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Abstract

Atherosclerotic disease in the carotid artery is a risk factor for stroke. The susceptibility of
atherosclerotic plaque to rupture, however, is challenging to determine by any imaging method. In
this study, acoustic radiation force impulse (ARFI) imaging is applied to atherosclerotic disease in
the carotid artery to determine the feasibility of using ARFI to noninvasively characterize carotid
plaques. ARFI imaging is a useful method for characterizing the local mechanical properties of tissue
and is complementary to B-mode imaging. ARFI imaging can readily distinguish between stiff and
soft regions of tissue. High-resolution images of both homogeneous and heterogeneous plaques were
observed. Homogeneous plaques were indistinguishable in stiffness from vascular tissue. However,
they showed thicknesses much greater than normal vascular tissue. In heterogeneous plaques, large
and small soft regions were observed, with the smallest observed soft region having a diameter of
0.5 mm. A stiff cap was observed covering the large soft tissue region, with the cap thickness ranging
from 0.7-1.3 mm.
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INTRODUCTION

Stroke is the third leading causes of death in the United States, accounting for over 150,000
deaths in 2004. Ischemic stroke, or blockage of an artery to the brain, is the most common type
of stroke and occurs in 87% of all strokes. Atherosclerotic disease is considered the primary
cause of ischemic stroke. This process starts with initial vessel wall endothelial damage,
monocyte infiltration, thickening of the intimal-medial arterial layers, formation of fatty streaks
and eventually atherosclerotic plaques (Ross 1986). This narrowing of the vessel increases the
chances of the formation of blood clots (thrombosis), which dislodge and move up to the brain
(embolism). Interestingly, several studies have shown the morphology of the plaque itself may
play a critical role in the incidence of ischemic neurologic events (AbuRahma et al. 1998;
Tegos et al. 2001; Montauban van Swijndregt et al. 1999). This suggests plague morphology
is a potentially important factor in the selection of patients for carotid endarterectomy surgery
(AbuRahma et al. 2002).
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Evidence in the literature suggests that ischemic stroke is associated less with calcified and
fibrous plaques than with those containing softer tissue (Gomez 1990; Nandalur et al. 2005).
The soft tissue in atherosclerotic plaque can consist of lipid pools, macrophages, foam cells,
debris from intraplaque hemorrhage, as well as numerous other tissues due to the response of
the immune system. The soft tissue is often surrounded by a fibrous cap, which is prone to
rupture if the cap is thin. The definition of a vulnerable plague remains somewhat unclear,
however, as the cap thickness defining vulnerability varies in the literature from 65 um
(Tearney et al. 2003; Burke et al. 1997) to up to 700 um (Ge et al. 1999; Fayad and Fuster
2001).

A recent trend in imaging atherosclerotic plaques has been to ascertain the vulnerability of a
plaque to rupture via imaging characteristics or imaging the mechanical properties of the
plaque. Plaque characterization by B-mode ultrasonography typically uses a subjective gray-
scale classification, such as whether plaques are hypoechoic or hyperechoic, and homogeneous
or heterogeneous (AbuRahma et al. 2002; Sabetai et al. 2000b; Tegos et al. 2001). Hypoechoic
and heterogeneous plaques are often related to ipsilateral neurologic events (AbuRahma et al.
2002; Sabetai et al. 2000b). Unfortunately, the consistency between institutions and the
reproducibility of the characterization of plaque morphology is relatively poor (Sabetai et al.
2000a).

Recently, intravascular optical coherence tomography (OCT) (Tearney et al. 2006) and
intravascular ultrasound elastography (de Korte et al. 2002; Schaar et al. 2003) have been
shown to identify atherosclerotic plaques in coronary arteries with good results. However, these
techniques are relatively invasive in comparison to typical ultrasonic carotid examinations and
OCT has difficulty in distinguishing vulnerable plaque characteristics in the carotid artery
(Prabhudesai et al. 2006). Magnetic resonance imaging can be very sensitive to plaque
composition (Lovett et al. 2005; Touzé et al. 2007; Saam et al. 2007; Kawahara et al. 2007)
but it is very expensive for widespread use.

Ultrasonographic measures of carotid intimal-medial thickness (IMT) are associated with
cardiovascular disease and have been shown to be an indicator for stroke (Lorenz et al. 2007;
Leon Jr. etal. 2005; Chambless et al. 2000). Although this measurement is easily implemented
and provides a general assessment of risk, the carotid IMT provides no information about the
mechanical composition of plagues nor their vulnerability to rupture.

Radiation force-based imaging with ultrasound is an emerging field for imaging the mechanical
properties of tissue. These methods include shear wave elasticity imaging (Sarvazyan et al.
1998), kinetic acoustic vitreoretinal examination (Walker et al. 2000), vibro-acoustography
(Fatemi and Greenleaf 1999), supersonic shear imaging (Bercoff et al. 2004) and acoustic
radiation force impulse (ARFI) imaging (Nightingale et al. 2001, 2002).

ARFI imaging is a radiation force-based imaging method that uses commercially available
ultrasound scanners to generate short duration acoustic radiation forces. These impulses
generate localized displacements in tissue of approximately 1-10 zm. The response of the
tissue to the radiation force is observed using conventional B-mode imaging pulses. ARFI
imaging has been employed to observe the mechanical properties of excised vessels (Trahey
et al. 2004) and in vivo popliteal arteries (Dumont et al. 2006).

In our previous studies of an excised human vessel containing an atherosclerotic plaque (Trahey
et al. 2004), we observed with ARFI imaging a soft region surrounded by stiffer tissue in the
wall of a vessel containing a large atherosclerotic plaque. Pathology examination of the plaque
revealed a lipid core surrounded by fibrous tissue at this location. The lipid core corresponded
well with the region in the ARFI image depicted as high displacement, a characteristic of soft
tissue. Regions of the vessel portrayed as very stiff were shown to contain calcifications in the
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histologic samples. Healthy portions of the vessel were shown to be stiffer than the soft plaque
region, but more compliant than the calcified region.

The goal of this study was to determine the feasibility of using ARFI imaging to generate high
resolution images of carotid plaques in vivo. We employ ARFI imaging to noninvasively
characterize atherosclerotic plaque in the carotid artery of several volunteers.

Using the Framingham Coronary Heart Disease Prediction Algorithm (Wilson et al. 1998) we
recruited and classified volunteers as high (n = 14) or low (n = 9) risk for cardiovascular disease.
Classification under this algorithm included risk factors such as blood pressure, cholesterol,
age, diabetes and smoking. All volunteers were recruited under an Institutional Review Board
approved protocol (registry number 7874) and informed consent was obtained for each
volunteer prior to imaging. All B-mode and ARFI scans of the carotid arteries were performed
at the Frederick R. Cobb Noninvasive Vascular Research Laboratory at the Duke Center for
Living Campus.

The volunteers were not screened for plaques in the carotid vasculature, so the incidence of a
plaque and degree of stenosis in the volunteers were unknown prior to imaging. The volunteers
were not scheduled for endarterectomies or other types of intervention and, therefore, no
histologic samples were available.

For each participant, short B-mode clips (5 s) of the common carotid artery, its bifurcation and
the internal carotid artery were recorded in order to assess the IMT. Using the Carotid Analyzer
for Research software (Medical Imaging Applications, Coralville, 1A, USA), the IMT of each
segment of artery was measured and given a percentile score using the Atherosclerotic Risk in
Communities (ARIC) database (Howard et al. 1993).

ARFI imaging was implemented on a modified Siemens Antares™ scanner and a VF10-5 array
(Siemens Medical Solutions USA, Inc., Issaquah, WA, USA) to obtain displacement images
of the carotid vasculature. In an ARFI imaging sequence, a reference A-line is acquired at one
location, which is then followed with an extended duration pulse at the same location. This
extended duration pulse is called a pushing pulse because it provides the radiation force and
displaces the tissue a small amount (1-10 zm). The pushing pulses used for ARFI imaging of
the carotid artery were 24 to 59 us in duration (at 5.7 MHz), depending on the depths of the
vessel walls. For each location a pushing pulse was focused at both the proximal and distal
walls. The depth of the proximal and distal walls varied from patient to patient, ranging from
0.8 to 1.6 cm for the proximal wall, and 1.6 to 2.4 cm for the distal wall.

Following the pushing pulse, a series of A-lines were acquired at the same location. These lines
are used to track the displacements caused by the pushing pulse using cross-correlation or
phase-shift estimation techniques and are, therefore, referred to as tracking lines. The response
of the proximal and distal walls to the pushing pulses was observed for approximately 6.4 ms
with a temporal sampling rate of 9.4 kHz. The tracking pulses used the default pulse from the
scanner and a center frequency of 8 MHz. In-phase and quadrature (1/Q) data were captured
using the Axius Direct™ Ultrasound Research Interface (URI) (Brunke et al. 2007), a data
capture tool available on the Antares scanner.

The localized displacements were tracked using Loupas’ two-dimensional autocorrelation
technique (Loupas et al. 1995; Pinton et al. 2006) with a 0.1 mm kernel size. Eighty lateral
locations were observed using a 4:1 parallel tracking method (Dahl et al. 2007) to minimize
the amount of acoustic exposure and reduce transducer and tissue heating. This reduced the
total number of pushes necessary to generate each ARFI image to 40 (20 each for the proximal
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and distal walls). For each ARFI image acquired, a B-mode image was acquired immediately
preceding the ARFI image.

For each plaque observed in a volunteer, between two and four ARFI imaging data sets were
acquired to assess repeatability of the image. A pause of a few seconds was allowed between
each acquired ARFI image in order to confirm data acquisition. In the displayed images, only
a single data set was used to generate the image. Displacement images of the proximal and

distal walls were generated 0.43 ms after application of the radiation force. The displacement
images from the proximal and distal walls were then blended to generate the final ARFI image.

A mask was applied to the ARFI images in order to eliminate the displacement noise measured
in the lumina of the blood vessels. The continuous movement of the blood appears to the
displacement estimator as high spatially-variant displacements and makes visualizing the
image difficult. To implement a mask of the blood, the temporal variance of the ARFI
displacements was computed over the last 2.1 ms of tracking. In the regions of the image where
the variance was greater than 0.7 um2, the color was set to black. Although this mask removes
the great majority of the noise and displays a reasonable visualization of the vessel lumen,
some displacement noise was still visible in the lumen area. This remaining noise is removed
by manually setting the color of these areas to black to produce a more aesthetically pleasing
image.

ARFI images have previously been shown to display the complete vessel wall, including the
adventitial, intimal and medial layers (Trahey et al. 2004). B-mode ultrasonography typically
displays the intimal and medial layers well, but identification of the adventitial layer can be
difficult. The thickness of the vessel walls were measured in the ARFI images and compared
with the conventional IMT measurements. The wall thickness was measured as the distance
from the sharp boundary between regions of high tissue displacement and low tissue
displacement (the expected tissue/vessel interface) to the boundary between low displacement/
variance and high spatial/temporal variance (the expected vessel/lumen interface). A Student’s
t test was used to compare the high and low risk groups and the ARFI-derived and IMT
measurements. The p value was computed for each comparison.

Because of the long pushing pulses used in ARFI imaging, the heating associated with these
pulses can be significant. Therefore, the imaging sequences must be designed to minimize
heating of both the tissue and transducer surface. A simulation of tissue heating was performed
using the heating model described by Palmeri and Nightingale (2004), which has been shown
to be an accurate model for tissue heating from ARFI imaging (Palmeri et al. 2004). The
maximum heat predicted by this model is 0.04°C for one image, given a tissue absorption of
0.5 dB/cmeMHz, thermal conductivity of 6.0 mW/cm/°C, and a specific heat of 4.2 J/cm3«°C.
The thermal material properties used for the simulation are associated with generic soft tissue
as specified in the National Council on Radiation Protection and Measurements (NCRP) Report
#113 (NCRP 1992). The temperature increase of 0.04°C is well below the Food and Drug
Administration (FDA) limit on temperature increase (Food and Drug Administration, Center
for Devices and Radiological Health 1997).

Tables 1 (high risk) and 2 (low risk) show the intimal-medial thickness of the common carotid
artery measured from the B-mode images, its corresponding ARIC Study percentile and the
wall thickness (adventitial layer plus IMT) measured from the ARFI images. The ARIC
percentile relates the distal wall IMT of the individual to the distal wall IMT of the larger
community (Howard et al. 1993), and is adjusted for age, gender and race. This percentile has
been shown to be correlated with the risk for stroke (Chambless et al. 2000).
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The wall thickness values for the high risk group were significantly larger than the low risk
subjects for both the proximal and distal walls (p = 0.003 and p = 0.005, respectively). In
addition, the IMTs for the high risk group were significantly larger than the low risk group as
anticipated (p = 0.007 and p = 0.008 for the proximal and distal IMT, respectively). The ARIC
percentiles were also statistically significant between the high and low risk groups (p = 0.01).
Further analysis revealed that the adventitia thickness (arterial wall thickness - IMT) was not
different between groups for the proximal or distal walls (p = 0.97 and p = 0.14, respectively).
The average adventitial thickness in the proximal wall was 0.7 + 0.2 and 0.7 = 0.3 mm for the
low and high risk groups, respectively. The average adventitial thickness in the distal wall was
0.6 £ 0.1 mm in the low risk group and 0.7 = 0.4 mm in the high risk group.

Figures 1 to 6 show matched B-mode and ARFI images of healthy and diseased carotid arteries.
The field-of-view of the ARFI image is matched to the region in the corresponding B-mode
image that is bounded by white lines. Common anatomical structures are labeled in each image
and include the common carotid artery (CCA), internal carotid artery (ICA), proximal wall
(PW), distal wall (DW) and jugular vein (JV). Because the B-mode and ARFI images are
acquired on consecutive heartbeats, there may be some mismatch in position between the two
images.

Figure 1 displays the matched B-mode and ARFI images for a healthy common carotid artery
in a 46-y-old female. For a normal, healthy vessel, uniform displacement is observed across
the entire vessel length (approximately 4 um in the distal wall and 2 um in the proximal wall).
Differences in mean displacement in the proximal and distal walls occur due to focal and
absorption effects of the radiation force and the relative position of the wall to the region of
excitation. The key information, therefore, is the relative displacement in the regions local to
each vessel wall.

The IMT measurements for the proximal and distal walls were 0.48 mm and 0.51 mm,
respectively, which are consistent with healthy carotid tissue. Note that the adventitial layer is
not easily visible in B-mode scanning. The adventitial tissue is visible in the ARFI image, but
is not distinguishable from the intimal and medial layers.

Figure 2 displays the matched B-mode and ARFI images for a common carotid artery in a 67-
y-old male with thickening of the intimal-medial layer due to atherosclerotic disease. The
images in Fig. 2 are representative of a number of volunteers we observed in our study.
Thickening is apparent in both the B-mode and ARFI images on the proximal wall in the right
portion of the images but the atherosclerosis is indistinguishable from normal vasculature in
terms of its stiffness. The IMT measurements for the proximal and distal walls were 1.21 mm
and 1.07 mm, respectively. Carotid IMT measurements of this size are consistent with diseased
tissue.

Figures 3 and 4 display an example of a stiff, possibly fibrous, plaque in the common carotid
artery of a 49-y-old male. The B-mode image in Fig. 3 shows a cross-sectional view of the
carotid artery with the jugular vein located to the upper left of the carotid artery. The plaque
is partially visible in the B-mode image, located on the right side of the artery and occludes
approximately 40% of the vessel cross-section. In the ARFI image, the plaque is visible in the
right portion of the vessel and has high contrast with the surrounding soft tissue. In this image,
the displacements produced in the plaque are uniform throughout.

Figure 4 displays the longitudinal view of the plaque. The B-mode image indicates a plaque
on the far wall of the common carotid artery. As shown in Fig. 3, the plaque appears to wrap
around a significant portion of the artery and is, therefore, visible on the near wall of the
common carotid artery. The view of the plaque in the longitudinal axis shows the plague to be
homogeneously stiff throughout.
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Figure 5 shows an example of an apparently heterogeneous plaque containing a soft region
surrounded by a stiff cap in the carotid bifurcation of a 55-y-old female volunteer. The plaque
is located near the bifurcation of the carotid artery and appears to wrap around the artery such
that it is visible on both the proximal and distal walls.

The soft region of the plaque is visible on the distal wall as the oval shaped region extending
from 23 to 25 mm depth and -2 to 4 mm laterally in the ARFI image. The soft region is
surrounded by a significantly stiffer region. The displacement of the soft region ranges from
5 to 8 um, compared with 2 um in the surrounding stiffer tissue. The surrounding tissue is
approximately 1.3 mm thick between the soft region and the vessel lumen, except on the left
side, where the thickness of the cap decreases to approximately 0.7 mm. At 0.7 mm, the stiff
cap is at the upper limit of the range indicating vulnerability (Ge et al. 1999). Ge et al.
(1999) also noted that a lipid core with area greater than 1 mm? or a core to plaque ratio greater
than 20% also correlated well with rupture. The soft region in this plague meets Ge’s definition
of a vulnerable plaque, assuming that this region is a lipid core. This soft region was only
partially visible in the second ARFI image acquired of this plaque, however, there was a
significant amount of motion between acquisitions that may have changed the imaging plane.

Figure 6 displays an example of a stiff plaque containing mild heterogeneity in the carotid
bifurcation of an 83-y-old male. The B-mode image indicates a large plaque extending across
the distal wall of the carotid bifurcation. The main portion of the plaque is situated at the
bifurcation with a less visible secondary lump located at approximately —10 mm laterally. A
significant amount of calcification is present in the B-mode image as indicated by the
shadowing distal to the plaque.

This plaque contains two small regions of tissue that are soft relative to the surrounding plaque.
The first soft tissue region is 0.5 mm in size and is located in the center of the large plaque at
the bifurcation of the carotid artery. This region displaces approximately twice that of the
surrounding plague. Observation of the region of displacement through time in Fig. 7 reveals
that this region initially displaced approximately three times greater than the surrounding
plaque and reached its peak displacement much earlier than the time step for which this image
was created. In addition, this soft region recovered to its original position much slower than
the surrounding plaque. The second region of soft tissue appears in the smaller protruding
plaque in the internal carotid artery. This soft tissue region has characteristics similar to the
soft tissue in the larger plaque. These soft regions were visible in three ARFI images taken of
this plaque.

The presence of calcification in this plaque is consistent with the low displacement at the
calcification site. Below the calcification (at 25-28 mm depth), displacements of approximately
1 um are obtained whereas locations lateral to this show relatively high displacement. This is
due to severe attenuation of the radiation force from the calcification. The large displacements
observed in the proximal wall of the ICA are an artifact most likely caused by reverberation
of the ultrasound pulse in the soft tissue layers proximal to the jugular vein. As the soft tissue
in the region causing reverberations is displaced, the reverberant echoes appear to displace as
well. These reverberation artifacts are not a major concern for misjudgment of tissue structures
because they are fairly apparent and can be easily identified in B-mode images (as in this case).

DISCUSSION

Tables 1 and 2 indicate the ARIC percentile rank of common carotid IMT thickness for each
of the volunteer subjects. This score has been shown to be correlated with the risk for stroke
(Lorenz et al. 2007;Leon Jr. et al. 2005;Chambless et al. 2000). These metrics do not indicate,
however, whether a particular plague may be prone to rupture. Knowledge of the mechanical
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makeup of plaques may allow clinicians to better differentiate patients that are at higher risk
for ischemic neurologic events. This may aid in the selection of candidates for carotid
endarterectomy surgery. In addition, the ARIC percentiles only account for intimal-medial
thickening of the distal wall. Atherosclerosis can also occur on the proximal wall, and therefore
may not accurately reflect the true risk of the patient.

Histologic confirmation of the plaques observed in Figs. 3 to 6 was unavailable, so definitive
makeup of these plaques were unknown. However, the structures and mechanical properties
in the ARFI images observed in this study are consistent with our excised vessel study (Trahey
et al. 2004) for which histologic confirmation has been performed. In excised vessels, fibrous
plaque and calcified regions were associated with very low displacements relative to the
surrounding tissue, whereas relatively large displacements were observed in soft, lipid-filled
regions.

The important information in the ARFI images is the relative, and not absolute, displacements
incurred in each tissue. This is because the force used to generate the displacements can vary
from person to person and tissue to tissue depending on other factors including differences in
overlying tissue, attenuation and the position of the vessel. Because radiation force was applied
to both the proximal and distal walls in Figs. 1 to 6, only the displacements in the adjacent
tissues should be compared and not the displacements between the two walls.

There is a possibility that two significantly different tissue types can be displaced equally by
the same applied force if one tissue is softer and weakly absorbs ultrasound waves and the
other is stiffer and greatly absorbs ultrasound waves. Given the reported values of elastic
modulus and attenuation of plaque tissues, however, it seems that this scenario is unlikely.
Lipid-filled regions are reported to be 1/100 the modulus of normal arterial tissue (Keeny and
Richardson 1987) and fibrous and calcified plaque have moduli orders of magnitude greater
than normal tissue (Baldewsing et al. 2004; Cheng et al. 1994; Lee et al. 1994). Fatty and
calcified regions of atherosclerotic plaque are reported to have greater attenuation than normal
tissue, although the reported values of each vary widely (Greenleaf et al. 1974; Landini et al.
1985). Fibrous tissue was shown to have similar attenuation as normal tissue (Greenleaf et al.
1974).

In most instances, it was found that ARFI imaging is incapable of detecting the difference in
stiffness between hard plaque and vascular tissue. Both tissues are very stiff and displace no
more than 2 to 4 um at the forces applied in this setup. In addition, ARFI imaging is incapable
of identifying the different types of soft tissue present in plaques (Figs. 5 and 6). These tasks
are not crucial to determining plaque vulnerability, however, because vulnerability is largely
defined by the plague morphology and its composition. The vast majority of plaques are
composed of three main tissues, which are dense fibrous tissue, calcifications and lipid-rich/
necrotic cores (Gomez 1990;Fayad and Fuster 2001;Saam et al. 2005). Alternatively, MRI does
have the advantage of distinguishing different soft tissue types with good sensitivity and
specificity as well as differentiating dense fibrous tissue (Saam et al. 2007) but the cost of using
MRI for such screening may be prohibitive.

ARFI imaging is capable of detecting soft regions as small as 0.5 mm in diameter (see Fig. 6).
Several reasons support this region being identified as soft rather than a noise artifact. First,

the axial resolution is dependent on the pulse length (or transducer bandwidth) and the kernel
size (Jensen 1996), with the lower limit of resolution being half the pulse length. In this case,
we chose a kernel length of 0.1 mm, which is approximately equal to one-half the pulse length.
The lateral resolution of the ARFI images is similar to that of B-mode imaging, and is dependent
on the beam width and the lateral sample spacing. The lateral resolution in these images is 0.3
mm. Second, the error in the displacement calculation typically seen in ARFI images is on the
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order of a few tenths of microns. Empirical measurements of the jitter from a phantom with a
similar SNR (estimated to be 20 dB in the shadowed region under the plaque in Fig. 6), indicated
that the jitter, or the standard deviation of the error in the estimates, is approximately 1.2 um.
Third, the reproducibility of ARFI images is good. The temporal stability of the soft tissue
regions was confirmed with multiple ARFI images of the plaques taken several seconds apart
from each other (and with small shifts in spatial location). In Fig. 6, the soft regions were visible
in three of the four ARFI images. Lastly, the soft regions recover to the noise floor (1.2 um)
in a significantly longer time than the hard region (see Fig. 7), which is a behavior of different
tissue types rather than jitter noise. Due to the size of these soft regions, they cannot be modeled
as linear, isotropic, elastic tissue. However, the recovery of this tissue due to radiation force is
consistent with the response expected from linear, isotropic, elastic tissue (Palmeri et al.
2006).

The wall thickness measurements derived by ARFI imaging are consistently larger than IMT
measurements but may yield no additional information to current IMT measurements.
However, they may provide easier and more consistent measurements in difficult-to-image
patients. Carotid IMT measurements can only be applied to segments where the IMT layer is
visible in the B-mode image. This is not typically achieved over the entire vessel and is often
more difficult to achieve in the proximal wall than in the distal wall. ARFI imaging may be
able to aid B-mode IMT measurements in this regard. For example, the ARFI image shown in
Fig. 5 shows good visualization of the proximal wall where the IMT layer is not well resolved
in the B-mode image. It is unlikely that ARFI imaging will be a replacement for B-mode IMT
measurements because ARFI images do not always yield good visualization of the vessel walls.
For example, in Fig. 5 the distal wall of the vessel is not well resolved for most of the segment.
Visualization problems can occur when the radiation force reaching the vessel wall is weak,
such as when absorption is high or if the vessel wall lies deeper than the focal point of the
radiation force. Improved instrumentation and transducers may overcome these limitations.

CONCLUSIONS

The feasibility of imaging atherosclerotic plaques in the carotid artery with acoustic radiation
force was demonstrated. High-resolution images of the mechanical properties of homogeneous
and heterogeneous plaques were observed. Although no histologic samples could be obtained
from the plaques in this study, the results were consistent with the displacements observed in
excised vessels containing stiff, calcified and fibrous plaques and soft, lipid-filled regions.
ARFI imaging was shown to be an effective, non-invasive technique for observing the
mechanical makeup of carotid plaques.
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Fig. 1.

Matched B-mode (left) and corresponding acoustic radiation force impulse (ARFI) image
(right) of a healthy carotid artery in a 46-y-old female. The color bar on the right indicates the
amount of displacement in microns. The display is limited to 10 um of displacement.
Displacements are approximately 2 «m in the proximal wall of the vessel and 4 um in the distal
wall. Differences in wall displacement are expected due to differing applications of radiation
force at the two walls.
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Fig. 2.
Matched B-mode (left) and corresponding ARFI image (right) of the common carotid artery
of a 67-y-old male with thickening pertaining to atherosclerotic disease.
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Fig. 3.

Matched B-mode (left) and corresponding ARFI image (right) of a stiff plaque in a 49-y-old
male patient. The plaque is visible on the right side of the carotid artery with high contrast
relative to the surrounding soft tissue.
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Fig. 4.

Longitudinal view of the plague shown in Fig. 3. The plaque is visible on the distal wall of the
carotid artery and wraps around to the proximal wall. The plaque appears to be heterogeneously
stiff.
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Fig. 5.

Matched B-mode (left) and corresponding ARFI image (right) of a heterogeneous plaque with
a compliant region surrounded by a stiff region, indicating a possible soft tissue or lipid pool
surrounded by a fibrous cap.
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Fig. 6.

Matched B-mode (left) and corresponding ARFI image (right) of a mildly heterogeneous
plaque in the carotid bifurcation of an 83-y-old male patient. The plaque contains small,
compliant regions in the largest portions of the plaque (indicated by the arrows in the right
image, located in the bifurcation and internal carotid artery [ICA]). The size of these regions
is approximately 0.5 mm.
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Fig. 7.

The displacements shown over time for the two soft regions located in the bifurcation (BIF)
and the internal carotid artery (ICA) and a hard region in the bifurcation in Fig. 6. The soft
regions recover to the noise floor in 2.2 and 1.1 ms for the bifurcation and internal carotid
regions, respectively and do not displace above the noise floor for the adjacent hard region.
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