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Abstract
For the analysis with recurrent events, we propose a generalization of the accelerated failure time
model to allow for evolving covariate effects. These so-called accelerated recurrence time models
postulate that time to expected recurrence frequency, upon transformation, is a linear function of
covariates with frequency-dependent coefficients. This modeling strategy shares the same spirit as
quantile regression. An estimation and inference procedure is developed by generalizing the
celebrated Powell’s (1984, 1986) estimator for censored quantile regression. Consistency and
asymptotic normality of the proposed estimator are established. An algorithm is devised to attain
good computational efficiency. Simulations demonstrate that this proposal performs well under
practical settings. This methodology is illustrated in an application to the well-known bladder
cancer study.
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1. INTRODUCTION
Recurrent events are common in longitudinal studies where each individual may experience
multiple episodes of the same event, e.g., machine breakdowns, epileptic seizures, tumor
recurrences, or hospitalizations. Often the investigators are interested in the effects of
covariates on the recurrent event times. Since the intra-individual correlation is typically
evident in the data, many semiparametric models formulate the covariate effects on the
mean frequency or rate function of the recurrences marginally, rather than the event
intensity function conditionally on the process history. Such parsimonious models have been
well accepted in practice. One popular modeling approach is to specify the covariate effects
on the frequency scale of the mean frequency function. Pepe & Cai (1993), Lawless &
Nadeau (1995), and Lin et al. (2000) among others suggested and investigated the
proportional means and rates models with multiplicative covariate effects on mean
frequency and rate. These models can be extended to the more general class of
semiparametric linear transformation models (Lin et al., 2001). As an alternative approach,
the covariate effects may be specified as time scale changes of the mean frequency function,
as in the accelerated failure time model (Lin et al., 1998). Many have argued the advantage
of ‘direct physical interpretation’ with the latter specification (Reid, 1994).

All these aforementioned models hold the covariate effects constant. Unfortunately, this
assumption is not always reasonable and indeed covariate effects may evolve. In clinical
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trials, it is unrealistic to expect an intervention to take full effect instantaneously right after
randomization. On the other hand, drug resistance with, say, AIDS therapies might develop
over time, which erodes the treatment effect (e.g., Eshleman et al., 2001; Wu et al., 2005).
These circumstances call for varying-coefficient models, but such developments are fairly
limited for recurrent events. Fine et al. (2004) suggested the temporal process regression
model to allow for varying covariate effects on the frequency scale of the mean frequency
function. Chiang & Wang (2009) proposed a varying- coefficient model for the rate function
and developed an estimation procedure based on kernel smoothing. In this article, we
consider covariate effects as time scale changes, and propose a generalization of the
accelerated failure time model. These so-called accelerated recurrence time models are
presented in section 2. Our modeling strategy shares the same spirit as quantile regression.
We present an estimation and inference procedure in sections 3 and 4, and a computational
algorithm in section 5. Section 6 provides simulation results and an application to the well-
known bladder cancer study. Section 7 concludes with final remarks. All proofs are
collected in the appendix.

2. THE DATA AND MODELS
Denote the recurrent event times in order by T(j), j = 1, 2, ….They are equivalently

represented by a counting process , where I(.) is the indicator function.
However, the observation is limited to follow-up time L. That is, only the first M = R(L)
events are observed. Denote the observed counting process by N(.) = R(.∧ L), where ∧ is the
minimization operator. Write a p-vector Z as the covariates of interest. The data consist of

, i = 1,…., n, as n iid replicates of {N(.); M;
T(j) : j = 1,…, M; L; Z}.

The distribution of the counting process R(.) is fully governed by its intensity function. But,
as indicated in section 1, its appropriate specification can be practically challenging due to
the presence of intra-individual correlation. Therefore, we consider the mean frequency
function instead:

i.e., the expected frequency at time t given covariates Z. Define its inverse function as

which is time to expected frequency u. Note that expected frequency is a positive number,
but not necessarily an integer. Let X = (1,ZT)T. We propose the accelerated recurrence time
models taking the form:

(1)

where the (p+1)-vector of coefficients β0(u) is a function of the expected frequency u. In the
above specification, can be any subset of (0,∞). Nevertheless, we shall consider two
specific cases: (i) is a singleton, and (ii) = (0,∞). Correspondingly, they will be
appropriately referred to as singleton and global models. A singleton model is useful when a
particular expected frequency is of interest but not necessarily others. In contrast, the global
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model facilitates the investigation of potentially evolving covariate effects, although the
model is obviously somewhat more restrictive.

To complete the model specification, we assume

(2)

Under the global model, the above is equivalent to that R(.) is independent of L conditionally
on Z. For a singleton model, this censoring mechanism becomes even weaker.

These proposed accelerated recurrence time models have a connection with the quantile
regression model. When each individual may experience at most one event, μZ(.) and τZ(.)
become the distribution and quantile functions of the event time, respectively. Then, (1)
reduces to a quantile regression model. On the other hand, the accelerated failure time model
of Lin et al. (1998) is a special case of the global accelerated recurrence time model when
all components of β0(u) except the intercept are constant in u. Allowance for frequency
dependence of coefficients in this proposal greatly enhances the model flexibility.
Meanwhile, our inference procedure may be used to assess the goodness-of-fit of the
accelerated failure time model as will be shown later.

3. ESTIMATION WITH A SINGLETON MODEL
Under the singleton model, = {u} in (1) and (2) for a certain expected frequency of interest
u. Throughout this section, u is held fixed.

Under mild regularity conditions, model (1) implies

where the left hand side is a monotone function of β. This identity is equivalent to

where a+ = a ν 0 and ν is the maximization operator. Unfortunately, these identities cannot
be directly used in the estimation of β0(u) since the observation of recurrent events is limited
by L. Nevertheless, they motivate the following result that accommodates limited follow up.

THEOREM 1
Suppose that (1) and (2) hold for = {u}. If E[X⊗2I{L > τZ(u)}] is nonsingular, then β0(u) is
identifiable, where ν⊗2 = ννT for vector ν. Furthermore,

(3)

where
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This result extends that established by Powell (1984, 1986) for censored quantile regression
when the censoring time is observed.

Define an objective function

Theorem 1 leads to an estimator for β0(u):

(4)

THEOREM 2
Suppose that the assumptions in theorem 1 hold. Given that β0(u) is in the interior of a
compact parameter space ℬ, β ̂(u) is strongly consistent for β0(u). In addition, assume that

(C1) Z and M are bounded;

(C2) μ ̇Z(t) = dμZ(t)/dt is bounded and continuous at t = τZ(u), uniformly in Z;

(C3) The conditional distribution function of L given Z has a bounded density function
at τZ(u) for all Z; and

(C4) D(u) = E[X⊗2μ ̇Z{τZ(u)}τZ(u)I{L > τZ(u)}] is nonsingular.

Then, n1/2{β̂(u)−β0(u)} is asymptotically normal with mean 0 and variance D(u)−1∑(u,
u)D(u)−1, where

Unfortunately, the sandwich variance estimate of β̂(u) is not available, since the asymptotic
variance of β̂(u) involves the rate function μ ˙Z(.) and the gradient

is not continuous. Nevertheless, several methods have recently been developed for variance
estimation of this type. In particular, the resampling approach of Jin et al. (2001) may be
employed by perturbing the objective function. Let νi, i = 1,…., n, be iid nonnegative
random variables of unit mean and unit variance, e.g., an exponential distribution of unit
rate. Write
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which gives a perturbed estimator β̂ *= arg minβΨ*(β;u). It can be shown that the
distribution of n1/2{β̂*(u) − β̂(u)} conditionally on the data is asymptotically the same as
n1/2{β̂(u) − β0(u)}. Thus, the distribution of the latter may be approximated by a simulated
distribution of the former.

4. INFERENCE WITH THE GLOBAL MODEL
Under the global model, model (1) holds for = (0,∞). Since the global model implies
singleton models for all points in  we apply the estimation procedure described in section
3 in a pointwise fashion to obtain the estimator β̂(.).

THEOREM 3
Suppose that (1) and (2) hold for = (0,∞). If there exists r > 0 such that E[X⊗2I{L >
τZ(r)}] is nonsingular, then β0(.) is identifiable on (0, r]. Furthermore, if β0(u) is in the
interior of the compact parameter space ℬ for all u ∈ [l, r], then

almost surely, where ‖.‖ is the Euclidean norm.

The lower and upper bounds, l and r, are imposed for different reasons. The lower one
ensures that β0(.) on [l, r] is bounded; note that β0(u) may not be so as u approaches 0 if
τZ(0) = 0. On the other hand, the upper bound is typically necessary for identifiability given
limited follow-up.

THEOREM 4
Suppose that the assumptions in theorem 3 hold. In addition, assume condition

(C1) along with

(C2°) μ ̇Z (t) is bounded and continuous, uniformly in t ∈ [τZ(l), τZ(r)] and in Z;

(C3°) The conditional distribution function of L given Z has a bounded density function
on [τZ(l), τZ(r)] for all Z; and

(C4°) infu∈[l,r] eigmin{D(u)} > 0, where eigmin(.) denotes the minimum eigenvalue of a
matrix.

Then, n1/2{β̂(.)−β0(.)} on [l, r] converges weakly to a Gaussian process with mean 0 and
covariance function D(u1)−1∑(u1, u2)D(u2)−1, where

To estimate the distribution of n1/2{β̂(.) − β0(.)}, we use the same stochastic perturbation
approach in section 3 except for that the estimand now is a functional. We thus obtain β̂*(.).
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The distribution of n1/2{β̂*(.) − β̂(.)} conditionally on the data is asymptotically the same as
n1/2{β̂(.) − β0(.)}. The simulated distribution by the resampling procedure provides a basis
for inference. In the following, we describe a number of practically useful procedures.
Focusing on a scalar component of the coefficient process, we shall abuse the notation, β0(.),
β̂(.) and β̂ *(.), to denote the component of interest.

With the simulated distribution of β̂*(.), pointwise confidence intervals for β0(.) can be
obtained by the Wald or percentile method. The 95% equal-precision confidence band for
β0(u) on [l, r] is given by

where SE{β̇(u)} is the standard error of β̂(u), and ν0.95 is the estimated 95th percentile of
supu∈[l,r]|β̂*(u)− β̂(u)|/SE{β̂(u)}.

With evolving covariate effect, one may still wish to succinctly summarize β0(.). To do so,
we introduce an average measure

A natural estimator is the plug-in estimator denoted by η̂, and its variance can be obtained
from the resampling procedure. In comparison with, say, adopting the accelerated failure
time model, this approach is more robust since η0 is still meaningful when the covariate
effect is not constant.

The accelerated recurrence time model is fairly general. However, one would opt for a more
restrictive model, e.g., the accelerated failure time model, for potential efficiency gain if
some or all covariates are known to have constant effects. Therefore, it is of interest to test
whether a certain covariate indeed has evolving effect. To be specific, the null hypothesis is
β0(u) = η0 for all u ∈ [l, r]. We propose a test statistic as follows

where the standard error SE{β̂(u) − η̂} is obtained from the resampling procedure. Under the
null hypothesis, ξ̂ is consistent for 0. To obtain the p-value of the test, one may compare ξ̂ to
the simulated distribution of

5. A COMPUTATIONAL ALGORITHM
Despite the fact that the estimator β̂(u) is well defined, its numerical implementation is not
trivial. Note that the objective function Ψ(β;u) is not convex, and the gradient Ψ̇(β u) is not
continuous. Nevertheless, these issues are shared by Powell’s (1984, 1986) estimator for
censored quantile regression, which has received much attention and algorithmic
developments over the years (e.g., Womersley, 1986; Buchinsky, 1994; Koenker & Park,
1996; Fitzenberger, 1997). By taking advantage of them, we develop an algorithm for the
computation of β̂(u).
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One important feature of Ψ(β; u) is its piecewise linearity in β. As a result, a minimizer
along a given line is a nonsmooth point of Ψ̇(β u), i.e., in

 Then, a line search algorithm follows
immediately by evaluating a finite number of candidate points on the line. One may slightly
strengthen this search by eliminating any nonsmooth point resulting only from βTXi = log Li
in the case of Mi ≥ u, at which the ith individual’s contribution to Ψ(β; u) is locally concave.

Furthermore, the global minimization has the interpolation property. Such a property was
established for the Powell’s estimator by Womersley (1986); see also Fitzenberger (1997).
We now extend it to the present problem. Specifically, if the design matrix (X1…Xn)T has
full rank of p + 1, then there exists a global minimizer β̂(u) of Ψ(β; u) which interpolates at
least p + 1 data points in the sense that

for {kl : l = 1,…, p + 1} ⊆ {1,…, n} and the rank of (Xk1 …Xkp+1)T is p + 1.

This interpolation property suggests that an enumeration algorithm guarantees to locate a
global minimizer by considering all candidate interpolation sets. However, the computation
is prohibitively intensive for most practical problems. For this reason, we propose an
efficient algorithm as follows. Start with an interpolation set, and calculate the associated β
and subsequently the objective function Ψ(β; u). At each step, update the interpolation set,
with one point replaced, to reduce the objective function. By keeping the other p data points,
a search line is determined and the aforementioned line search algorithm is used to locate the
replacement data point. The algorithm stops when no point in the interpolation set can be
replaced to further reduce Ψ(β; u).

This algorithm is motivated by those of Womersley (1986) and Fitzenberger (1997) for
censored quantile regression. Similarly, it guarantees algorithmic convergence, to a local
minimizer of Ψ(β; u). Although a global minimizer may not be located, a local strict
minimizer is asymptotically equivalent to β̂(u) under mild conditions. In fact, it can be
shown that the limit of the objective function, ψ(β; u), has a unique strict minimizer at β0(u).
For this reason, the line search component of the preceding algorithm may target a local
minimizer rather than a global one on the line. From our experience, this substantially
improves the computational efficiency.

6. NUMERICAL STUDIES
6.1 Simulations

We imposed a unit mean gamma frailty on a homogeneous Poisson process to generate
recurrent events with unit baseline rate. The level of intra-individual correlation is
determined by the variance of the gamma distribution. Two covariates were considered. The
first covariate followed the equal-probability Bernoulli distribution, and had a ramp-up
effect going from none to full effect linearly with mean recurrence frequency and staying
constant afterwards. This effect pattern is reasonable for an intervention in a typical clinical
trial. The second covariate followed a uniform distribution on [−0.5, 0.5] and had a constant
effect.

Two variance values, 0 and 0.5, of the gamma frailty were chosen, where 0 corresponds to
zero intra-individual correlation. The first coefficient was set to 1 ∧ (u/1.5) as a function of
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expected frequency u, and the second coefficient was 1. The follow-up time followed the
uniform distribution between 0 and 12, resulting in an average of 4.3 observed recurrent
events. The sample size was 100. For interval estimation and inference, the resampling size
of 99 was chosen. This size is adequate for simulation purposes although a much larger size
is needed for a specific dataset to obtain reliable results. Under each of the two intra-
individual correlation scenarios, simulation studies were conducted with 1,000 iterations.

Table 1 reports the estimation of β0(u) at five expected frequencies from 0.5 to 2.5. The
estimator was virtually unbiased. Furthermore, the standard error based on the resampling
approach tracked the standard deviation well. Finally, the Wald 95% confidence interval had
a coverage close to the nominal level. Such performance is remarkable particularly when the
censoring rate measured by E[I{log L < β0(u)TX}] reached 40% at u = 2.5.

We also evaluated the estimation and inference procedures described in section 4 for the
global accelerated recurrence time model on [0, 2.5]. Numerically, β̂(.) was obtained at 100
equally-spaced points. The results are summarized in table 2. The estimation of the average
coefficient η0 had good performance in terms of estimator bias, standard error, and coverage
of the Wald 95% confidence interval. The 95% equal-precision band for β0(.) on [0, 2.5]
performed reasonably well for the two slopes, but had an under-coverage for the intercept.
The constant coefficient test was applied to the intercept and two slopes. Note that only the
second slope was constant. For the intercept, the null hypothesis of constant coefficient was
rejected 100%. The power to detect a varying coefficient for the first slope was higher under
zero intra-individual correlation, which is expected. Finally, the empirical size of the test for
the second slope was reasonably close to the 0.05 nominal level.

6.2 Application to the bladder tumor study
We applied our proposal to the well-known bladder tumor study (Byar, 1980). This
randomized clinical trial was conducted to determine the effects of two treatments,
pyridoxine and thiotepa, on the recurrences of bladder tumor. The dataset has been
extensively analyzed with various methods for recurrent events, including Wei et al. (1989)
and Lin et al. (1998). At study enrollment, all participants had superficial bladder tumors.
Following transurethral removal of these tumors, a total of 118 participants were
randomized to three treatment arms: 48 to placebo, 32 to pyridoxine, and 38 to thiotepa. The
average follow-up was 31 months, and 189 tumor recurrences were observed in 62
participants. The numbers of participants who experienced from 1 to the maximum 9 tumor
recurrences were 23, 11, 8, 4, 8, 1, 1, 3, and 3, respectively.

The global accelerated recurrence time model was adopted with four covariates: the two
treatment indicators as well as initial tumor number and size. The regression coefficients
were estimated over [0, 1.7] of expected frequency at 80 equally-spaced points. A
resampling size of 999 was used to ensure reliable interval estimation and inference. Figure
1 provides the estimated coefficients along with pointwise Wald 95% confidence intervals
and 95% equal-precision confidence band. To summarize the covariate effects, estimated
average coefficients are given in Fig. 1 and reported in table 3. Constant coefficient test
results are also presented in table 3. As shown, pyridoxine and initial size had little effect.
But a larger number of initial tumors tended to be associated with higher recurrences. On the
other hand, thiotepa on average reduced tumor recurrences. Interestingly, the effect of
thiotepa appeared to be increasing over time, which was supported by the constant
coefficient test with a p-value of 0.044. This suggests a time delay of thiotepa in reaching
the full effect after its administration. In this case, the average effect of thiotepa might be a
more meaningful effect summary than an estimate obtained from, e.g., the accelerated
failure time model as in Lin et al. (1998).
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7. REMARKS
In this article, we have introduced the accelerated recurrence time models for recurrent
events. Sharing the same spirit as quantile regression, they generalize the accelerated failure
time model to allow for the dependence of covariate effects on the expected recurrence
frequency. In comparison with other existing varying-coefficient models (Fine et al., 2004;
Chiang & Wang, 2009), these new models provide direct interpretation of covariate effects
on recurrence times instead of rates or cumulative rates. While an estimation and inference
procedure has been developed, a number of issues might be worth further investigation.

For interval estimation, the resampling method of Jin et al. (2001) is employed. Our
experience has shown that it has good performance both numerically and statistically. But its
computation is burdensome, especially when the global model is estimated. To deal with
nonsmooth estimating functions, Huang (2002) proposed a sample-based method that is
computationally much more efficient. This method can be directly applied to the singleton
model. But its application to the global model, i.e., with a functional estimand, does not
appear to be straightforward. This topic is under current research.

The objective function Ψ(β; u) is proposed for the purpose of estimation. However, a
weighted version of the objective function may also be constructed to obtain consistent
estimators, and more efficient estimation may then be pursued. Newey & Powell (1990)
investigated the efficiency issue with censored quantile regression. Their results can be
extended to the singleton accelerated recurrent time model. Nevertheless, the optimal weight
would involve the rate function μ̇Z and its feasibility in practice requires further study.

In the global accelerated recurrence time model, all coefficients are allowed to depend on
expected frequency with full flexibility. This may be viewed as the other extreme from the
accelerated failure time model. There are, however, practical situations where limited
flexibility in modeling is both reasonable and desirable. For example, in many clinical trials,
the effect of an intervention is of primary interest and indeed evolving intervention effect is
often scientifically plausible as in the bladder tumor study. But it might be reasonable to
postulate that certain baseline characteristics as included for adjustment purposes have fairly
stable effects. In this case, a model with a mixture of constant- and varying-coefficients
would be more appealing. As the referee pointed out, even for a varying coefficient, its
evolution may be known a priori to follow certain pattern, e.g., a step function. Again, this
situation calls for a less flexible model. These models open the possibility of more efficient
estimation and are under further developments.

With recurrent events, the follow-up time L, or censoring time, is always observed.
However, it is not necessarily the case with univariate survival data. Censored quantile
regression methods have also been developed under the circumstance that the censoring time
is not observed for uncensored individuals, including Portnoy (2003) and Peng & Huang
(2008). These methods might potentially be extended to address the global recurrence time
model. Since they are not applicable under a singleton model, conceivably robustness would
be somewhat compromised in comparison with our current proposal for the global model.
Nevertheless, efficiency gain is hopeful. These extensions are under investigation.

Finally, despite the flexibility of the proposed models, their goodness-of-fit can still be an
issue of concern. In light of their intimate relationship with the quantile regression model,
diagnostic techniques developed for the latter may again provide a good starting point, e.g.,
He & Zhu (2003), Peng & Huang (2008), and the references therein. Careful development
and thorough research are, nevertheless, needed.

Huang and Peng Page 9

Scand Stat Theory Appl. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Acknowledgments
The authors thank the referee and the Associate Editor for helpful comments. Partial support by funds from the U.S.
National Institutes of Health, the U.S. National Science Foundation and Emory University Research Committee is
gratefully acknowledged.

REFERENCES
Alexander K. Probability inequalities for empirical processes and a law of the iterated logarithm. Ann.

Probab. 1984; 12:1041–1067. Correction, 15, 428–430.
Andersen PK, Gill RD. Cox’s regression model for counting processes: a large sample study. Ann.

Statist. 1982; 10:1100–1120.
Buchinsky M. Changes in the U. S. wage structure 1963–1987: Applications of quantile regression.

Econometrica. 1994; 62:405–458.
Byar, DP. The Veterans Administration study of chemoprophylaxis for recurrent stage I bladder

tumors: Comparisons of placebo, pyridoxine, and topical thiotepa. In: Pavone-Macaluso, M.; Smith,
PH.; Edsmyn, F., editors. Bladder tumors and other topics in urological oncology. New York:
Plenum; 1980. p. 363-370.

Chiang C-T, Wang M-C. Varying-coefficient model for the occurrence rate function of recurrent
events. Ann. Inst. Statist. Math. 2009 in press.

Eshleman SH, Mracna M, Guay LA, Deseyve M, Cunningham S, Mirochnick M, Musoke P, Fleming
T, Fowler MG, Mofenson LM, Mmiro F, Jackson JB. Selection and fading of resistance mutations
in women and infants receiving nevirapine to prevent HIV-1 vertical transmission (HIVNET 012).
AIDS. 2001; 15:1951–1957. [PubMed: 11600822]

Fine JP, Yan J, Kosorok MR. Temporal process regression. Biometrika. 2004; 91:683–703.
Fitzenberger, B. A guide to censored quantile regressions. In: Maddala, GS.; Rao, CR., editors.

Handbook of statistics, volume 15: Robust inference. Vol. volume 15. North-Holland, Amsterdam:
1997. p. 405-437.

He X, Zhu L. A lack-of-fit test for quantile regression. J. Amer. Statist. Assoc. 2003; 98:1013–1022.
Huang Y. Calibration regression of censored lifetime medical cost. J. Amer. Statist. Assoc. 2002;

97:318–327. Correction, 97, 661.
Jin Z, Ying Z, Wei LJ. A simple resampling method by perturbing the minimand. Biometrika. 2001;

88:381–390.
Koenker R, Park BJ. An interior point algorithm for nonlinear quantile regression. J. Econometrics.

1996; 71:265–283.
Lai TL, Ying Z. Stochastic integrals of empirical-type processes with applications to censored

regression. J. Multivariate Anal. 1988; 27:334–358.
Lawless JF, Nadeau C. Some simple robust methods for the analysis of recurrent events.

Technometrics. 1995; 37:158–168.
Lin DY, Wei LJ, Yang I, Ying Z. Semiparametric regression for the mean and rate functions of

recurrent events. J. R. Stat. Soc. Ser. B Stat. Methodol. 2000; 62:711–730.
Lin DY, Wei LJ, Ying Z. Accelerated failure time models for counting processes. Biometrika. 1998;

85:605–618.
Lin DY, Wei LJ, Ying Z. Semiparametric transformation models for point processes. J. Amer. Statist.

Assoc. 2001; 96:620–628.
Newey WK, Powell JL. Efficient estimation of linear and type I censored regression models under

conditional quantile restrictions. Econometric Theory. 1990; 6:295–317.
Peng L, Huang Y. Survival analysis with quantile regression models. J. Amer. Statist. Assoc. 2008;

103:637–649.
Pepe MS, Cai J. Some graphical displays and marginal regression analyses for recurrent failure times

and time dependent covariates. J. Amer. Statist. Assoc. 1993; 88:811–820.
Portnoy, S. J. Amer. Statist. Assoc. Vol. 98. Vol. 101. 2003. Censored regression quantiles; p.

1001-1012.Correction by Neocleous, T., Vanden Branden, K. & Portnoy, S., 101, 860–861.

Huang and Peng Page 10

Scand Stat Theory Appl. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Powell JL. Least absolute deviations estimation for the censored regression model. J. Econometrics.
1984; 25:303–325.

Powell JL. Censored regression quantiles. J. Econometrics. 1986; 32:143–155.
Reid N. A conversation with Sir David Cox. Statist. Sci. 1994; 9:439–455.
Ritov Y. Tightness of monotone random fields. J. Roy. Statist. Soc. Ser. B. 1987; 49:331–333.
Tsiatis AA. Estimating regression parameters using linear rank tests for censored data. Ann. Statist.

1990; 18:354–372.
Wei LJ, Lin DY, Weissfeld L. Regression analysis of multivariate incomplete failure time data by

modeling marginal distributions. J. Amer. Statist. Assoc. 1989; 84:1065–1073.
Womersley RS. Censored discrete linear l1 approximation. SIAM J. Sci. Statist. Comput. 1986; 7:105–

122.
Wu H, Huang Y, Acosta EP, Rosenkranz SL, Kuritzkes DR, Eron JJ, Perelson AS, Gerber JG.

Modeling long-term HIV dynamics and antiretroviral response: effects of drug potency,
pharmacokinetics, adherence and drug resistance. J. AIDS. 2005; 39:272–283.

APPENDIX

Proofs
Proof of theorem 1. Straightforward algebra gives

We shall show ψ{β0(u); u} = Eφ {β0(u);Z,L} < ψ(β; u) = Eφ(β;Z,L) for any given β ≠ β0(u).

When log L ≤ β0(u)TX and log L ≤ βTX,

When log L ≤ β0(u)TX and log L > βTX,

It remains to consider the case when log L > β0(u)TX. First, monotonicity of μZ(.) implies

that  is minimized at ν = log τZ(u), and the minimizer is unique since
τZ(.) is continuous at u. Therefore, φ{β0(u);Z,L} ≤ φ(β;Z,L) and the equality holds if and
only if β0(u)TX = βTX. By the nonsingularity of E[X⊗2I{L > τZ(u)}],

for β ≠ β0(u). Thus,

This completes the proof.
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Proof of theorem 2. First, consider the consistency of β̂(u). Note that the objective function

The above three components are either concave or convex functions of β. This fact coupled
with pointwise convergence by the strong law of large numbers implies the uniform
convergence of Ψ(β; u) (Andersen & Gill, 1982). Then, the strong consistency of β̂(u)
follows from identity (3).

To study the asymptotic distribution of β̂(u), we shall establish the asymptotic normality of
Ψ̇{β0(u); u} and the asymptotic linearity of Ψ̇(β; u) at β0(u). By the central limit theorem,
n1/2Ψ̇{β0(u); u} is asymptotically normal with mean 0 and variance ∑(u, u). To establish the
asymptotic linearity, it can be shown that, under conditions (C1), (C2) and (C3),

for k = 1, 2, 3 and any fixed Δ, where Ψ̇k(β) = dΨ̇k(β)/dβ. Therefore,

in probability. By the result of Ritov (1987), the preceding pointwise convergence for those
monotone functions implies a uniform one, which further leads to

in probability for any d > 0. With conditions (C2) and (C3), Taylor expansion yields

for β → β0(u). Since E Ψ̇{β0(u); u} = 0, we then have the following asymptotic linearity
result:

in probability for any d > 0. Since β̂(u) minimizes Ψ(β; u), Ψ̇{β̂(u); u} = O(n−1) almost
surely by condition (C1). Arguing as in Tsiatis (1990), it can be shown that β̂(u) − β0(u)
converges in distribution to −D(u)−1 Ψ̇{β0(u); u} given condition (C4). The asymptotic
normality of β̂(u) then follows.
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Proof of theorem 3. Note that the nonsingularity of E[X⊗2I{L > τZ(r)}] implies that of
E[X⊗2I{L > τZ(u)}] for any u ∈ (0, r]. The identifiability result then follows directly from
theorem 1.

To establish the uniform consistency, we note that the proof of theorem 2 actually gives a
stronger convergence result:

almost surely. Then

leads to

almost surely.

Now, it remains to show that, for any ∊ > 0, there exists δ > 0 such that if supu∈[l,r] Ψ{β(u);
u}− Ψ{β0(u); u} < δ, then supu∈[l,r] ‖β(u) − β0(u)‖ < ∊. Suppose that this is not true. Thus,
for each δ > 0, there exists (ζ,ν) such that Ψ(ζ; ν)−Ψ{β0(ν); ν} < δ and ‖ζ − β0(ν) ‖ > c for
some constant c > 0. Then there is a subsequence of (ζ, ν) that converges to, say, (ζ0, ν0),
which implies that ζ0 ≠β0(ν0) also minimizes Ψ(β; ν0). This contradicts the fact that β0(u) is
the unique minimizer of Ψ(β; u) for all u ∈ [l, r]. This completes the proof.

Proof of theorem 4. We first establish the weak convergence of n1/2 Ψ̇{β0(u); u} on u ∈ [l,
r]. Under model (1), β0(u)TX is increasing in u. Therefore, N{exp{β0(u)TX} and I{log L >
β0(u)TX} are monotone cadlag stochastic processes, respectively, and thus Donsker. By
Donsker permanence, {X (N{exp{β0(u)TX} − u) I{log L > β0(u)TX} : u ∈ [l, r]} is then
Donsker. Therefore, n1/2 Ψ̇{β0(u); u} on u ∈ [l, r] converges weakly to a Gaussian process.
The covariance function ∑(u1, u2) can be easily established.

Now, we consider the asymptotic linearity of Ψ̇(β; u). Using the techniques of Alexander
(1984), Lai & Ying (1988, theorem 1) established the asymptotic linearity for so-called
‘empirical-type’ processes. The same arguments can be applied to establish the asymptotic
linearity of Ψ̇(β; u): For any sequence dn → 0,

almost surely.

Finally, using the arguments in the proof of theorem 2 with possibly minor extensions, we
can then obtain
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uniformly in u ∈ [r, l] almost surely. Thus, the weak convergence result follows.
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Figure 1.
Bladder tumor study. Estimated coefficients are shown in rugged lines, surrounded by
pointwise Wald 95% confidence intervals and further out by 95% equal-precision
confidence band. Estimated average coefficients and Wald 95% confidence intervals are
given by straight lines.
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Table 3

Analysis results of the bladder tumor study

Average coefficient Constant coefficient

Covariate Estimate SE Wald 95% CI test p-value

pyridoxine 0.102 0.357 (−0.598, 0.802) 0.617

thiotepa 0.739 0.363 (0.027, 1.451) 0.044

initial number −0.239 0.079 (−0.394, −0.084) 0.526

initial size −0.057 0.121 (−0.294, 0.181) 0.978
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