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Abstract

GCN5 encodes one of the non-essential Histone Acetyl Transferases in Saccharomyces cerevisiae. Extensive evidence has
indicated that GCN5 is a key regulator of gene expression and could also be involved in transcriptional elongation, DNA
repair and centromere maintenance. Here we show that the deletion of GCN5 decreases the stability of mini-
chromosomes; that the tethering of Gcn5p to a crippled origin of replication stimulates its activity; that high dosage of
GCN5 suppresses conditional phenotypes caused by mutant alleles of bona fide replication factors, orc2-1, orc5-1 and
mcm5-461. Furthermore, Gcn5p physically associates with origins of DNA replication, while its deletion leads to localized
condensation of chromatin at origins. Finally, Dgcn5 cells display a deficiency in the assembly of pre-replicative complexes.
We propose that GCN5 acts as a positive regulator of DNA replication by counteracting the inhibitory effect of Histone
Deacetylases.
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Introduction

DNA replication in Saccharomyces cerevisiae initiates at discrete

origins referred to as Autonomously Replicating Sequences (ARS).

Origins share an essential core element called ACS (ARS Consensus

Sequence), which binds the Origin Recognition Complex (ORC).

In early G1 phase Cdc6p and six MCM (MiniChromosome

Maintenance) proteins (MCM2-7) join ORC to form pre-

replicative complexes [1]. In S phase these complexes are

activated by protein kinases to initiate DNA replication [1].

It is granted that histone acetylation can play a key role in the

regulation of origins of DNA replication [2,3]. Convincing

evidence has shown that in S.cerevisiae two major Histone-

DeACetylases (HDAC), RPD3 and SIR2, act as negative

regulators of origins [4,5,6,7]. It has been postulated that their

inhibitory role is mediated by global deacetylation rather than

local recruitment and retention of HDACs to replication foci.

However, a recent study suggests that RPD3 may be targeted to

multiple non-telomeric origins but the mechanism of recruit-

ment remains elusive [7]. A link between histone deacetylation

by Rpd3p and negative impact on origin activity has also been

proposed in Drosophila [8]. At the same time, another HDAC,

HST1, surprisingly acted as a stimulator of certain origins [9]

thus suggesting a more complex cross-talk between histone

acetylation and replication. Nevertheless, the prevailing notion

is that deacetylation of histones has a negative impact on origin

activity [3].

It is conceivable that the opposing activity of Histone Acetyl

Transferases (HAT) stimulates origins of DNA replication, but

details about the HATs involved are sparse. For example, in

S.cerevisiae the tethering of Gcn5p to the late origin ARS1412 causes

it to fire earlier [4]. Similarly, the tethering of Chameau (a HAT)

to a chromosomal origin in Drosophila stimulates the activity of this

origin [8] thus reiterating the general link between histone

acetylation and activity of origins. Several recent studies in human

cells have demonstrated that the HAT HBO1 is involved in the

loading of MCM proteins on chromatin in early G1 phase

[10,11,12] and in the progression of replication forks in S-phase

[13]. Furthermore, HBO1 seems to respond to p53 and FAD24 to

halt cell cycle progression [14,15]. HBO1 has no obvious

structural homologue in S.cerevisiae, however the Sas2p-containing

HAT complex NuA3 has been proposed as a remote functional

homologue [16,17]. Interestingly, at semi-permissive temperature

the deletion of SAS2 exacerbates the low origin activity caused by a

mutation in orc2 and delays progression through S-phase in

conjunction with orc2 mutations [18]. Another recent study has

documented an interaction between Hat1p and ORC and has

shown preferential association of Hat1p with origins at the time of

their activation [19].

In this study we compared the effects of the deletions or

mutations in several HATs including SAS2 and HAT1 on DNA

replication in S.cerevisiae. We obtained several lines of evidence

indicating that GCN5 is a major positive regulator of origins of

DNA replication.
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Materials and Methods

The yeast strains used in this study are listed in Table 1. Yeast

cells were routinely grown in YPD or SC media at 23uC except in

Table 2 as indicated.

Plasmids
pGBKT7 (Clontech), pRS305 (SGD), pARS1wt and pARS1/-

B23/G24 [20], pARS1wt/linker [21], pGAL4DBD-GCN5,

pGAL4DBD-gcn5(KQL), pGAL4DBD-SAS2, pGAL4DBD-

SAS3, pGAL4DBD-ESA1 and pGAL4DBD-HAT1 [22] have

been described previously. pFW193 (2 mm, URA3, SPT8) is a gift

from F. Winston. pTF125 (2 mm, URA3, SPT16) and pTF137

(2 mm, URA3, POB3) are gifts from T. Fromosa. pGBKT7-GCN5

was produced by replacing the large HindIII fragment containing

the MCS with a PCR fragment containing GCN5 under its own

promoter.

Mini-chromosome stability assays with pARS1wt and pRS305

were performed as in [23,24]. Suppression of plasmid loss in W303,

mcm5-461, orc2-1 and orc5-1 cells was performed by double

transformation with pARS1wt and pGBKT7 or pGBKT7-GCN5,

respectively. Cells were selected on SC-trp-ura plates. Three

individual colonies were inoculated in SC-trp to allow for retention

of the pGBKT7 episomes and for loss of pARS1wt and grown for

20 generations. Each culture was serially diluted 1/10, and 5 ul of

each dilution were spotted on both SC-trp-ura and on SC-trp plates.

Assays with pARS1/-B23/GAL4 were performed by co-transform-

ing in DF5gal4D cells with pARS1/-B23/GAL4 together with

pGAL4DBD-GCN5, pGAL4DBD-GCN5(KQL), pGAL4DBD-

SAS2, pGAL4DBD-SAS3, pGAL4DBD-ESA1 and pGAL4DBD-

HAT1, respectively. Cells were selected on SC-his-ura plates, grown

for 20 generations in SC-his and then plated on SC-his and SC-his-

ura. In all cases plasmid loss was calculated as in [23].

Chromatin Immuno-Precipitation (ChIP)
We used a protocol, which favors weaker protein interactions

with chromatin. It includes a second cross-linking agent with a

longer arm in the cross-linking step [25]. Briefly, GCN5-MYC or

ADA3-MYC cells at OD600 = 1.0 in YPD were cross-linked with

1.6% formaldehyde for 30 minutes at 25uC and then suspended

in 10 ml PBS/10 mM DMA(Pierce)/0.2%DMSO for another

30 minutes at 25uC. The cross-linking was quenched with

2.5 ml of 2.5 M glycine, cells were collected and crushed by

glass beads in LB/IP buffer (50 mM Tris.HCl, 140 mM NaCl2,

5 mM EDTA, 1x PI cocktail (Sigma)) and sonicated by 12 bursts

of 30 seconds at maximum output of Micronix cuphorn to

produce fragments of about 500 bp. Chromatin was extracted in

LP/IP plus 0.3% TX100 and 0.05% Na deoxycholate and

immuno-precipitated overnight with anti-MYC beads (Sigma).

The beads were washed three times with 1 ml LB/IP/0.5%

TX100, 0.05% Na deoxycholate, one time with 1 ml LB/IP

plus 350 mM NaCl, one time with 150 ul TE plus 10 mM NaCl

(Final Wash) and eluted/uncrosslinked overnight in 150 ul TE/

0.2% SDS at 65uC. After treatment with Proteinase K, DNA

was extracted by Phenol/Chloroform and precipitated. The

fragments of interest were quantified by PCR (after confirming

linear range of amplification with crude genomic DNA) and

ImageQuant software. Primer sequences are provided (Suppl.

Table S1).

For the analysis of MCM loading on origins, BY4247 and Dgcn5

cells were grown at 23uC in YPD to OD600 = 1.0, arrested in

Mitosis with 12 mg/ml Nocodazole for 3.5 hours, then released

from mitotic arrest in fresh YPD. Aliquots of 100 ml were cross-

linked and processed as above. Immunoprecipitation was

conducted with a mixture of 2 ug each of anti-yMCM2 and

anti-yMCM5 antibody (Santa Cruz) and Protein G beads (Sigma).

Washing, elution, reversal of cross-linking and PCR were as

described above.

Restriction Nuclease Accessibility Assay
We used the protocol for targeted analysis of loci [26] with slight

modifications. BY4247 and Dgcn5 cells (100 ml) were grown in

YPD to OD600 = 1.0 and treated with Zymolase and pelleted.

Spheroplasts were re-suspended in 5 pellet volumes of nuclease

buffer (30 mM Tris.HCl pH 7.5, 10 mM MgCl2, 5 mM CaCl2,

50 mM NaCl, 1/100 volume of PI cocktail (Sigma)), split into

0.7 ml aliquots and incubated for 30 min at 37uC with 50 U of

BglII, 50 U of DraI, 200 U of Micrococcal Nuclease (MNase) or no

Table 1. Yeast strains used in this study.

Strain Genotype Reference

W303 ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 MATa

mcm5-461 mcm5-461 ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 MATa, isogenic to W303 [29]

orc2-1 orc2-1 ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 MATa, isogenic to W303 [31]

orc5-1 orc5-1 ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1MATa, isogenic to W303 [32]

esa1-414 ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 esa1-1-414::URA3 MATa, isogenic to W303 LPY4679 [27]

esa1-L254P ade2-1 trp1-1 can1-100 leu2-3,112 his3-11,15 ura3-1 esa1-L254P::URA3 MATa, isogenic to W303 LPY5001 [27]

BY4742 his3D1 leu2D0 met 15D0 ura3D0 MATa Euroscarf

Dgcn5 gcn5::KanMX his3D1 leu2D0 met 15D0 ura3D0 MATa, isogenic to BY4742 Euroscarf

Dsas3 sas3::KanMX his3D1 leu2D0 met 15D0 ura3D0 MATa, isogenic to BY4742 Euroscarf

Dsas2 sas2::KanMX his3D1 leu2D0 met 15D0 ura3D0 MATa, isogenic to BY4742 Euroscarf

Dhat11 hat1::KanMX his3D1 leu2D0 met 15D0 ura3D0 MATa, isogenic to BY4742 Euroscarf

DRtt109 rtt109::KanMX his3D1 leu2D0 met 15D0 ura3D0 MATa, isogenic to BY4742 Euroscarf

ADA3-MYC ADA3-MYC9::HIS3 ura3-1 leu2-3,112 his3-200 lys5 trp1 ada3::TRP1 MATa, isogenic to W303 [35]

GCN5-MYC18 MATa GCN5-MYC::TRP1 ade2-1 can1-100 his3-11,15 leu2-3,112 his3-11, 15 ura3-1, isogenic to W303 [36]

DF5gal4D gal4D gal80D ura3-52 trp1-901 leu2-3,112 his3-200 MATa [53]

doi:10.1371/journal.pone.0008964.t001
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enzyme, respectively. The digestions were stopped with 1/5

volume of 5% SDS/100 mM EDTA. All samples were treated

with Proteinase K, extracted with phenol/chloroform and

precipitated. Subsequently, samples for the analysis of ARS1 were

digested overnight with 0.3 U per mg of DNA of each EcoRI and

EcoRV. Samples for the analysis of CEN4 were digested overnight

with 0.5 U of KspA1 and 0.2 U of BglII per mg of DNA. After

ethanol precipitation, the DNA was resolved on 1.2% agarose gels

and analyzed by Southern blot. The probe for ARS1 was a PCR

fragment adjacent to the EcoRV site. The probe for CEN4 was

adjacent to the BglII site. The actual sequences of the probes are

available upon request. Signals were acquired and quantified by

Phosphorimager using ImageQuant software.

Results

Deletion of GCN5 Impairs Mini-Chromosome Stability
Mini-chromosomes are stably inherited (3–5% loss per

generation) plasmids, which contain an ARS, a centromere (CEN)

and a selection marker gene. Increased loss rate in non-selective

medium is most frequently associated with flawed replication of

the mini-chromosome independently of effects on other processes

[24]. We used the mini-chromosome stability assay to test the

involvement of several HATs in DNA replication. Strains with

disrupted non-essential HAT genes (Dgcn5, Dhat1, Dsas2, Dsas3 and

Drtt109) or mutations in the essential ESA1 gene (esa1-414,

esa1L245P [27]) were transformed with two different mini-

chromosomes carrying ARS1 (pARS1wt) or ARS305 (pRS315).

In Fig. 1A we show that the disruption of GCN5 dramatically

decreased the stability of both mini-chromosomes, while the

deletion of the other HATs or the mutations in esa1 had marginal

effects. The level of mini-chromosome instability in Dgcn5 cells was

comparable to that of the mcm5-461 strain, which harbors a

mutation in one of the essential origin licensing factors, MCM5

[28,29].

Tethering of Gcn5p Stimulates the Activity of an
Impaired ARS1

The tethering of Gcn5p to a late origin (ARS1412) causes it to fire

earlier [4]. We designed a similar tethering assay to directly

compare the overall activity of several HATs on a mini-

chromosomal origin. The mini-chromosome pARS1/-B23/G24

(Fig. 1B) carries ARS1, in which two of the auxiliary elements, B2

and B3, are destroyed and a GAL4 binding site is inserted instead

of B3 [20]. These ablations render pARS1/-B23/G24 unstable to

a point where its maintenance is critically dependent on the

tethering of stimulators via the GAL4 binding site [20,30]. To test

the roles of different HATs on this crippled origin, we co-

transformed DFDgal4 cells with pARS1/-B23/G24 plus a set of

constructs expressing GAL4-fusions of Gcn5p, gcn5p(KQL) (a

GCN5 mutant lacking HAT activity), Sas2p, Sas3p, Esa1p and

Hat1p, respectively, and measured the stability of pARS1/-B23/

G24. In Fig. 1B we show that Gcn5p and Hat1p reduced the loss

rate of pARS1/-B23/G24 from 25% to 10 and 12%, respectively.

Since the theoretical maximum loss measurable by this assay is

50% for non-replicating plasmids and is in the range of 30% for

very poorly replicating plasmids [24], these effects were considered

significant. In contrast, Gcn5p(KQL), Sas2p, Sas3p and Esa1p did

not reduce the loss rate of pARS1/-B23/G24 (Fig. 1B). We note

that all GAL4-fusion constructs express active HAT proteins in vivo

as demonstrated elsewhere [22].

High Dosage of GCN5 Suppresses Mini-Chromosome
Instability in Replication Factor Mutants

In an earlier study we have shown that high dosage of TRA1 (a

component of the HAT complexes SAGA and NuA4) can

suppress the Ts2 phenotype of a strain with profound replication

deficiency, mcm5-461 [29]. We reasoned that if GCN5 works in

DNA replication, it may have a similar effect in this and other

replication factor mutants. We supplemented the mcm5-461 [29],

orc2-1 [31] and orc5-1 [32] strains with stable high copy 2 mm

episomes, which carry GCN5 or a non-HAT component of the

SAGA/ADA complex, SPT8. As controls, we used two genes,

which encode components of the FACT complex, SPT16 and

POB3. FACT has been implicated in pol II transcription and in the

elongation step of DNA replication, but not in origin activation

[33,34]. In Table 2 we show that high copy of GCN5 and SPT8

suppressed the conditional Ts2 phenotypes of mcm5-461, orc2-1 and

orc5-1. In contrast, SPT16 and POB3 had no effect. Next, we tested

if the high dosage of GCN5 in these mutants also suppressed the

severe instability of mini-chromosomes. We co-transformed these

strains with a test mini-chromosome (pARS1wt) and the GCN5-

carrying episome and assessed the level of loss of pARS1wt. The

high dosage of GCN5 significantly improved the stability of

pARS1wt relative to the control (Fig. 2). Hence, high dosage of

GCN5 specifically suppressed the replication deficiencies of mcm5-

461, orc2-1 and orc5-1.

Gcn5p Associates with Origins of DNA Replication
Next, we used ChIP assays to test if Gcn5p directly associates

with origins of DNA replication. In the first set of experiments we

used a modified pARS1wt/link mini-chromosome, which has

been designed to minimize overlap of ChIP signals from URA3

and ARS1 ([21], see Fig. 3). It contains a 2.2 kb fragment of non-

yeast DNA between ARS1 and the URA3 reporter. pARS1wt/link

Table 2. High dosage of GCN5 and SPT8 partially suppress
the Ts2 phenotypes of replication factor mutants.

High dosage gene Growth at 23uC Growth at 37uC

orc2-1 No episome ++++ 2

Control ++++ 2

GCN5 ++++ ++

SPT8 ++++ ++

SPT16 ++++ 2

POB3 ++++ 2

orc5-1 No episome ++++ 2

Control ++++ 2

GCN5 ++++ ++

SPT8 ++++ ++

SPT16 ++++ 2

POB3 ++++ 2

mcm5-461 No episome ++++ +/2

Control ++++ +/2

GCN5 ++++ +++

SPT8 ++++ +++

SPT16 ++++ +/2

POB3 ++++ +/2

orc2-1, orc5-1 and mcm5-461 cell were transformed with high copy episomes
(2 mm) carrying the shown genes and then grown at 23uC or 37uC. Growth was
assessed by size of colony after 3 days at 23uC or after 5 days at 37uC.
doi:10.1371/journal.pone.0008964.t002
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Figure 1. GCN5 regulates mini-chromosome stability. A. Disruption of GCN5 increases the loss rate of ARS1- or ARS305- mini-
chromosomes. Maps of pARS1wt (ARS1, CEN4, URA3) and pRS315 (ARS305, CEN4, LEU2) mini-chromosomes are shown on the top of the graphs. The
mini-chromosomes were transformed in the strains shown at the bottom of the graphs. After growth on selective plates (SC-ura or SC-leu,
respectively) three colonies were transferred for 20 generations in rich medium (YPD) and plated on YPD and SC-ura or SC-leu, respectively. The
proportions of cells with URA+ or LEU+ phenotypes were assessed and the average loss rate per generation was calculated (%) and plotted. Error bars
represent standard deviations between the three parallel counts in the experiment. A typical outcome of one of three independent experiments is
shown. B. Tethering of Gcn5p increases the stability of pARS1/-B23/GAL4. A diagram of pARS1/-B23/GAL4 (ARS1-B2-B3+GAL4, CEN4, URA3) is
shown on the top. The B2 and B3 elements of ARS1 are destroyed and a GAL4 binding site (GAL4-BS) is inserted next to B3. DF5gal4D cells were co-
transformed with pARS1/-B23/GAL4 and episomes (2 mm/HIS3) expressing the GAL4 DNA binding domain fused to the proteins indicated below the
graph. Gcn5p(KQL) lacks HAT activity. Average pARS1/-B23/GAL4 loss per generation and standard deviation were calculated as in Figure 1a. A typical
outcome of one of two independent experiments is shown.
doi:10.1371/journal.pone.0008964.g001
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was introduced in the ADA3-MYC strain [35] and ChIP was

performed with anti-MYC antibodies. Ada3p, Ada2p and Gcn5p

build up a stable complex, which forms the catalytic core of all

Gcn5p-containing HATs [35]. The amounts of precipitated mini-

chromosomal ARS1 only (one of the primers anneals to the

plasmid backbone) and two flanking fragments that are positioned

about 1 kb away from it were quantified by triplicate PCR. The

data showed that about 4% of the mini-chromosomal ARS1, 0.6%

of the fragment between ARS1 and URA3 and 0.1% of the

fragment next to CEN4 were immunoprecipitated by anti-MYC

antibodies (Fig. 3, lane 4). In comparison, the anti-MYC

antibodies precipitated none of the genomic Ty1b transposon

(negative control) (Fig. 3, lower panel) and about 5% of the

genomic ACT1 (positive control). The non-crosslinked samples

(Fig. 3, lane 2) and the samples without antibody (Fig. 3, lane 3)

uniformly produced negligible signals with all loci tested. We

concluded that Ada2p/Ada3p/Gcn5p specifically associates with

the mini-chromosomal ARS1.

In another set of experiments we analyzed the association of

Gcn5p with chromosomal origins. We must note that the high

gene density in the yeast genome does not provide the comfortable

distances between genes and origins that were available on

pARSwt/link. Because of this concern we focused on two

extensively characterized origins with finely mapped ACS and

auxiliary elements, ARS1 and ARS305, in a GCN5-MYC18 strain

[36]. The ACS elements of these origins are located more than 500

base pairs (the average resolution of ChIP) away from the nearest

promoter. In these assays we compared the signal from the core

ACS to the signals from two flanking elements positioned between

200 and 500 bases away from the ACSs (see maps in Fig. 4). The

relative amounts of each of the analyzed fragments in the Load,

Wash and anti-MYC-Eluate fractions were quantified by PCR

(triplicate). The per cent of signal in Eluate versus Load was

calculated and plotted next the maps of ARS1 and ARS305 (Fig. 4).

In addition, we tested association of Gcn5-MYCp to two control

loci: the ACT1 gene and the repressed Tyb1 transposon (Fig. 4).

The ChIP experiments consistently produced higher signals

from the ACS elements of ARS1 and ARS305 as compared to the

flanking fragments. The moderately high signal of 1.3% at the

ARS1 flanking element towards TRP1 probably reflects its

proximity to the origin (196 bp) or strong association of Gcn5p

to the upstream TRP1 gene. The recovery of DNAs in the

immunoprecipitates represented 2.9% for ARS1 and 1.8% for

ARS305 of the total DNA analyzed, while the recovery of ACT1

(positive control) DNA was 4.3% (Fig. 4). As expected, no

association of Gcn5p to the repressed Ty1b element was observed

(Fig. 4). These weaker but still noticeable chromatin immunio-

precipitation signals from origins relative to promoters are in tune

with the observations in [36]. In this comprehensive genome-wide

Figure 2. High copy number of GCN5 suppresses mini-
chromosome instability in mcm5-461, orc2-1 and orc5-1. W303,
mcm5-461, orc2-1 and orc5-1 cells carrying pARS1wt (ARS1, CEN4, URA3)
were transformed with pGBKT7 (2 mm/TRP1) or pGBKT7-GCN5. After
selection on SC-trp-ura plates three colonies were transferred for 20
generations in SC-trp and then plated on SC-trp and SC-trp-ura,
respectively. The proportion of cells with URA+ phenotype was
estimated and the average loss per generation of pARS1wt was
calculated (%) as in Fig. 1A and plotted. A typical outcome of one of
two independent experiments is shown.
doi:10.1371/journal.pone.0008964.g002

Figure 3. Gcn5p associates with mini-chromosomal ARS1. A map
of the test mini-chromosome (pARS1wt/linker) is shown on the left. The
distance between ARS1 and URA3 is 2.2 kb. The distance between the
PCR fragments is shown between the pairs of arrows. MYC-ADA3 cells
harboring this mini-chromosome were cross-linked with formaldehyde
and immunoprecipitated with anti-MYC antibodies. The precipitated
DNA was quantified by PCR in triplicate. The per cent of signal from
each fragment in the anti-MYC immuneprecipitate versus Load (diluted
1:50) was calculated and plotted in the graph on the right together with
the standard deviation in the three PCR reactions. Controls with
genomic ACT1 and Ty1b DNAs are shown below the mini-chromosome
diagram. A typical outcome of one of two independent experiments is
shown.
doi:10.1371/journal.pone.0008964.g003
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mapping of Gcn5p association (data available on http://frodo.wi.

mit.edu/cgi-bin/yeast_histones/gbrowse.cgi/yeast_histones) mod-

erately higher signals of Gcn5p binding at ARS1 and ARS305 (and

also at ARS501, ARS606, ARS1021, ARS1414, ARS1618) relative to

the immediate neighboring regions can be observed. However,

these peaks were below the preset threshold of the computational

analysis and were not discussed in [36].We should also mention

that many ARS reside within short distance from gene promoters

thus adding to the problematic interpretation of such weak signals.

We completely agree that the genome-wide approach in [36] has

not identified association of Gcn5p to ARSs. Nevertheless, their

data are in tune with our focused approach and support the notion

of weak association of Gcn5p to origins. We also need to note that

we used a protocol with two cross-linkers (formaldehyde and

DMA, [25]) that enhances weak ChIP signals as compared to a

single cross-linker (formaldehyde) in [36]. In summary, the results

in Figure 4 showed specific, but weaker association of Gcn5p to

chromosomal origins relative to the better isolated mini-chromo-

somal ARS1 origin (Fig. 3). This outcome could be a consequence

of the expected higher background signal on chromosomal origins.

The alternatively explanation is that for some unknown reason the

association of Gcn5p to the mini-chromosomal ARS1 origin is

intrinsically stronger.

Deletion of GCN5 Perturbs Chromatin Structure of a
Chromosomal Origin

We reasoned that if the weak association of Gcn5p to

chromosomal origins is functionally relevant, the deletion of

GCN5 would affect their chromatin structure. Initial analyses by

limited MNase digestion showed the existence of hypersensi-

tivity sites in the vicinity of ARS1, ARS305 and ARS501 (not

shown). However, the differences between Dgcn5 and wt cells

were hard to assess because this enzyme also cleaves in the

broader area of the analyzed loci. It is noteworthy that a similar

DNAase accessibility assay has failed to detect variations in the

structure of ARS1 between wt and orc2-1 cells [18], yet it is

known that ARS1 activity is severely impaired in orc2-1 cells

[31]. We concluded that the MNase or DNAase sensitivity

assays are inadequate for analysis of ARS. Therefore, we

tailored a focused restriction enzyme (BglII) accessibility assay

[26] for the analysis of ARS1 on chromosome IV. BglII cleaves

ARS1 between the B2 and B3 elements [20]. Briefly, equal

amount of spheroplasts from exponentially growing wt or Dgcn5

cells, respectively, were lysed and exposed to excess of BglII.

Under these conditions the cleavage of sites depends on site

accessibility thus representing the level of chromatin compact-

ness of the tested locus. Control samples were incubated

without BglII to monitor for endogenous nuclease activity. In

addition, to distinguish specific signals during the indirect end-

labeling, excess of MNase was added in parallel samples of

lysed spheroplasts. Subsequently, total DNA from all samples

was purified and a second complete digestion was performed

with EcoRI and EcoRV, which cut on either side of ARS1.

Finally, the produced DNA fragments were analyzed by

indirect end-labeling with a probe, which anneals 475 bp away

from the BglII site. The ratio of un-cleaved EcoRI-EcoRV versus

BglII-cleaved fragment was used as a measure for the

accessibility to ARS1 and therefore for chromatin compactness

of the analyzed locus.

Using this assay we reproducibly observed high accessibility to

the BglII site in ARS1 in wt cells (Fig. 5A, lane 2), while the parallel

samples from Dgcn5 cells (Fig. 5A, lane 5) consistently showed

moderate accessibility. The bands corresponding the BglII-cleaved

(475 bp) and un-cleaved (1066 bp) fragment were abolished by

Figure 4. Gcn5p associates with chromosomal origins of DNA
replication. Maps of the four genomic loci analyzed are shown on the left.
Exponentially growing MYC18-GCN5 cells were cross-linked with formalde-
hyde and immunoprecipitated with anti-MYC antibodies and the
precipitated DNA was quantified by PCR in triplicate. The per cent of
signal from each fragment in the anti-MYC immunoprecipitate versus Load
(diluted 1:50) was calculated and plotted in the graphs on the right
together with the standard deviation in the three PCR reactions. The arrows
in the diagrams represent the pairs of PCR primers used. The distance
between the PCR fragments is shown between the pairs of arrows. A typical
outcome of one of two independent experiments is shown.
doi:10.1371/journal.pone.0008964.g004
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treatment with MNase. These results clearly show that in Dgcn5

cells ARS1 acquires a compact structure resistant to nuclease

digestion.

Deletion of GCN5 Has a Relatively Minor Effect on the
Structure of CEN4

An earlier study has implicated GCN5 in the regulation of

centromeres [37]. More specifically, the study has shown increased

accessibility of DraI sites in centromeres in Dgcn5 cells. We

attempted to evaluate the extent of chromatin modifications at

origins and centromeres in Dgcn5 cells using a similar DraI-

accessibility assay for the analysis of CEN4. Samples from wt and

Dgcn5 cells prepared in parallel with the samples for Fig. 5A were

digested with DraI and processed accordingly with KspI and BglII.

Next, indirect end-labeling with a probe annealing 600 bp from

the three juxtaposed DraI sites in CEN4 was performed (Fig. 5B).

Figure 5. Chromatin structure of ARS1 and CEN4 in Dgcn5 cells. Spheroplasts from Dgcn5 and the isogenic wild type cells (BY4741) were lysed
and exposed to excess of BglII, DraI or MNase as indicated on top of each lane. After purification and complete digestion with restriction enzymes that
cut at each side of the analyzed loci (shown on the right), DNA fragments were analyzed by Southern blot with the probes shown on the right. A
typical outcome of one of three independent experiments is shown. A. Analysis of ARS1. Diagram of the ARS1 locus on chromosome IV with the
positions of ARS1, of the probe for Southern blot and of the BglII, EcoRV and EcoRI sites is shown on the right. The BglII-cleaved (475 bp) and
uncleaved (1066 bp) fragments are also shown. Density graphs of lanes 1, 2, 4 and 5 are shown underneath. B. Analysis of CEN4. Diagram of the
CEN4 locus on chromosome IV with the positions of CEN4, of the probe for Southern blot, of the BglII and KspAI sites and the three juxtaposed DraI
sites is shown on the right. The DraI-cleaved (600 bp) and uncleaved (878 bp) fragments are also shown. Density graphs of lanes 1, 2, 4 and 5 are
shown underneath.
doi:10.1371/journal.pone.0008964.g005
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In these experiments we consistently observed fairly similar levels

of DraI cleavage in both wt and Dgcn5 cells (Fig. 5B, lanes 2 and 5).

Calculation of the intensity of the cleaved (600 bp) and uncleaved

(878 bp) CEN4 fragments in Fig. 5B showed that 14% and 18% of

the DraI sites were digested in wt cells or Dgcn5 cells, respectively.

In agreement, the accessibility to DraI in [37] was similarly

estimated at 9% in wt cells and 13% in Dgcn5 cells.

In summary, our assays have demonstrated that the deletion of

GCN5 produces minor alterations in the chromatin structure of

CEN4 and major alterations of ARS1.

Deletion of GCN5 Impairs the Assembly of Pre-Replicative
Complexes on Origins in G1

Earlier studies have shown that the lack of GCN5 delays

progression through G2 and Mitosis after synchronization with a-

factor [37,38]. When cells are synchronized in Mitosis, they also

progress slower through G1/early S phase and display later

appearance of buds as compared to wild type cells (Figure S1). We

considered that an event in Mitosis or G1 that is important for

regulation of origins could be impaired in Dgcn5 cells.

Shortly after exit from Mitosis the origins assemble and

‘‘license’’ pre-replicative complexes. This ‘‘licensing’’ is highlighted

by the loading of the MCM proteins [1]. Consequently, the

binding of MCM proteins to origins is used as an assessment for

the efficiency of assembly of pre-replicative complexes [39]. We

tested the hypothesis that the negative effect on DNA replication

in Dgcn5 cells is linked to impaired loading of MCM proteins. We

synchronized wt and Dgcn5 cells in Mitosis by Nocodazole and

then released them in YPD. Cells were cross-linked at 20 min past

release when both cell strains are in G1 and show no buds (Fig. 6

Figure 6. Reduced association of MCM proteins to ARS1 and ARS305. Wild type (BY4742) and Dgcn5 cells were arrested in Mitosis by12 mg/ml
Nocodazole for 3.5 hours and released in YPD. Wild type cells were harvested at 0, 20 and 60 min past Nocodazole release. Dgcn5 cells were
harvested at 0, 20 and 60 min past Nocodazole release. Progression through the cell cycle as monitored by Propidium Iodide staining/FACS is shown
on the top. Crosslinked chromatin was isolated and immunoprecipitated with anti-MCM2 and anti-MCM5 antibodies. The ACS fragments of ARS1 and
ARS305 and a fragment from ACT1 were amplified by PCR (triplicate) and quantified. The per cent of signal from each fragment in the anti-MYC
immunoprecipitate versus Load was calculated and plotted. A typical outcome of one of two independent experiments is shown.
doi:10.1371/journal.pone.0008964.g006
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and Suppl. Fig. S1). Another sample was collected and cross-linked

60 or 80 min past release for wild type or Dgcn5 cells, respectively.

Cross-linked chromatin was sheared, extracted and immunopre-

cipitated with a mixture of anti-MCM2 and anti-MCM5

antibodies (Santa Cruz). We have found that this mixture of

anti-peptide antibodies is more efficient in recovery of origin DNA

as compared to the individual antibodies used alone [40,41].

Finally, the immunoprecipitated DNA was analyzed by quantita-

tive PCR with primers for ARS1 and ARS305. Consistent with

many previous reports (reviewed in [1]), in wt cells we saw

significant enrichment of anti-MCM immunoprecipitated ARS1

and ARS305 DNA at the 20th min past release (G1) with significant

decrease of the signals at the 60th min (S) (Fig. 6). In comparison,

ACT1 showed very little association with MCM proteins at the

time points of our experiment. A similar pattern of MCM binding

to origins was observed in Dgcn5 cells except that the S phase

sample was collected at the 80th minute to compensate for the

slower progression through the cell cycle. Importantly, in Dgcn5

cells the recovery of ARS1 and ARS305 DNA in G1 was two-three

fold lower as compared to wt cells (Fig. 6). These results

demonstrate significant deficiency in the assembly of pre-

replicative complexes in Dgcn5 cells.

Discussion

In S.cerevisiae, ten HATs have been described to date

[42,43,44]. Several genome-wide studies on gene expression

[45,46,47,48] and chromatin association [36,49] have provided

significant details on the engagements of the HAT complexes

SAGA, TFIID, Mediator and NuA4 at gene promoters.

However, these papers have not suggested the participation of

any of these HATs in DNA replication. On the other hand,

focused studies of origins or studies on protein interactions have

tentatively linked HAT1 [19] and SAS2 [18] to DNA replication.

In the present study we have compared the effects on DNA

replication of deletions of HAT1, SAS2, SAS3, GCN5 and RTT109

and mutations in the essential ESA1 gene. These assays clearly

outlined a major replication deficiency in the Dgcn5 strain with

minor effects in the others (Figures 1 and 2). All subsequent

analyses supported the notion that GCN5 is a positive regulator of

origins. We postulate that GCN5 counteracts the negative effects

of HDACs such as SIR2 and RPD3 [4,5,6]. Our observations

expand the functional repertoire of GCN5, which has already

been implicated in gene expression [43] and also in centromere

function [37].

GCN5 has been extensively characterized as a global regulator of

gene expression [36,47,50,51]. Is it then possible that all effects we

have observed are indirect via deregulated gene expression?

Several arguments reduce the likelihood of this possibility. Firstly,

we have detected credible signals of direct association of Gcn5p

with a mini-chromosomal ARS1 (Fig. 3). Whereas the chromo-

somal ARS1 and ARS305 do not provide the luxury arrangement

and distances between the genes and origins on the mini-

chromosome, signals from direct Gcn5p association at these loci

have been detected by us (Fig. 4) and others [36]. Finally,

transcriptome analysis in Dgcn5 cells has revealed a bias towards

the regulation of stress induced genes, but not towards genes

responsible for DNA replication factors [47]. We therefore favor

the idea that GCN5 directly regulates DNA replication.

The fact that Gcn5p weakly and possibly only transiently

associates with origins (Fig. 4) suggests that its effects on origins

are produced by global activity rather than targeted recruitment

as is the case on promoters [36]. This idea is in tune with the

notion that the negative origin regulators SIR2 and RPD3 are

likely to act by global deacetylation [4,5,6]. A recent study

suggests that at least in the case of RPD3 some targeted

recruitment to origins is possible, but the mechanism remains

unknown [7]. Regardless of whether the mode of action of Gcn5p

is targeted or global, the effect of GCN5 on the chromatin

structure of origins is substantial as shown in Fig. 5A. Another

point of consideration regarding the mechanism of action of

GCN5 is the observed deficiency of assembly of pre-replicative

complexes in Dgcn5 cells (Fig. 6). This result suggests that GCN5

could have a major role in chromatin de-condensation, which in

turn affects the licensing of origins. Studies in human cells have

allocated a similar role in G1 for HBO1 [10,11,12]. At this point

it is not clear if in human cells HBO1 is the only HAT engaged in

G1 or if GCN5 also participates. As for S.cerevisiae, the remote

functional homologue of HBO1, SAS2, shows little activity

consistent with a major role in replication (Fig. 1). On the other

hand, the deletion of HAT1 seems to have only minor effect on

mini-chromosome stability (Fig. 1A), but strongly stimulates an

origin when tethered to it (Fig. 1B). This observation and the data

in [19] indicate that HAT1 could be involved in replication but

the assays employed by us did not properly reveal such function.

Finally, the proposed role of GCN5 in chromatin de-condensation

and facilitation of pre-replicative complexes in G1 does not at all

exclude additional roles in S phase as activator of origins or

during elongation.

A very recent study has shown that in human cells GCN5

acetylates the key component of pre-replicative complexes CDC6

thus modulating its subsequent phosphorylation by Cyclin A-

CDKs [52]. It is not clear if similar acetylation of Cdc6p by Gcn5p

takes place in S. cerevisiae. It is tempting to speculate that at least

some of the effects we observe here are consequence of not only

histone acetylation, but of acetylation of Cdc6p as well. This

question remains open until clear link between GCN5 and CDC6 is

established.

Our data suggests that GCN5 has a major role in DNA

replication. Nevertheless, GCN5 is not an essential gene so it is

obviously not the only HAT involved. In support, the deletion of

sas2, sas3 and hat1 and the esa1 mutants displayed slightly higher

mini-chromosome instability as compared to wild type cells, but

significantly lower as compared to gcn5 (Fig. 1A). It is conceivable

that these HATs also play roles in the same steps, which are

regulated by GCN5. In particular, it is not clear to what extent the

mutations in ESA1 impair its function thus rendering its role in

DNA replication far for from being excluded. It is noteworthy that

ESA1 and GCN5 show a significant level of functional overlap on

gene promoters [36].

Another issue stemming from our study is the possible role of

GCN5 on centromeres [37]. As mentioned earlier, GCN5 has

been implicated as a regulator of chromatin structure and in the

function of centromeres [37]. Indeed, double deficiency of the

ARS and CEN elements can explain the magnitude of Dgcn5 effect

in Fig. 1. Whereas such scenario is not unlikely, our data on two

chromosomal origins and a centromere shows that the alteration

in chromatin structure is significant at origins and moderate to

low on centromeres (Fig. 5). Even more, GCN5 strongly

suppresses the replication deficiency phenotype of the mcm5-

461, orc2-1 and orc5-1strains (Fig. 2). Hence, we suspect that

GCN5 is a major positive replication factor independently of its

activity on centromeres.

In summary, we have assigned a new role for GCN5. We have

also introduced a new HAT in the regulation of DNA replication.

Future studies should focus on the interplay between GCN5 and

other HATs in modulating the activity of origins and the

subsequent steps in DNA replication.
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