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The Bayesian approach to data analysis dates to the Reverend Thomas Bayes1 who published
the first Bayesian analysis (reprinted in Barnard 19582). Initially, Bayesian computations were
difficult except for simple examples and applications of Bayesian methods were uncommon
until Adrian F. M. Smith3,4 began to spearhead applications of Bayesian methods to real data.
Bayesian applications to science and medicine have exploded in the past twenty years (confer
Berger 20005) due to the development of flexible and robust computational algorithms
(Markov Chain Monte Carlo6,7).

Unlike classical statistical methods, Bayesian statistical methods for analysis of
ophthalmological data directly incorporate expert ophthalmologic knowledge in estimating
unknown parameters. For example, suppose that in a small sample of glaucoma patients the
mean intraocular pressure (IOP) is 30 mmHg but that it is known a priori that IOP in glaucoma
patients is centered on 25 mmHg. A Bayesian analysis incorporates this information into its
inference, and would obtain, for example, a sample mean estimate somewhat less than 30
mmHg, perhaps 29 mmHg, a weighted average of the data estimate 30 mmHg and the expert
ophthalmologic knowledge of 25 mmHg.

Recently I used a Bayesian analysis to investigate an unpublished HIV logistic8 regression
analysis. The original analysis used maximum likelihood, one of several classical approaches
to estimation. In the maximum likelihood analysis a particular regression coefficient had an
estimate of 4.4 with a standard error of 2.1 corresponding to an odds ratio (OR) of 79.8 and
95% confidence interval (CI) of (1.27,5014). The result is statistically significant; the question
is whether this enormous estimate and gigantic CI reflects a real effect or is an artifact caused
by limited data. (The specific application was trying to predict unprotected sex as a function
of methamphetamine use and time.)

From long experience, I know a priori that in logistic regression, coefficients of binary (0-1,
dichotomous or dummy) predictors are usually in the range −1 to 1 and rarely outside the range
(−2,2). To encode this particular piece of prior information formally into a Bayesian analysis,
a common approach specifies in advance of and independently of the data that the unknown
regression coefficient has a Gaussian prior distribution with prior mean 0 and prior standard
deviation 1. This prior distribution says that 68% of all logistic regression coefficients should
be in the interval (−1,1) and 95% of all logistic regression coefficients should be in the interval
(−2,2). Using this prior distribution, the Bayesian analysis estimates the regression coefficient
to be .80 with a standard error of .9. The corresponding odds ratio is 2.2 with a 95% interval
(.38, 13.), a non-significant result much more in line with the prior information. The non-
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significant Bayesian result has a smaller standard error, a more believable point estimate, and
narrower confidence interval that contains more believable values in the OR confidence
interval than the classical maximum likelihood inference. As a sensitivity analysis, I tried a
number of other prior standard deviations besides 1, ranging from 1/8 to 2 and all give a non-
significant result. The Bayesian result is non-significant in contrast to the traditional maximum
likelihood result; my advice to my colleagues was to not report the original result as an artifact
caused primarily by limited data.

Bayesian estimation is also called shrinkage estimation and Bayesian methods generally give
more stable estimates with smaller standard errors by allowing expert prior information to be
incorporated directly into the analysis. In the ophthalmologic example, the IOP sample mean
of 30 mmHg was shrunk towards 25 mmHg; in the HIV example, the maximum likelihood
estimate of 4.4 was shrunk strongly towards the null value of 0.

Statistical modeling requires a scientific question, a relevant data set and a statistical model
that links the data to the scientific issue. Given the Bayesian statistical model and the data,
Bayesian inferences follow directly; there is only one Bayesian conclusion. In contrast, given
a model and data set, classical statisticians must make choices from a bewildering menu of
methodologies not all of which are fully fleshed out or easily explained. Even in the case of
comparing two groups should one use a t-test, a rank test, a signed rank test or a robust
alternative? It can be simpler to specify and execute a Bayesian inference than a classical
inference.

Classical computational software is extremely elaborate. Bayesian software, while much
younger and less complicated, tends to be rather flexible and unified; this will no doubt change
as Bayesian software matures. Currently, the most popular Bayesian package is WinBugs9,
which can fit most models likely to be seen in a two year biostatistics Masters degree program.
SAS Institute has just released a Proc MCMC (SAS Institute, Cary, North Carolina) to allow
general Bayesian modeling and there are several additional SAS procedures that allow explicit
Bayesian modeling. Several recent texts10,11 teach Bayesian computation using the high
quality free statistical package R12.

Bayesian methods have numerous advantages over classical methods. Small data sets can be
successfully analyzed with a concomitant decrease in non-sensible and extreme answers as
with the HIV analysis, and “couldn't be analyzed” results occur more rarely. That doesn't mean
you will get significant results more often, but small data sets can be investigated for the
information they do contain. Hierarchical models for fitting hierarchical and nested data are
naturally Bayesian.

Classical statistics has difficulty with inference in many situations. Recent Bayesian successes
provide solutions for problems that are difficult for classical approaches, including multiple
imputation for missing data, model and variable selection, and hierarchical models. Classical
hypothesis testing has many restrictions: it requires specifying a null hypothesis (H0: mu=0)
and an alternative hypothesis (HA: mu >0); the null hypothesis is a limiting or special case of
the alternative. Bayesian hypothesis testing can simultaneously consider two or more
hypotheses all at one time (for example, H1: mu<0, H2: mu=0, H3: 0<mu<10, and H4: 10<mu).
Scientific discussions of a particular Bayesian analysis center on what assumptions are sensible
and appropriate; classical inference discussions must also include discussions of appropriate
statistical methodology; the choice of estimation method can be influential on final
conclusions.

Bayesian methods are not a panacea. What model to use in a given analysis can be subject to
intense discussion and dispute in both Bayesian and classical inference. Two statisticians may
well disagree about the best approach for a given data set and as knowledge and experience in
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an area expands, model complexity will likely expand. For complicated data sets, the
appropriate model may be incompletely understood. Bayesian and classical analyses are
subject to modeling choices made for convenience; unthinking usage of a given Bayesian
model is just as bad as unthinking usage of a classical model.

In Bayesian analysis, expert scientific opinion is encoded in a probability distribution for the
unknown parameters; this distribution is called the prior distribution. The data are modeled as
coming from a sampling distribution given the unknown parameters. The conclusion of the
analysis is the posterior distribution, a compromise between the prior information and the data
information. In addition to previous citations, there are other popular advanced Bayesian
texts13, 14. Ophthalmology has plenty of opportunities for active application of Bayesian
methods and collaboration with a statistician expert both in Bayesian methods and the particular
models and data set under analysis can be extremely helpful. Grab a Bayesian and get to work!
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