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     INTRODUCTION 

 Hansen’s disease, as leprosy is called in Brazil, is a communi-
cable disease caused by  Mycobacterium leprae  infection, which is 
principally transmitted by the upper respiratory tract. Not every-
one infected with  M. leprae  will go on to develop the disease, but 
a subset of infected people develop clinical signs that have been 
used to classify a spectrum from tuberculoid or paucibacillary 
to lepromatous or multibacillary forms of disease. 1  People who 
evolve the lepromatous form of disease present a heavy burden 
of  Mycobacterium , release more microorganisms to the environ-
ment, and are therefore potentially more contagious. 2 , 3  

 Hansen’s disease can be disfiguring and impact heavily on qual-
ity of life, contributing to a high estimate of disability adjusted 
life years (DALY). 4  The Prevention of disability is a crucial tar-
get to decrease morbidity. The introduction of multidrug therapy 
for the treatment of Hansen’s disease in 1981 led to a dramatic 
reduction in the global disease burden: from the approximate 
10 million cases registered in the mid 1970s to 212,802 at the 
end of 2007 ( http://www.who.int/lep ). 5–8  Nevertheless, the more 
endemic countries such as India and Brazil continue to diagnose 
around 250,000 new cases yearly. 9–11  Although the prevalence 
of leprosy in Brazil has been reduced from 19 cases per 10,000 
population in 1985 to 2.02 in 2006 ( http://tabnet.datasus.gov.br/
cgi/tabcgi.exe/hans/hanswbr.def ), there are still around 42,000 
new cases of Hansen’s disease diagnosed yearly. 12–14  The disease 
is spread throughout the country, but is more clustered in the 
North and Western Central Regions. 15–17  

 The risk of Hansen’s disease is increased in neighborhoods 
where there is a previous report of disease. 18–20  Therefore, find-
ing these high-risk areas is essential for the design of effec-
tive long-term intervention strategies. Spatial localization of a 
transmissible disease can provide hints as to why it occurs in 
that particular geographic area. Methods such as geographic 
information systems (GIS) combined with spatial statistics can 

be used to identify disease clusters and determine the poten-
tial risk factors involved with clustering. 3 , 18 , 19 , 21 , 22  Spatial analy-
sis tools are commonly used to characterize spatial patterns of 
diseases. 23–26  Spatial autocorrelation analysis is performed to 
verify whether pairs of observations taken nearby are more 
alike than those taken farther apart. 27  However, because each 
spatial statistical technique has advantages and disadvantages, 
more than one method is sometimes needed to validate results. 
For instance, the use of Kernel intensity, which is calculated 
from the point map of cases, can show areas of greater dis-
ease risk. Methods such as Correlogram, local indicator of spa-
tial association (LISA), and Scan Statistics can also be used to 
map relative risk (RR) of disease by area. 28  The correlogram 
calculated using Moran’s I, which is a global index of spatial 
autocorrelation, can potentially indicate spatial autocorrela-
tion and existence of spatial clustering. The LISA can show 
local spatial autocorrelation. Last, the spatial scan statistic, as 
defined by Kuldorff, is able to identify the existence of clus-
ters of both high and low risk and also assess its significance 
by testing the null hypothesis that the RR of the disease is 
homogeneous throughout the study area. 29  The use of  spatial 
linear models  can refine a particular conclusion by adjusting 
the analyses and maps for important covariate information. 30  

 In this study, we conducted GIS-based spatial analysis and 
used exploratory spatial data analysis and the spatial scan sta-
tistics to characterize the geographical distribution of Hansen’s 
disease cases in Mossoró, a city located in the western region 
of the state of Rio Grande do Norte, Brazil. Mossoró had a low 
detection rate of Hansen’s disease but recently high detection 
rates of disease have been registered. 31  We found clustered 
areas of Hansen’s disease there, which was confirmed by mul-
tiple statistical tools. The use of spatial statistical analysis can 
identify areas of disease risk, facilitating cost-effective target-
ing of intervention measures and allowing more efficient use 
of public resources. 

   MATERIAL AND METHODS 

  Study site.   Mossoró is a city located in the State of Rio 
Grande do Norte, Brazil, with an urban population that 
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increased from 192,267 in the 1991 census to 213,841 inhabitants 
in the last census, which was conducted in the year 2000. The 
city of Mossoró covers a geographic area of 150 km 2 , although 
the municipality covers 2,110.207 km 2 , including the rural area. 
The downtown coordinates are UTM 683530; 9426311S. 

   Ethical considerations.   This protocol was approved by the 
Universidade Federal do Rio Grande do Norte (UFRN) 
Ethical Committee (CEP-UFRN 145-05) and by the Brazilian 
Committee of Ethics in Research (Comissão Nacional de Ética 
em Pesquisa, CONEP 12504). The certificate number assigned 
by CONEP to this study was 006.0.051000-06 ( http//: www
.sisnep.gov.br). 

   Data collection and management.   A sample of 808 Hansen’s 
disease cases diagnosed between 1995 and 2006 was selected 
from the total list of cases reported in Mossoró ( N  = 1,293 
cases). The household in which the case resided when the 
diagnosis of Hansen’s disease was made was geocoded (GPS, 
Magellan, Magellan Corp., San Dimas, CA). The software 
ESRI-ArcMap 9.0  (ESRI, Redland, CA) was used to create 
the layers of the geocoded points using the coordinate system 
UTM 24S Zone with projection transverse Mercator. The 
coordinates were plotted in a layered map of 170 census 
tracts, numbered from 1 to 170, identified by column ID in 
the dataset. The point data were projected over the layer of 
census tract polygons for each census sector yielding a map 
of the area. Demographic information based on the year 2000 
census was integrated with the census tracts ( http://www.ibge
.gov.br ). The population residing in Mossoró between 1995 
and 2006 was estimated for each census tract using the 
DATASUS database. The Brazilian Ministry of Health has an 
agency aimed to collect, process, and make available through 
a public database, records related to health and demographic 
issues for the Brazilian population ( http://www.datasus.gov.br ). 

The database of the Ministry of Health also contains socio-
demographic information and projected intercensus popu-
lation estimates for each municipality. The Brazilian census is 
usually conducted every 10 years; the last census was conducted 
in 2000. The population of the census tract for each year was 
estimated by combining its reported population obtained in the 
2000 census and the estimated municipality population by year 
as indicated in the DATASUS. Assuming proportional spatial 
growth, we determined the detection rate of Hansen’s disease 
per year and estimated the RR of disease in each census tracts. 

   Statistical methods.    Kernel intensity.  The Kernel intensity 
of the spatial point pattern was estimated using ArcMap 9.0 
over the map of cases of disease with the adjusted bandwidth 
of 270 m and  quartic kernel  function, which is the function 
used most commonly to identify spots with high intensity (as 
seen later in  Figure 1  ). The bandwidth is equivalent to the 
third percentile of the distance between cases distribution, i.e., 
3% of the distances between cases are less than 270 m apart. 
The Kernel intensity function is an exploratory tool, similar 
to the probability density function, differing by a constant of 
proportionality, resulting in a contour or intensity plot. 32–34 

   Spatial autocorrelation analysis.   Global spatial autocor-
relation analysis was performed in R software version 2.6.1, 
downloaded on 01/25/2008 ( http:/www.r.project.org ). We used 
the  sp.correlogram  function in the package spdep. Moran’s 
I spatial autocorrelation statistic, which is similar to Pearson’s 
linear coefficient, was used to assess the degree of relatedness 
of the sets of census tracts with respect to RR, i.e., the extent 
to which adjoining or neighboring spatial tracts influence the 
RR on those tracts. The RR of Hansen’s disease was calculated 
in the 170 tracts and data visualized using correlogram. The 
correlogram is a graph that records the degree of spatial 
autocorrelation among the set of census tracts at different 

  Figure  1.    Geographic location of Hansen’s disease cases in Mossoró, Brazil. The spots indicate areas of greater risk determined by Kernel inten-
sity. This allowed the estimate of distance between house cases, yielding a map of standard points, which revealed high spatial variation of Hansen’s 
disease cases in the city.    
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spatial lags, where the first lag involves adjoining or neighboring 
tracts, the second lag neighbors of neighbors, and so on. The 
presence of significant values in the first lags and intense 
decrease in the subsequent lags assert the existence of 
significant spatial autocorrelation. Although the correlogram 
is a good tool to assess patterns of spatial similarity, it is based 
on a global index, 35  possibly placing it under a number of 
sources like a spatial trend in the expected risk. Furthermore, 
it can suggest clustering, but it cannot identify individual ones. 
To identify clusters, we used the  localmoram  function in  Local 
Indicators of Spatial Association  ( LISA ) using the spdep 
package in R. The main purpose of LISA indicators is to 
provide a local measure of similarity (Moran’s I) between 
each census tract and its neighbor, generating the map of 
 P  values related to the hypothesis of no autocorrelation in 
each tract. 36  Dark regions on the map indicate the existence of 
clusters. A Moran scatter plot was plotted using the function 
 moran.plot  in spdep from R. It provides a graphic of the points 
( x, Wx ) with a linear regression line superimposed indicating 
the influence of each point on the global association measure. 
The vector  x  represents the census tract’s standard RR 
deviations.  W  is the spatial weights matrix of proximity among 
the tracts. Outliers can be visualized as points further than two 
units away from the origin. 32 , 33  

   Spatial cluster analysis.   The implementation of  Spatial Scan 
Statistic  for data area, as defined by Kulldorff, has the main 
goal of finding a collection of adjacent census tracts, among 
the 170 tracts, which were least consistent with the hypothesis 
of constant risk. It provides a significance value representing 
the rarity of the detected cluster, named “the most likely 
cluster.” It can identify a higher or lower risk cluster. The 
method defines circles, or ellipses, with radii ranging from the 
smallest distance between two tracts to one-half of the width 
of the study area. It identifies a region formed by all tracts 
whose intercentroid falls within the circle, and tests the null 
hypothesis of constant risk versus the specific alternative that 
the risks within and outside this region are different. The test’s 
statistic is a likelihood ratio statistic ( LRS ) based on the 
Poisson distribution and defined as
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where  Y  in    is the number of cases observed in the region defined 
by the circle of interest and  E  in    is the number expected within 
this region under the null hypothesis .  Y  out    and  E  out    are the 
corresponding number of cases observed and expected 
occurring outside the region, respectively . 

 Using Monte Carlo simulation, we generated independent 
datasets under the null hypothesis and calculated the empiri-
cal distribution of  LRS  for each region to assess the signifi-
cance of the observed statistic. StatScan version 7.0.3 ( http:/
www.satscan.org ) was applied. The spatial scan methods take 
into account both areas of high and low risk of disease. 

   Factorial analysis.   A factorial analysis was performed using 
census tract data from the 2000 census to determine the spatial 
dimension of 10 socio-economic variables, which are listed in 
 Table 1      . The purpose of this analysis was to extract a few latent 
variables from the socio-economic variables’ structure and to 
determine the level of aggregation with the risk of Hansen’s 
disease. The factorial analysis results are sets of statistically 
independent linear combinations extracted from the socio-

economic variables by principal components analysis, 34  which 
is performed on the correlation matrix calculated from the 
data frame that contained the values of these 10 socio-economic 
variables in each census tracts (a 170 × 10 matrix). The function 
 princomp  in R was used. The varimax rotation was determined 
in STATISTICA (version 6.0, StatSoft, Tulsa, AZ). 

   Linear regression models for spatial data.   Spatial linear 
regression models were adjusted to assess the significance of 
association between socio-economic factors and the RR of 
disease, 29  i.e., to understand how the tracts with different levels 
of a factor match with different levels of risk of disease. The 
function  lagsarlm  in package spdep from R was used to adjust a 
 spatial simultaneous autoregressive lag model  ( SAR ) of the kind 
y = rWy + Xβ + ε where  y  is the vector RR in the census tracts, 
 W  is the spatial proximity matrix measuring a tract that is next 
to the other.  X  is the design matrix with the covariates (factors) 
values, e is the vector of random Gaussian error, and r and 
b are estimated parameters where r assesses the spatial auto-
correlation involving each census tracts and its neighbors by the 
so-called lag term, r Wy , in the previous formula. On the other 
hand, r is the vector of regression parameters that estimate the 
association between the covariates and the response  y . 

 The model’s parameters were estimated by maximum like-
lihood methods and we tested the hypothesis  H  0 : r = 0 using 
the likelihood ratio test (LR test). 28  A comparison between the 
SAR model and an  Ordinary Least Square  ( OLS ) model was 
made by the Wald test, and we used the Lagrange Multiplier test 
(LM test) to verify the absence of spatial autocorrelation in the 
model residuals. 33 , 35  The factors extracted by the principal com-
ponents analysis were used instead of the original covariates 
because these were highly correlated, verifying a heavy degree 
of multicolinearity among these variables, in conformity with 
a coefficient of multicolinearity degree,  CD  = 1243.4, greater 
than 30. This coefficient was calculated using the eigenvalues 
( e  i   ) for  X´X , where  X´  is the transposed matrix of  X  enclosing 
the values of the 10 socio-economic variables. Its formula is         

CD e
e
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 A value greater than 30 denotes a strong multicolinearity. 36  
The RR of the tract was calculated based on the cases and 
exposed population in and out of the tract. The calculation is 
performed by using the following expression:  
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  Table  1 
  Correlations between each variable and each factor extracted by prin-

cipal components analysis*  
Variables Factor 1 Factor 2 Factor 3

Average income 0.1074  0.9623 0.0550
Years-of-schooling 0.2464  0.8501 0.4183
Literacy 0.5140  0.7217 0.2392
Lack of access to get bank loaning −0.2360 −0.2094 − 0.7853 
Water-supply  0.7947 0.2922 0.0331
Household with toilet  0.7816 0.2770 0.0933
Number of bathrooms 0.2894  0.9140 −0.0825
Trash collection  0.9390 0.1396 0.0258
Dumping of waste adjacent to the house − 0.9054 −0.1367 −0.0379
Number of residents in the household 0.1074 −0.0042 − 0.8680 

  * The values in bold are greater than 0.7.  
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      where Cases  in   and Cases  out   are the number of cases in and out 
of the tract, respectively. Exp_Pop  in   and Exp_Pop  out   are the 
exposed population in and out of the tract, respectively. The 
hypothesis of homogeneous distributions of nominal variables 
was performed using the c 2  test. The comparison of the pro-
portions of disease between males and females was performed 
by testing the hypothesis  H  0 :  P =  0.5 by a one-sample  t  student 
test for proportion. 

     RESULTS 

  Spatial aggregation of Hansen’s disease in Mossoró, state 
of Rio Grande do Norte, Northeastern Brazil.   A total of 
1,293 cases of Hansen’s disease were diagnosed in Mossoró 
between 1995 and 2006 ( Figure 2  ). There were no differences 
in Hansen’s disease between sexes ( P  = 0.723), with 48.3% of 
the cases being males and 51.7% females. The mean age of 
the cases was 39.6 (±19.5 years). Of these cases, 808 (62.5%) 
were geocoded and the pattern of distribution and Kernel 
intensity for these cases is shown in  Figure 1 . The cases were 
more frequently found in the proximity of the river, a region 
with homogeneous population density and a high level of 
poverty. The study area shown in  Figure 1  comprised 8.5 km 
longitudinal by 12 km latitudinal, with a residing population 
of 218,591 persons/year. The distance between the house cases 
was analyzed on a map of point patterns ( Figure 1 ). The spots 
as determined by Kernel intensity methods revealed areas of 
greater risk of Hansen’s disease with high spatial variation 
of cases found from 0 to 12 km. The distribution of distance 
between the house cases had the first quartile  q  25  = 1,177 m 
and third quartile  q  75  = 4,237 m, so 50% of them are between 
these two values. The mean average distance between house 
cases was 2,890 m and median 2,841 m, with 10% of the cases 
falling within 580 m and 5% around 380 m, with a modal value 
of 750 m ( Figure 3  ). 

 The average detection rate of leprosy ranged from 0.00 to 
31.69 cases per 10,000 persons per year and this was calculated 
for each census tract ( Table 2     ). No cases of Hansen’s disease 
were found in 19% of the tracts, but in 20% of the tracts the 

detection rate was at least 5.14. Overall, the RR varied from 
0.00 to 9.40 ( Table 2 ). The spatial variability of the risk of dis-
ease is shown in  Figure 4A  , where the darker regions in the map 
indicate increased risk of developing Hansen’s disease with an 
RR over 2.16. The spatial association of Hansen’s disease cases 
in Mossoró was estimated and confirmed by Moran’s I cor-
relogram, as shown in  Figure 4B . Significant positive autocor-
relations in lags 1 to 3 are seen, decaying from the first lag 
on, indicating the existence of clusters whose ascertainment 
and localization were performed by the use of the Spatial 
Scan Statistic and LISA. Using the first method, we tested the 
hypothesis of constant rate of Hansen’s disease throughout 
the area and found two clusters of Hansen’s disease as shown 
in  Figure 4A . The most likely cluster, the main one, was com-
posed by nine census tract of numbers {132, 146, 160, 161, 162, 
163, 164, 169, 170}, covering a circle, with a radius of 588 m and 
an RR of 5.9 ( P  = 0.001),  Figure 4A , cluster A. The second clus-
ter had only one tract number {29} with an RR of Hansen’s 
disease of 6.5 ( P  = 0.001),  Figure 4A , cluster B. Using LISA 
indicators through the function  localmoram  in R, the map of 
 P  values was generated ( Figure 5A  ) that shows a dark cluster 
very similar to cluster A in  Figure 4A . The Moran scatter plot 
in  Figure 5B , plotted using the function  moran.plot  identified 
the tracts in this cluster. They are {141, 147, 159, 160, 161, 162, 
163, 164, 165, 166, 170}, verifying that the set of tracts {160, 161, 
162, 163, 164, 170} is in the main cluster A. In addition, note 
that the tract of number {29}, which is the cluster B shown in 
 Figure 4A , is not seen in  Figure 5A , because it is isolated, i.e., 
few cases of Hansen’s disease cases are found around it. 

   Association of socioeconomic variables in the aggregation 
of Hansen’s disease.   Because high-risk clustering of disease 
was found, we tested the hypothesis of whether the spatial 
distribution of Hansen’s disease was associated with any 
socio-economic variables. A high level of multicolinearity 
was observed among the socio-economic variables. Because 
this could hide the association between the regressors and 
the response variable, the model was adjusted with the RR 
as the response and the three latent factors extracted in a 
principal component analysis using standard varimax rotation 
as regressors above the 10 social economic variables. Using 

  Figure  2.    Time series of Hansen’s disease cases and the average detection rate per 10,000 people for the city of Mossoró (1995–2006). The graph 
shows an increase of Hansen’s disease cases peaking in 2005. This peak of detection was a result of active surveillance in the area.    
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this approach, the first factor explained 34.4% of the total 
variation in the social economic variables; whereas the second 
and third factors explained 32.5% and 16.2%, respectively, 
of this variation. This means that these three factors together 
explained 83% of the total variation observed among the 
census tracts. The correlations between each variable and each 
principal factor are shown in  Table 1 . This analysis showed 
that the first factor was strongly correlated with the presence 
of basic sanitation, defined by the existence of piped water, 
presence of toilets in the house, and trash collection. The 
second factor represented the level of literacy and income, 
which was expressed by the mean family income, years of 
schooling, and number of toilets in the house. Finally, the third 
factor expressed the level of poverty that can be estimated 
as the lack of access to banking loans, which in the Brazilian 
society is a marker of accessibility to formal economy, and the 
number of people living in a house. 

 A negative correlation was observed between the lack of 
access to banking loans and the mean income received by the 
household head, which can be considered as an indicator of 
poverty. A spatial linear model was adjusted to estimate the 
level of association between each principal factor and the RR 
of disease. A significant association with the factors one and 
three was detected. Factor 1 had b1 = −0.0978 and  P  = 0.0331, 
whereas factor 3 had b 3  = −0.1027 and  P  = 0.0240. As presented 

in  Table 1 , factor 1 had positive correlations with the presence 
of a water supply (0.7947), household with a toilet (0.7816), and 
trash collection (0.9390), and negative correlation with dump-
ing the trash outside the household (−0.9054). A high score in 
this factor indicated better sanitary conditions in the tract, and 
consequently, a lower RR for Hansen’s disease (b1 is nega-
tive). In short, the presence of a water supply, of a toilet in the 
household, and of trash collection reduced the expected risk 
of Hansen’s disease. Conversely, dumping the trash outside the 
household increased the risk of Hansen’s disease. Similar anal-
ysis was made considering factor 3. In accordance to the cor-
relations, as shown in  Table 1 , the greater the score the lower 
the level of poverty in the tract, the lower the expected RR for 
Hansen’s disease (b 3  is negative). In addition, the lower grade 
of poverty can be estimated by the lack of access to credit from 
a bank and increased number of people per household. 

  Table  2 
  Parameters of the detection rate of leprosy and relative risk (RR) per 

census tract  
Parameter Detection rate Relative risk

Minimum 0.00 0.00
1st quartile 0.70 0.21
Median 1.82 0.54
Mean 3.24 0.96
3rd quartile 4.13 1.22
Maximum 31.69 9.40

  Figure  4.     A , Map of relative risk (RR) of Hansen’s disease and 
clusters A and B as determined by the scan statistics Kulldoff’s method. 
 B , Moran’s correlogram of the RR of Hansen’s disease in Mossoró. 
The correlogram with the Moran’s I of the RR and confidences inter-
val are shown in the  Y  axis. Note that there are high autocorrelations 
in low lags with high decrease characterizing spatial autocorrelation.    

  Figure  3.    Histogram of the distance between pairs of cases of 
Hansen’s disease in Mossoró determined by Euclidean formula 
applied into its geographical coordinates. The bimodal distribution 
indicates the non-random distribution of Hansen’s disease cases in 
the area.    
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 The model also showed strong spatial association of the 
RR (r = 0.4919; LR test  P  < 0.0001). This spatial association 
is explained by the heterogeneous spatial distribution of the 
population and possibly by other spatial factors not mea-
sured in this study. Although, in general,  R  2  is not an adequate 
parameter to assess the quality of the adjusted spatial regres-
sion model, we found here that it performed better than the 
OLS model followed by the Wald test (W = 32.126,  P  < 0.0001). 
In addition, its residuals lacked autocorrelation in accordance 
to the LM test (LM = 0.0144,  P  = 0.9042), indicating that the 
model used was robust. 

 Use of the Spatial Scan Statistic and the residual analysis 
are complimentary methods in determining clustering of dis-
eases, i.e., the residual found by the linear regression model 
can identify outliers, which in turn could be part of the clusters 
found by the Spatial Scan Statistic. In this study, 11 outliers 
from the census tracts were found in the model’s estimation 
as seen in  Table 3      . These are tracts whose residuals (e) are 
greater than  q  3  + 1.5 ( q  3  –  q  1 ), that is beyond the third quartile 
at least one-and-a-half quartile range . In  Table 3 , we can see 
that seven of the tracts are into the clusters detected by the 
spatial scan statistic, with at least one factor with a score less 
than its first quartile or close to it, but all have RR greater than 
the third quartile (1.22). For example, the tract number 29 has 
RR = 6.50 and score = −1.30 (<  q  1  = −0.07) for the factor 2. This 
tract is the cluster B shown in  Figure 4A , which was detected 
by the spatial scan statistic method. The tract number 146 has 
the greatest RR of Hansen’s disease (RR = 9.39) and a score 
−1.13 (<  q  1  = −0.64) for the factor 1. The tracts of numbers 49, 
143, 147, and 159 were not detected by the spatial scan statistic 
method. They have a low score for at least one factor and were 
detected by using the residual analysis ( Table 3 ). 

   Clinical Hansen’s disease.   The clinical presentation of the 
Hansen’s disease cases is shown in  Table 4      , with 45% of the 
cases being multibacillary and the remaining paucibacillary. 
The main cluster of Hansen’s disease detected by the Scan 
Statistic was not a result of the clinical presentation or opera-
tional classification of the disease because the rate by type 
found in and out of the main cluster did not differ significantly. 
The main cluster is composed of nine census tracts. The 
distribution of the multibacillary cases was 46.4% in the 
main cluster and 44.5% outside of the cluster ( P  = 0.6366). In 
addition, 26.7% of the cases are tuberculoid pole, with 29.2% 
within and 25.9% outside of the Main Cluster ( P  = 0.6049), as 
detected by the Scan Statistic ( Table 4 ). 

    DISCUSSION 

 Until 20 years ago, few cases of Hansen’s disease were 
detected yearly in Rio Grande do Norte. More recently, 
improved active case detection increased detection of hidden 
cases, leading to an increase in detection rates in some munic-
ipalities including the city of Mossoró. 31  This study was per-
formed based on the analysis of 808 cases of Hansen’s disease, 

  Figure  5.     A , Map of the  P  values (local  P  value for Moran I) related 
to the hypothesis tested of no association around each tract. In this map 
a dark region can be observed, which is the cluster A shown in  Figure 4A . 
Although this cluster resembles cluster A shown in  Figure 4A , the cluster B 
of the same figure cannot be shown by local indicator of spatial asso-
ciation (LISA) because the cluster B is formed by only one tract and 
therefore it does not present strong association with its neighboring 
tract.  B , Moran scatterplot shows the tracts that present significant 
association with the neighboring tract. The tracts that are outliers may 
be easily visualized as points further then two units away from the ori-
gin, which are shown in  Figure 5A , dark black.    

  Table  3 
  Relative risk (RR) and scores* of the factors of the census tracts 

considered outliers in the spatial regression model ( q  1  = 1st quartile 
and  q  3  = 3rd quartile)  

Number of 
census tract

RR 
 q  1  = 0.21 
 q  3  = 1.22

Factor 1
 q  1  = −0.64 
 q  3  = 0.41

Factor 2 
 q  1  = −0.07  
 q  3  = 0.56

Factor 3 
 q  1  = −0.54  
 q  3  = 0.21

29† 6.50 0.44 − 1.30 −0.17
49 2.68 2.57 − 0.24 0.95

132‡ 3.05 −0.45 0.71 0.08
143 3.32 − 0.63 0.28 − 0.64 
146‡ 9.39 − 1.13 0.24 −0.30
147 3.34 − 0.52 0.58 −0.11
159 3.93 −0.07 0.73 − 1.11 
160‡ 4.69 − 1.22 0.39 −0.47
163‡ 5.53 − 1.06 0.43 −0.04
164‡ 5.40 − 0.85 0.43 −0.03
170‡ 4.68 − 1.10 0.46 − 0.67 
  * Scores in bold are smaller than its  q  1  or are close to it .  
  † Census tract that constitutes the second cluster B detected using the  Spatial Scan Statistic.   
  ‡ Census tract into the main cluster A detected using the  Spatial Scan Statistic  (Kulldorff).  
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which corresponded to 62.5% of all cases of Hansen’s disease 
diagnosed in the study period in Mossoró. Similar to Mossoró, 
other areas in Brazil have also been showing an increase in 
case detection. 37 , 38  

 The study of leprosy transmission in Mossoró, Brazil, was 
performed by identification of maps and by geographical 
epidemiology tools. We tested the hypothesis to determine 
whether this distribution was random, i.e., whether there was 
a constant risk of Hansen’s disease throughout the areas or 
whether there was spatial association . Because of the existence 
of several statistical tools that can be used to test this hypoth-
esis, each one with specific attributes, we chose to use Kernel 
intensity, Moran’s correlogram, LISA indicators, Moran’s scat-
ter plot, spatial scan statistics, and SAR modeling to validate 
the results obtained from each analysis. These combined anal-
yses provided a more consistent diagnostic, with more sub-
stantial conclusions, than could have otherwise been obtained 
by using any one statistical approach alone. 28  

 Kernel intensity was the first tool used to evaluate the inten-
sity of disease from the points map. In an epidemiological set-
ting, the intensity of cases of disease per unit area varies with 
the population density. One way to correct this is to divide the 
Kernel by the population density. In our study, there was no 
need to perform this adjustment because the population was 
very homogeneous. From our analysis, we concluded that the 
use of the following three tools provided a good procedure 
to analyze the spatial association. The Moran’s correlogram 
assessed the global associate in distinct lags. The LISA indi-
cators decomposed the global index in all census tracts and 
allowed us to visualize clusters of tracts with significant asso-
ciation with their neighbors. Finally, the Moran’s scatter plot 
allowed us to identify tract outliers. As it is known, 28  the use of 
Moran’s I as a global indicator of spatial association to rates of 
regional data merits some precautions, because it can be under 
the influence of trends in the spatial data and might show an 
association that is not real. Therefore, we used the correlogram 
to resolve this problem. The correlogram in  Figure 4B  shows 
a quite high positive correlation at lag one, where only neigh-
boring tracts are considered, and a fast decrease at further lags 
is observed. This may be evidence of spatial association and 
clustering, rather than regional trends, justifying, for example, 
the presence of cluster as shown in  Figure 4A . Conversely, the 
scan statistics method validates the clusters found by the pre-
vious methods and the SAR model was used as a supplemen-
tary approach to help us refine our conclusions, quantifying the 
nature of the association between spatial referenced RR and 
a set of others evenly referenced variables. The analysis of its 

residuals contributed to determining the outliers. In this way, 
the combination of these methods permitted us to develop a 
model to analyze clustering of Hansen’s disease in Mossoró with 
consistency. This model can now be used to design strategies 
for disease control. It also has the potential to be tested in 
other areas, taking advantage of census information and geo-
graphic location of a particular disease. 19  

 The application of this combination of spatial statistics in 
Mossoró clearly showed the spatial aggregation of Hansen’s 
disease cases in that city. This lead to rejection of the hypothe-
sis of constant risk of disease throughout the area and showed 
the existence of two clusters of tracts with significant RR. In 
addition, the SAR model illustrated that the distribution of 
disease was clearly associated with poverty and population 
density. A significant association between Hansen’s disease 
risk and socio-economical factors, such as availability of water 
supply, trash collection, and level of poverty, was observed 
in this study. The association of factor 3 with risk of disease 
indicates that there is higher chance of close contacts being 
infected, because one of the variables that influences factor 
3 is the number of residents in the household, representative 
of high population density. Similar to this finding, other stud-
ies conducted in Brazil have shown that indicators of poverty 
are usually associated with increased risk of Hansen’s disease 
in endemic areas. 38 , 39  Contacts of Hansen’s disease patients 
have a higher risk of developing clinical Hansen’s disease. 40 , 41  
A study conducted in Bangladesh showed that 67% of the 
high-risk contacts lived within 10 m from a Hansen’s disease 
case. The GIS used in this study allowed the identification of 
the high-risk areas, showing the power of this type of technique 
to determine areas at risk of disease. 42  The outliers found by 
the residues of the SAR model confirmed the high-risk areas. 
Outliers are sectors in which the risk observed is distinct from 
the expected pattern in conformity to a model. 

 This type of analysis is an important asset in surveillance for 
transmissible disease, aiding the design of more focused inter-
vention strategies. The space-time scan statistic may be used 
for either a single retrospective analysis, using historic data, 
or for time-periodic prospective surveillance, where the analy-
sis may be repeated yearly. 29 , 43  Finally, as this study confirms, 
tools such as GIS and Spatial Statistics Analysis allow a better 
understanding of the epidemiology of Hansen’s disease, and 
can also be used for other infectious diseases such as tuber-
culosis 19 , 44–47  and vector-borne diseases. 48–51  In such studies, the 
spatial linear regression model can take into account factors 
related to the vector, environmental characteristics, and land-
scape coverage. 

 In summary, our study suggests that a more detailed inves-
tigation in highly endemic areas can identify other factors 
that contribute to Hansen’s disease and point out the need 
for intervention. However, the model tested herein did not 
explain fully the other additional risk factors involved in clus-
tering of the disease. Other risk factors need to be considered, 
including human genetic factors. Several studies have shown 
that there is a genetic risk to developing clinical forms of lep-
rosy. 52–56  Our continuing studies are also designed to apply the 
power of genome-wide association studies to the analysis of 
Hansen’s disease in this region. This will provide the data that 
will help determine novel modifiable environmental variables 
that can be incorporated into analysis of the spatial distribu-
tion of disease to understand the risk of developing diseases 
such as Hansen’s disease. 57 , 58  

  Table  4 
  Rate of cases by Clinical form and Operational class of leprosy into and 

out of the main cluster  

  * M–L c 2  test, homogeneous distribution.  

Clinical form/
Operational class

Inside main cluster 
9 tracts

Outside main cluster 
161 tracts

 P  value*n Rate n Rate

Indeterminate 33 15.79 108 18.37

0.6049
Dimorphous 84 40.19 227 38.61
Tuberculosis 61 29.19 152 25.85
Vichowiana 31 14.83 101 17.18
 Total case  209  100.00  588  100.00 
Paucibacillary 112 53.59 329 55.48

0.6366Multibacillary 97 46.41 264 44.52
 Total case  209  100.00  593  100.00 
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