli of both tissues are
significantly increased compared with both young and
UV-protected skin (Escoffier et al. 1989; Agache et al.
1980). It appears, therefore, that alterations in inter- or
intra-molecular architecture, rather than ECM
composition alone, must play a key role in mediating
age-related loss of elasticity in the skin. As a
consequence, it is unlikely that attempts to character-
ise the age-related mechanisms which underlie loss of
tissue elasticity (both recoil and extensibility) by

solely quantifying changes in the amount of individ-
ual elastic fibre proteins will prove successful. Our
preliminary studies, for example, suggest that age-
related alterations in fibrillin microfibril structure can
have a profound effect on the tensile strength of these
macro-molecular assemblies (Sherratt et al. 2006,
2007).

Aberrant protein proteolysis, oxidation and cross-
linking have all been implicated in age-related
degradation of the dermal elastic fibre network.
Exposure of skin or skin-derived cells to UVR, for
example, is known to upregulate the expression of
many elastic fibre degrading enzymes, including
MMP-2, -3, -9, -12 and -13 and the serine protease
neutrophil elastase (Fisher et al. 1996; Kim et al.
2006; Rijken et al. 2005; Saarialho-Kere et al. 1999).
ROS generation may mediate elastic fibre damage in
skin either indirectly, via protease upregulation (Yaar
and Gilchrest 2007), or directly via interaction with
the sulphur containing amino acids methionine and
cysteine (Haenold et al. 2005). The immuno-
histochemical identification of protein carbonyl end
products in the upper dermis suggests that direct,
ROS mediated, protein oxidation occurs in both
acutely and chronically photoaged skin (Sander
et al. 2002). Finally, aberrant elastin cross-linking
appears to be a feature of both photoaged and
intrinsically aged skin (Jeanmaire et al. 2001;
Mizutari et al. 1997).

Pulmonary

The exposure of human lungs to environmental
pollutants, in particular cigarette smoke, complicates
the study of ageing within the pulmonary system
(Teramoto et al. 1999). Characterisation of the
mechanical and molecular effects of intrinsic ageing
in the lungs has been carried out in humans with
known medical histories and in animal models. In
these systems, the pulmonary system undergoes
progressive changes in mechanical properties with
age which ultimately compromise lung function and
therefore diminish quality of life. In the aged lung, the
loss of elasticity simulates emphysema (Knudson
et al. 1977; Turner et al. 1968), and both forced
expiratory volume and forced vital capacity are
reduced (Meyer et al. 1998). This reduction in tissue
elasticity (both compliance and recoil), which has
been well characterised in both human (Lai-Fook and
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Hyatt 2000; Turner et al. 1968) and rodent lungs
(Janssens et al. 1999; Nagase et al. 1994), plays an
important role in increasing the risk of mortality in the
ageing population as a result of acute pulmonary
diseases (Janssens et al. 1999; Meyer et al. 1998). The
mechanical properties of the lung are highly complex
and depend on: the relative mechanical properties of
the constituent ECM components (Fredberg and
Kamm 2006), the arrangement of these molecules
within the alveolar wall, and the geometrical con-
struction of the alveolus itself (Kitaoka et al. 2007;
Wilson and Bachofen 1982). Dilatation of the
alveolus, which is thought to be a universal feature
of the ageing mammalian lung (Hyde et al. 1977;
Pinkerton et al. 1982; Verbeken et al. 1992), corre-
lates with increases in alveolar wall thickness in most
(Escolar et al. 1997; Snider et al. 1985; Verbeken
et al. 1992), but not all human and rodent studies
(Escolar et al. 1994, 1993). These gross morpholog-
ical changes occur without significant mass loss
(Escolar et al. 1994; Pinkerton et al. 1982). Whilst
the lung, therefore, experiences age-related alterations
in both structure and function, it has not proven
possible to relate these morphological and mechanical
changes to simple variations in ECM composition.

The ECM of the lung is dominated by type I
collagen fibrils and elastic fibres (Pierce and Hocott
1960). Most studies of the ageing lung have failed to
identify any change in collagen content (Escolar et al.
1997; Lang et al. 1994; Pierce and Hocott 1960;
Takubo et al. 1999; Yamamoto et al. 2003), although
age-related increases have been observed in both
rodent (Goldstein 1982; Huang et al. 2007) and
human systems (Derrico et al. 1989). Similarly, the
concentration of elastin and/or elastic fibres in human
and rodent lungs has been reported to remain
unchanged (Andreotti et al. 1983; Takubo et al.
1999; Yamamoto et al. 2003), to increase (Escolar
et al. 1994, 1997; Fitzpatrick and Hospelhorn 1962;
Pierce and Hocott 1960) and to decrease with age
(Derrico et al. 1989; Huang et al. 2007). There are
three potential explanations for the lack of a consen-
sus regarding changes in ECM composition in the
ageing lung. First, there are many experimental
difficulties involved in the complete extraction and
purification of large, insoluble and increasingly
aberrantly cross-linked ECM proteins from ageing
tissues (Bailey 2001). Second, the accumulation of
chemical and morphological changes by long-lived

ECM proteins may influence morphometric analyses
by changing histological staining and/or antibody
binding affinities. Third, the respiratory system is
exposed to environmental effects such as smoking
and air pollutants which are known to influence both
lung structure and function (Teramoto et al. 1999).
Even where attempts have been made to control for
these environmental factors using rodent models and
to control for differential protein extraction using
histological approaches, elastic fibre content in the
ageing rat lung may still appear to increase (Escolar et
al. 1997), decrease (Huang et al. 2007) or remain
unchanged (Yamamoto et al. 2003). As the structural
and functional consequences of intrinsic ageing
appear to be invariant within mammalian lung, these
observations support the hypothesis that age-related
changes in the molecular and supramolecular struc-
tures of ECM components (John and Thomas 1972),
rather than their relative tissue concentrations, under-
lie gross changes in lung mechanics. Relatively few
studies have addressed the change in elastic fibre
morphology or composition with age, but in the rat
model, increases in elastic fibre diameter are thought
to reflect elastic fibre degeneration (Escolar et al.
1994, 1997). It has been established that even
apparently normal human lung contains detectable
levels of proteolytic enzymes with elastolytic abilities
(Meyer et al. 1998). Low-grade chronic inflammation
may therefore contribute to enzyme- or ROS-driven
age-related elastic fibre remodelling (Lambeth 2007).
The formation of AGE within ageing rat lung
collagen suggests that ECM glycation may also play
a role in mediating age-related pulmonary pathologies
(Bellmunt et al. 1995).

In addition to the deleterious changes in lung
function induced by intrinsic ageing processes,
environmentally-linked pulmonary diseases such as
chronic obstructive pulmonary disorder (COPD) and
emphysema become increasingly prevalent with age
(Viegi et al. 2001). COPD is characterised by a loss of
elastin from the alveolar wall (Merrilees et al. 2008)
and the ensuing progressive emphysema induces by
alveolar enlargement, perenchymal destruction and
loss of lung elasticity (Robbesom et al. 2008). Two
potential mechanisms are thought to play a role in the
development of emphysema; first, a chronic imbal-
ance between proteases, including neutrophil elastase,
MMP-2 and -9, and protease inhibitors such as
secretory leukoprotease inhibitor (Gadek et al. 1984;
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Meyer et al. 1998); and second, ROS-mediated DNA
and protein damage as a result of infections or
exposure to environmental pollutants (Repine et al.
1997). Histologically, elastic fibres in the emphyse-
matous lung appear fragmented, with a reduced
microfibrillar component and evidence of disorgan-
ised elastin deposition (Fukuda et al. 1989). Evidence
for the involvement of fibrillin in the pathogenesis of
emphysema comes from the observation of emphyse-
matous lesions in connective tissues disorders such as
neonatal (Jacobs et al. 2002; Milewicz and Duvic
1994) and adult (Bolande and Tucker 1964; Sayers
et al. 1975) Marfan syndrome and the tight skin
mouse model of hereditary emphysema (Gardi et al.
1989). Whilst even in the early stages of human
emphysema fragmentation of fibrillin microfibril
bundles is evident (Robbesom et al. 2008).

In summary, deterioration of lung function is an
important factor in age-related morbidity and mortal-
ity and elastic fibre degeneration appears to play a
central role in many age-related pulmonary disorders.
The evidence points towards the cumulative damage
of long-lived elastic fibre proteins as both a cause of
altered mechanical function and as a trigger for
further cell-mediated damage via aberrant cell-
signalling mechanisms. Understanding the molecular
causes and effects of age-related pulmonary disorders
will require detailed study of the degradative mech-
anisms which produce microfibril degeneration, and
the functional consequences of these macro-molecular
changes.

Vascular

Age-related alterations in the mechanical properties of
the vascular system have profound effects on human
morbidity and mortality (for recent reviews see
Greenwald 2007; Mitchell 2008; O’Rourke and
Hashimoto 2007). Arteries and veins are composed
of three distinct layers, the tunica intima, tunica
media, and tunica adventia (Quaglino and Pasquali-
Ronchetti 2002). Within arteries, elastic fibres are
concentrated at the layer boundaries (in the internal
and external elastic laminae) and in the medial layer
where elastic lamellae alternate with smooth muscle
cells (Kielty et al. 2007). The number of elastic
lamellae decreases from 40–70 in conducting arteries
such as the aorta, to fewer than ten in the smaller
resistance arteries. The compliance and elasticity of

the major arteries plays a key role in cardiac function;
driving systemic blood flow via the storage of elastic
tensile energy in the aorta (Greenwald 2007) and
converting pulsatile to steady blood flow (O’Rourke
and Hashimoto 2007). Age-related reductions in
arterial compliance (known as arteriosclerosis) lead
to increases in systolic blood pressure in the aorta, a
major risk factor for the development of heart failure
(Mitchell 2008; O’Rourke and Hashimoto 2007). It is
still unclear, however, whether vascular hypertension
is a cause, or symptom, of this arterial stiffening
(Arribas et al. 2006; McEniery et al. 2007). In
addition to heart failure, chronic hypertension is
implicated as a major risk factor in the development
of strokes (Nilsson 2005), renal failure (Lariviere and
Lebel 2003) and aortic aneurysms (Lederle et al.
2008). The fundamental role of elastic fibre compo-
nents in maintaining arterial function is underlined by
the severe clinical consequences of both fibrillin and
tropoelastin mutations (Kielty et al. 2002; Robinson
and Booms 2001). Mutations in fibrillin-1, for
example, cause Marfan syndrome, a heritable con-
nective tissue disorder which is associated with
ocular, skeletal, pulmonary and vascular defects. It is
these vascular pathologies which are primarily re-
sponsible for the markedly reduced life expectancy
experienced by Marfan patients in the absence of
modern medical interventions [32 ±16 years
(Silverman et al. 1995)]. Dilatation, and ultimately,
dissection, of the aortic root and/or ascending aorta
being the main cause of death (Robinson and Booms
2001). Mutations in elastin can have an equally severe
impact on morbidity and mortality giving rise to
supravalvular aortic stenosis (SVAS), which in turn
can cause left ventricular hypertrophy and ultimately
congestive heart failure (Milewicz et al. 2000).

The stiffness of central arteries, as determined by
in vivo methods such as transesophageal echocardi-
ography (Pearson et al. 1994) and pulse wave velocity
(O’Rourke et al. 1968; Ruitenbeek et al. 2008) or by
in vitro mechanical testing approaches (Bruel and
Oxlund 1996; Learoyd and Taylor 1966), increases
with age independently of confounding factors such
as atherosclerosis or hypertension. The contribution
of individual tissue components to this age-related
progression of arterial stiffening is, however, less well
defined (Fig. 5). Arterial collagen concentration has
been reported to: steadily increase, to increase only
after the age of 50 and to remain unchanged with age
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(Cattell et al. 1996; Hosoda et al. 1984; Maurel et al.
1987). Although elastin concentration in ageing
arteries has been reported to decrease (Hosoda et al.
1984; Maurel et al. 1987), in the specific case of
normotensive individuals, aortic elastin concentration
appears to increase (Cattell et al. 1996). Cattell and
co-workers highlight the need to distinguish between
changes in the absolute amount of a tissue component
versus changes in its concentration (Cattell et al.
1996). In their study, aortic collagen and elastin
concentrations increased with age, whilst the absolute
amounts decreased. The authors attribute this discrep-

ancy to the age-related differential loss of other tissue
components. There is mounting evidence to suggest
that ECM organisation, rather than relative composi-
tion mediates arterial mechanical properties. The
collagen/elastin ratio, for example, is a poor predictor
of relative tissue mechanical properties (Cox 1981)
and the highly organised structure of elastic lamellae
becomes increasingly disrupted in the ageing aorta
(Avolio et al. 1998; Bruel and Oxlund 1996).
Theoretical modelling of the artery wall during
extension suggests that altered collagen fibril-fibril
interactions, rather than changes in the compliance of
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individual fibrils, underlies age-related arterial stiff-
ening (Zulliger and Stergiopulos 2007). In the same
study, the authors present evidence that alterations in the
microstructure of elastic fibre are likely to play an
important role in determining tissue mechanical properties
and that, as a consequence, the model of elastin as an
isotropic solid is over-simplified. The proteolytic, oxida-
tive and cross-linking mechanisms which are thought to
compromise the structure of elastic fibres in skin and the
lungs are also thought to bemajor factors in arterial ageing
(Watanabe et al. 1996; Zieman et al. 2005). In addition to
these chemical and biochemical mechanisms, the ex-
treme mechanical demands made on tissues such as the
aorta may promote the mechanical failure of elastic fibres
(O’Rourke and Hashimoto 2007).

Conclusions: repairing and preventing elastic fibre
degradation

Although collagenous structures, such as tendons,
may become increasingly compliant with age
(Onambele et al. 2006) elastic fibre-rich tissues,
such as skin, blood vessels, and lungs, in general,
lose their compliance in older individuals. The repair
of damaged elastic fibres within these tissues
remains a difficult challenge for biomedicine, but
in tissues such as photoaged skin, topical treatment
with all-trans retinoic acid has been shown to
promote the deposition of fibrillin-1 but not of type
I collagen (Watson et al. 2008). In the vasculature,
whilst there is a great deal of interest in the potential
of in vitro tissue engineering approaches (for a
review see Kielty et al. 2007), Merrilees and co-
workers have demonstrated the ability of an ECM
glycoprotein (verscian) to stimulate elastic fibre
deposition in vivo (Merrilees et al. 2002). Perhaps
the best hope, however, lies with preventing the
damage from occurring; elastic fibres have a wide-
spread tissue distribution, where they fulfil vital mechan-
ical and biochemical roles and are uniquely long-lived and
hence susceptible the accumulation of age-related dam-
age. This combination of factors suggests that any
preventative strategies which succeed in ameliorating the
adverse effects of protein glycation and low grade
inflammation (Vijg and Campisi 2008), for example, are
likely to have profound effects on elastic fibre structure/
function in ageing tissues and hence on human morbidity
and mortality.
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