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Abstract The co-inhibitory receptor killer-cell
lectin like receptor G1 (KLRG1) is expressed on
NK cells and antigen-experienced T cells and has
been postulated to be a marker of senescence.
Whilst KLRG1 has frequently been used as a
marker of cellular differentiation, data are emerging
indicating that KLRG1 plays an inhibitory role. In
this review we examine evidence highlighting this
view of KLRG1 with emphasis on the functional
defects that arise during T cell differentiation with
age that may, in part, be actively maintained by
inhibitory receptor signalling.
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Introduction

The immune system undergoes a dramatic restructur-
ing with age, leading to a decline in immune responses
and an increased vulnerability of old individuals. The
incidence and severity of infectious diseases, such as

pneumonia (LaCroix et al. 1989), meningitis (Gorse et
al. 1984), sepsis (Chattopadhyay and Al-Zahawi
1983), urinary tract infections (Ackermann and
Monroe 1996), infection with respiratory syncytial
virus (Barker and Mullooly 1980) or influenza
(Sprenger et al. 1993) all increase with age. Indeed
the mortality rate of older adults suffering urinary
tract infections or tuberculosis is ten-fold higher than
that of young adults (Yoshikawa 1997). This waning
immunity in old age results from defects in numerous
different leukocyte populations with the dysfunction
being most pronounced in T cells. This T cell immune
decline is marked by a dramatic decline in the number
of naïve T cells as a result of a thymic atrophy (Douek
et al. 1998; Linton and Dorshkind 2004). This
reduced thymic output leads to the peripheral expan-
sion of naïve and memory T cells to regenerate the T
cell pool, which in turn leads to the accumulation of
oligoclonally expanded, functionally impaired T cells
(Akbar and Fletcher 2005; Messaoudi et al. 2004).
These age-associated changes contribute to the inabil-
ity of the aged immune system to respond to new
antigenic challenge and mount optimum responses to
vaccination (Goronzy et al. 2001).

Phenotypic changes to T cells during aging

There are numerous reports cataloging the phenotypic
and functional changes to human T cells that occur
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during ageing (Table 1). Old individuals show an
increased proportion of T cells that are highly
differentiated, with similar phenotypic changes occur-
ring in both CD4+ and CD8+ T cells during
differentiation. However, the rate at which these
changes happen varies within each subset, with age-
related changes being more pronounced on CD8+ T
cells due to a greater homeostatic stability of CD4+ T
cells (Effros et al. 1994; Czesnikiewicz-Guzik et al.
2008; Goronzy et al. 2007). These highly differenti-
ated cells have functional defects that may explain the
decreased efficiency of the immune system in older
individuals (Fletcher et al. 2005). Highly differentiat-
ed T cells are characterised by the loss of the cell
surface co-stimulatory molecules CD27 and CD28,
CD8+ T cells losing CD28 first followed by CD27
with the converse being true for CD4+ T cells (Appay
et al. 2002; Amyes et al. 2003; Fletcher et al. 2005;
Plunkett et al. 2005). Initially, it was thought that the
loss of CD28 was a major factor in the reduced
activation and function of these cells (Champagne et
al. 2001; Effros et al. 2005). However, subsequent
studies have suggested a greater plasticity with regard
to co-stimulatory receptor expression and usage
among T cells. For example, co-stimulation through

ICOS, a CD28 family member, and CD137 and
CD134, members of the TNF family, have all been
shown to enhance the proliferation (Bukczynski et al.
2003; Serghides et al. 2005; Plunkett et al. 2007;
Waller et al. 2007) and telomerase activity in
CD8+CD28- T cells (Plunkett et al. 2007). This
redundancy in co-stimulatory receptor usage suggests
that changes in addition to the loss of co-stimulatory
receptors are involved in T cell dysfunction during
ageing. One such change may be a rise in co-
inhibitory receptors, in particular the co-inhibitory
receptor killer-cell lectin like receptor G1 (KLRG1).

KLRG1—more than a marker for T cell memory

In both mice and humans, KLRG1 expression is
found on NK cells and antigen-experienced T cells
(Blaser et al. 1998; Hanke et al. 1998; Voehringer et
al. 2002). Human KLRG1 is also found on a subset of
γδ T cells (Eberl et al. 2005) and in a large proportion
of CD4+ and CD8+ T cells found in cord blood
(Marcolino et al. 2004). In young adults, the
expression of KLRG1 is about 40% on CD8+ T cells
and 20% on CD4+ T cells (Voehringer et al. 2002).

Table 1 Phenotypic and functional characteristics of human T cell subsetsa

Phenotype Naïve Central memory Effector memory CD45RA memory References

CD45RA +++ - - +++ (Akbar et al. 1988; Sallusto et al. 2004)

CD45RO - +++ +++ - (Akbar et al. 1988; Sallusto et al. 2004)

CD28 +++ ++ +/- +/- (Hamann et al. 1997; Sallusto et al. 2004)

CD27 +++ ++ +/- +/- (Akbar et al. 1988; Sallusto et al. 2004)

CCR7 +++ ++ - - (Sallusto et al. 2004)

CD62L +++ +++ + + (Sallusto et al. 2004)

CD11c - +++ +++ +++ (Faint et al. 2001)

CD57 - + ++ +++ (Appay et al. 2007; Koch et al. 2008)

KLRG1 + ++ ++ +++ (Voehringer et al. 2001; Ouyang et al. 2003)

Telomere length +++ ++ + ++ (Faint et al. 2001; Plunkett et al. 2005)

a Activation of T cells results in phenotypic and functional changes. Using relative telomere length and cell surface phenotype as
combined criteria, a scheme for identifying T cells at different stages of differentiation can be constructed. Following antigen
stimulation, naïve T cells lose expression of CD45RA and become CD45RO+ memory cells. Upon differentiation to an effector
memory population, T cells lose CCR7, CD62L, CD28 and CD27, while expression of CD11c, CD57 and KLRG1 increase. In
general, similar phenotypic changes occur in both CD4+ and CD8+ T cells during differentiation; however, the rate at which these
changes occur can vary within each subset (Appay et al. 2002). The balance of naïve and memory cells is altered during aging, with
older adults showing significantly increased levels of highly differentiated effector memory and primed CD45RA+ T cells and a
concomitant loss of naïve cells (Pawelec et al. 2004). These highly differentiated T cells have short telomeres and consequently
function poorly, suggesting that, during the course of aging, these populations are eventually driven to end-stage differentiation
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The expression of KLRG1 rises dramatically with
age, with greater than 90% expression of KLRG1
being seen on CD8+ T cells in individuals over
65 years of age (Ouyang et al. 2003; Ito et al. 2006;
Henson et al. 2009). The expression of KLRG1
increases not only with age but also with differenti-
ation, with the highest percentage of expression being
seen on memory cells and highly differentiated end
stage cells (Voehringer et al. 2002; Thimme et al.
2005). In mice, KLRG1 has been used to identify
memory precursor cells from effector T cells. Through
the use of acute viral infection models it has been
shown that KLRG1 can be used to distinguish short-
lived effector CD8+ T cells (KLRG1high) and memory
precursor effector CD8+ T cells (KLRG1low) (Joshi et
al. 2007; Mousavi et al. 2008).

Despite the extensive use of KLRG1 as a marker of
differentiation, KLRG1 possesses an immune receptor
tyrosine-based inhibitory motif (ITIM) in its cytoplas-
mic domain, suggesting that it may play a functional
role in the immune system. An inhibitory role for
KLRG1 has been demonstrated in mice, with
antibody-mediated cross-linking of KLRG1 being
shown to inhibit cytolytic activity and IFNγ produc-
tion in NK cells (Robbins et al. 2002). However, this
result is at odds with a number of reports that failed to
observe an inhibitory cytolytic effect (Hanke et al.
1998; Grundemann et al. 2006); these differing
outcomes may be the result of Robbins et al. using
an NK clone over-expressing KLRG1. In murine T
cells, the cross-linking of TCR and KLRG1 by plate-
bound antibodies was shown to lower Ca2+ influx
(Beyersdorf et al. 2001) and to decrease IL-2
production (Tessmer et al. 2007). The use of
KLRG1-transgenic mice showed that antigen-
stimulated T cells in the presence of KLRG1’s ligand,
E-cadherin, inhibited the proliferative capacity of
CD8+ T cells (Grundemann et al. 2006).

Data is now emerging suggesting that KLRG1
plays an inhibitory role in human NK cells and T
cells. KLRG1-mediated inhibition of NK cell function
revealed that KLRG1/ligand interactions inhibit the
cytolytic activity of polyclonal human NK cells by
interfering with both degranulation and IFNγ release
(Schwartzkopff et al. 2007). Consistent with murine
data, the authors also show the degree of inhibition to
be modest, and to require high expression levels of
KLRG1’s ligand, E-cadherin (Schwartzkopff et al.
2007).

A recent study has demonstrated a role for KLRG1
as an inhibitory receptor in T cells. The authors used a
CD4+ T cell hybridoma transduced with KLRG1 and
showed that KLRG1-ligation inhibited the NFAT-
signaling pathway and down-regulated CD95 mediat-
ed lysis (Rosshart et al. 2008). Furthermore, they also
demonstrated that both KLRG1 and CD3/TCR signals
have to be provided in a spatially restricted manner in
order to inhibit T-cell activation (Rosshart et al.
2008), suggesting that KLRG1 inhibits T cell function
only when MHC/antigen and KLRG1 ligands are
expressed on the same target cells. Data from our
laboratory has also shown KLRG1 to have an
inhibitory effect on primary CD8+ T cells; we have
shown that blocking KLRG1 signaling during TCR
activation using antibodies against its ligand, E-
cadherin, enhanced proliferative activity that was
linked directly to an Akt-mediated increase in
synthesis of cyclin D and E and a decrease in the
cyclin inhibitor p27 (Henson et al. 2009). Whist we
observed a significant enhancement in proliferative
capacity in CD8+ T cells isolated from young
individuals the effect was not as great as that of
CD8+ T cells isolated from old individuals, suggesting
that other, as yet unidentified, age-related defects are
contributing to the poor proliferative responses of
CD8+ T cells from old donors and these remain to be
clarified.

How KLRG1 exerts its inhibitory effects

KLRG1 has been shown to be a cadherin receptor,
recognising E-, N- and R-cadherin (Grundemann et al.
2006; Ito et al. 2006; Schwartzkopff et al. 2007). The
cadherins comprise a family of transmembrane gly-
coproteins that mediate Ca2+ dependent cell-cell
adhesion (Gumbiner 2005). Classically, E-cadherin
is expressed on epithelial cells and Langerhans cells,
whereas N- and R-cadherin are expressed by the
nervous system. We have shown E-cadherin to be
expressed on peripheral blood cells, notably on
myeloid DCs, with no expression of N-cadherin being
found (Henson et al. 2009). Demonstrating that E-
cadherin is found not only in the epithelium but on a
wide range of antigen-presenting cells suggesting a
broader range of scenarios for immune control by
KLRG1/cadherin interactions. A recent report using a
KLRG1-reporter cell assay with domain-deleted E-
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cadherin mutants (Δ1–Δ5) have shown that the first
and the second extracellular domains of E-cadherin to
be critical for interaction with KLRG1 (Rosshart et al.
2008).

KLRG1 contains one ITIM motif in its cytoplas-
mic domain, which mediates its effects through the
recruitment of SHIP-1 and SHP-2 phosphatases and
a tyrosine residue at position 7 in the ITIM (Xu et al.
2001; Tessmer et al. 2007). Murine KLRG1 also
contains a PxxP motif in its cytoplasmic domain that
could potentially interact with proteins containing
SH3 domains (Abramson et al. 2002). KLRG1
forms both monomers and dimers, with a substan-
tial fraction of KLRG1 being found on the cell

surface as disulfide-linked trimeric and tetrameric
complexes (Rosshart et al. 2008). The cysteine
residues in human KLRG1 that are responsible for
disulfide-linked multimer formation have not yet
been defined; however, murine KLRG1 contains
four cysteines proximal to the membrane in the
extracellular domain that are probably not involved
in intramolecular disulfide-bonding (Voehringer et
al. 2001). It has been demonstrated that, in contrast
to KLRG1-tetramers (Grundemann et al. 2006;
Rosshart et al. 2008), monomeric KLRG1 shows
little discernable binding to E-cadherin-expressing
cells, suggesting that KLRG1 binds to E-cadherin
with relatively low affinity. Multimerisation of

Fig. 1 Changes in Akt signaling with differentiation of CD8+

T cells and co-inhibitory receptor killer-cell lectin like receptor
G1 (KLRG1)-blocked highly differentiated CD8+ T cells. An
undifferentiated cell signals through CD28, initiating the Akt
signalling pathway, which results in a broad range of cellular
functions, including the initiation of proliferation. Upon
differentiation, CD8+ T cells lose CD28 and gain the inhibitory
molecule KLRG1, which acts through SHIP-1 and SHP-2 to

degrade PIP3 to PIP2 (Tessmer et al. 2007), preventing
phosphorylation of Akt(ser473), thus regulating the function of
PI3K. Blocking KLRG1 signals in highly differentiated CD8+

T cells causes the conversion of PIP2 to PIP3 leading to a
restoration of pAkt(Ser473) to the levels seen after activation in
the less differentiated CD8+ subsets, enhancing proliferation in
otherwise dysfunctional cells (Henson et al. 2009)
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KLRG1 increases the avidity and may thereby
enhance the sensitivity for inhibition (Rosshart et
al. 2008).

The effectors SHIP-1 and SHP-2 degrade PIP3 to
PIP2, thus regulating the function of PI3K (Tessmer et
al. 2007). PI3K plays a crucial role in a broad range
of cellular functions in response to extracellular
signals. A key downstream effector of PI3K is the
serine-threonine kinase Akt, which, in response to
PI3K activation, phosphorylates and regulates the
activity of a number of targets, including kinases,
transcription factors and other regulatory molecules
(Donahue and Fruman 2004). The activation of Akt
requires the binding of its pleckstrin homology (PH)
domain to the phosphoinositide products of PI3K
resulting in its recruitment to the plasma membrane.
Once there, Akt activation is controlled by phosphor-
ylation at two different sites, Thr308 and Ser473 (Alessi
et al. 1996; Jacinto et al. 2006). Highly differentiated
CD8+CD28-CD27- T cells are unable to phosphory-
late Akt(ser473), with the Thr308 phosphorylation site
being unaffected (Plunkett et al. 2007). We assessed
whether signalling via KLRG1 contributes to any of
the attenuated differentiation-related functional
changes in CD8+ T cells. By blocking KLRG1
signalling during TCR activation using antibodies
against its major ligand, E-cadherin, we showed a
reversal of the defective Akt(ser473) phosphorylation
in highly differentiated CD8+ T cells isolated from
both young and old donors to the levels that are found
after activation in the less differentiated CD8+ subsets
(Fig. 1). This indicates that the defect in Akt
phosphorylation is not a passive consequence of
antigenic-driven differentiation of CD8+ T cells but
that it is instead actively maintained by KLRG1
signalling (Henson et al. 2009).

Conclusion

Highly differentiated T cells accumulate with age;
these cells have numerous defects including a
decreased capacity for proliferation, an inability
to produce IL-2, defective Akt(ser473) phosphory-
lation after activation, short telomeres and low
telomerase activity, indicating that they are close to
replicative senescence. In addition, these cells
express increased levels of the inhibitory receptor
KLRG1. Despite the extensive use of KLRG1 as a

marker of differentiation, KLRG1 possesses an ITIM
in its cytoplasmic domain, suggesting that it may
play a functional role in the immune system. KLRG1
signalling has been shown to inhibit the cytolytic
activity of polyclonal human NK cells and T cell
hybridomas, as well as interfering with proliferation
via Akt-mediated changes in cyclins and cyclin
inhibitors. Therefore, signalling through KLRG1
may be responsible in part for the defects observed
in highly differentiated T cells. It is well recognised
that older humans have decreased responses to
vaccination (Hayward et al. 1994; Stepanova et al.
2002; Wick et al. 2000) and it is possible that
modulating certain inhibitory receptors like KLRG1
that are preferentially expressed in highly differen-
tiated T cells, which expand during ageing, could
potentially boost immunotherapeutic regimes such as
vaccination for the aged.
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