Skip to main content
. 2010 Jan 29;6(1):e1000657. doi: 10.1371/journal.pcbi.1000657

Figure 5. Mitochondrial O2.− and ΔΨm in response to increased exogenous O2.− in saponin-permeabilized cardiomyocytes.

Figure 5

Myocytes were loaded with TMRM (100 nM) and CM-H2DCFDA (2 µM) for at least 20min and imaged using two-photon laser scanning fluorescence microscopy (see Materials and Methods). After loading, the excess dye was washed out and the cells were briefly superfused with a permeabilizing solution (saponin) as previously described [10]. After permeabilization, the myocytes were continuously perfused with an intracellular solution containing GSH∶GSSG at a ratio of 300∶1. The TMRM was included in the medium to avoid depletion of the probe during depolarization-repolarization cycles. A) The TMRM and CM-DCF images of a permeabilized cardiomyocyte at time zero after loading and before (top row image) or after permeabilization and 5min imaging under control conditions (Control, second row) or the presence of KO2 (10 µM, third row; 20 µM, fourth row; 30 µM, fifth row) after 3min equilibration in each case. RIRR-mediated ΔΨm depolarization without a permeability transition occurs at the two lower concentrations, while loss of the CM-DCF probe (∼500MW) from the mitochondrial matrix due to PTP opening occurs at 30 µM KO2. B) The rates of O2.− accumulation as a function of KO2 concentration. Slopes were calculated when the linear rate of change of the CM-DCF signal stabilized under each condition.