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Systems genetics relies on common genetic variants to elucidate biologic networks contributing to complex disease-related
phenotypes. Mice are ideal model organisms for such approaches, but linkage analysis has been only modestly successful
due to low mapping resolution. Association analysis in mice has the potential of much better resolution, but it is con-
founded by population structure and inadequate power to map traits that explain less than 10% of the variance, typical of
mouse quantitative trait loci (QTL). We report a novel strategy for association mapping that combines classic inbred
strains for mapping resolution and recombinant inbred strains for mapping power. Using a mixed model algorithm to
correct for population structure, we validate the approach by mapping over 2500 cis-expression QTL with a resolution an
order of magnitude narrower than traditional QTL analysis. We also report the fine mapping of metabolic traits such as
plasma lipids. This resource, termed the Hybrid Mouse Diversity Panel, makes possible the integration of multiple data sets
and should prove useful for systems-based approaches to complex traits and studies of gene-by-environment interactions.

[Supplemental material is available online at http://www.genome.org. The microarray data from this study have been
submitted to the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession no. GSE16780.]

Human complex trait genetics has been revolutionized by the

ability to carry out association studies on a genome-wide basis. Such

genome-wide association studies (GWAS) have now been applied to

numerous complex traits and have resulted in the identification of

hundreds of novel genes for traits, such as diabetes, cancer, and

various inflammatory diseases (Altshuler et al. 2008; Manolio 2009).

This success can be attributed to many factors, including tech-

nological developments in acquiring high-throughput genotype

data (Matsuzaki et al. 2004; Gunderson et al. 2005), development of

catalogs of common human variation, such as the HapMap (The

International HapMap Consortium 2005), and development of an-

alytic methodologies for association studies (de Bakker et al. 2005).

These have allowed the human genetics community to leverage the

increased power and resolution of association studies compared to

linkage analyses. Despite these successes, the fraction of the genetic

component that is explained by the associated genes in GWA

studies has been relatively modest for most traits (Hardy and

Singleton 2009). For example, traits such as type 2 diabetes and

lipoprotein levels have relatively high heritability, in the range of

50%, and yet the genes discovered by GWAS for these traits explain

in aggregate less than 10% of the phenotypic variance. This can

likely be attributed to several factors; in particular, the effects of a

single common variant on a disease trait tend to be very weak and

GWA studies have low power to detect rare variation involved in

disease (Cohen et al. 2004; Frikke-Schmidt et al. 2004).

Mouse models have been used effectively for the identifica-

tion of genes contributing to simple Mendelian traits, but unfor-

tunately there have been few successes for genes contributing

to complex, multigenic traits. Traditional genetic analysis in mice

involves crossing different inbred strains and mapping the traits of

interest using linkage analysis. An important problem has been the

lack of resolution in identifying the causal gene(s) from the results

of a linkage study. Fine mapping in such cases generally requires

the construction of congenic strains, in which the region of in-

terest from one strain is transferred onto the background of the

second strain by a series of crosses. But this frequently proves
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difficult because the alleles contributing to complex traits gener-

ally exhibit subtle effects that approach the levels of noise (Flint

and Mott 2008), and several closely linked genes may influence the

trait at a given locus.

Encouraged by the success of human association studies,

several groups have proposed mouse genome-wide association

studies. These initial pioneering studies demonstrated the potential

of mouse genome-wide association studies with their early successes,

but they have also raised some important challenges including com-

plex population stratification among the mouse strains and con-

cerns about the lack of power to detect loci with modest effects

(Pletcher et al. 2004; de Bakker et al. 2005; Payseur and Place 2007).

In fact, these two issues are intimately related. Population structure

inflates the association statistics, both creating spurious associations,

as well as artificially increasing the apparent strength of true asso-

ciation signals. The initial mouse genome-wide association studies

reported a tremendous number of genome-wide significant signals,

some of which overlapped with known loci. This, combined with

the knowledge that mouse strains have high heritability for traits,

suggested that mouse association studies had sufficient statistical

power. However, these initial studies did not adequately correct for

population structure, which when taken into account, eliminates

the vast majority of predicted associations (Kang et al. 2008). Thus,

the inability to correct for population structure in the initial studies

led them to severely overestimate their statistical power.

We have explored a wide range of possible designs for mouse

association studies using simulations that can accurately measure

statistical power after correction for population structure. We as-

sembled a combined set of inbred strains, which we term the

‘‘Hybrid Mouse Diversity Panel’’ (HMDP) that includes 100 com-

mercially available inbred strains consisting of 29 classic inbred (CI)

strains and three sets of recombinant inbred (RI) strains. Here, we

report that the HMDP has sufficient power to map traits that con-

tribute to 10% of the overall variance. Importantly, the resolution

of the panel is an order of magnitude better than linkage analysis.

Practical advantages of the HMDP include the elimination of costly

genotyping, as these strains have now been genotyped at over

135,000 SNPs (http://mouse.cs.ucla.edu/mouseHapMap/), and the

availability of the strains from The Jackson Laboratory. In addition,

each strain is renewable and, therefore, diverse molecular and

phenotypic data can be collected ad infinitum. Thus, this panel

should be useful for the analysis of gene-by-environment inter-

actions where multiple individuals of the same genotype need to

be studied. Moreover, the fact that the data involving clinical, ex-

pression, proteomic, and metabolic traits are cumulative makes this

resource ideal for systems biology.

Results

Strain selection for the Hybrid Mouse Diversity Panel

Our goal is to develop a panel of inbred mouse strains for per-

forming association studies with adequate statistical power and

resolution for mapping of complex traits. While hundreds of inbred

strains have been derived, a relatively small fraction of these are

useful for an association panel, and we can use several intuitions to

guide our choices for the inbred strains. Certain strains, such as

congenics and closely related members of a family of strains (e.g.,

many members of the C57BL family) are minimally informative

because of their largely identical genetic ancestry (Beck et al. 2000).

These strains are only informative for the small number of loci that

differ, and we include only one representative of each of these

strains in our panel. Altogether, we selected 29 CI strains for the

panel (Supplemental Table 1). This set of inbred strains is repre-

sentative of previous mouse association studies that were per-

formed (Pletcher et al. 2004; Liu et al. 2006, 2007; Cervino et al.

2007). We carried out power calculations to estimate the level of

SNP effect that could be detected by the inbred panel under various

conditions of heritability and P-value cutoff (Fig. 1; Supplemental

Table 2). These analyses indicated that 29 strains were not sufficient

to detect loci that explain less than 20% of the total trait variance

after correcting for population structure.

Our approach differs from previous mouse association studies

in that we additionally include in our panel 71 RI strains (Supple-

mental Table 1). RI strains are derived by crossing a pair of inbred

parental strains and then deriving a set of inbred progeny through

brother–sister mating for 20 or more generations. These strains

consist of roughly 50% genetic contribution from each of the pa-

rental strains, such that each allele that is polymorphic among the

parents is present in about 50% of the strains in the RI set. The RI

mice maximize power to detect associations at loci polymorphic

between the parental strains. Power is further increased by com-

bining multiple RI sets, considering that the complex genetic re-

latedness among the strains is accounted for by the availability of

high-density markers. The selected RI sets are derived from crosses

between C57BL/6J (B) and either DBA/2J (D), A/J (A), or C3H/HeJ

(H) and cover a significant fraction of the SNPs in our panel. In-

clusion of RI strains substantially adds to the overall power to detect

loci with small effects (Fig. 1; Supplemental Table 2) both because of

their genetic structure, as well as increasing the number of total

strains in the set. For example, in the HMDP we have 70% power

to detect SNPs that contribute ;10% of the overall variance of a

complex trait.

Validating the HMDP resolution using
expression quantitative trait loci

Gene expression traits provide a biologically relevant means to

effectively estimate both mapping power and resolution in the

HMDP. We have performed hepatic expression array analyses on

three individual mice of each strain in the HMDP. This resulted in

the identification of 2691 probes with local (commonly called cis-

acting) expression quantitative trait loci (eQTL) and 3174 probes

with at least one distal (trans-acting) eQTL at a P-value of #4.1 3

10�6. Figure 2A shows a plot of the location of each of the genes on

the array (y-axis) and the corresponding location of each signifi-

cant eQTL (x-axis). The local eQTL occur on the diagonal, and the

remaining signals represent trans-eQTL signals. The number of cis-

eQTL compares favorably to our previous studies of eQTL in inbred

crosses of BXH, 2118 cis-eQTL (Wang et al. 2006), and BXD, 1171

cis-eQTL (Doss et al. 2005), and eQTL in outbred mice, 492 cis-

eQTL (Ghazalpour et al. 2008).

Figure 2B illustrates a typical cis-eQTL for the gene Cyp2c37 on

chromosome 19. We have previously carried out expression QTL

analysis on several crosses in liver and the LOD score plot from one

such cross for Cyp2c37 is shown alongside the association data in

Figure 2C (Schadt et al. 2003, 2005; Wang et al. 2006; Yang et al.

2006; Chen et al. 2008). Whereas the linkage peak is quite broad,

encompassing many megabases (Mb), the peak association mark-

ers map within 500 kb of the Cyp2c37 gene. A list of the top 100 cis-

eQTL identified in the HMDP, along with peak SNP markers is

presented in Supplemental Table 3. Several cis-eQTL, previously

identified in linkage studies, have known mechanisms of altered

gene expression and high-resolution mapping of these genes is
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shown in Supplemental Figure 1 (Schadt et al. 2003; Doss et al.

2005; Aherrahrou et al. 2008).

An important criterion for the effectiveness of a mouse asso-

ciation panel is the mapping resolution or the size of the region

that we can detect as associated with a trait. Due to many pop-

ulation bottlenecks in the history of the inbred mouse strains, long

regions of linkage disequilibrium (LD) are common throughout

the mouse genome. RI strains contain even longer regions of LD,

since there are a limited number of recombinations that occur

when they are being derived. Intuitively, by adding the CI strains

to the RI strains, we can improve the mapping resolution. The cis-

eQTL provide a convenient measure for the overall resolution of

the HMDP as it is reasonable to assume that the majority of causal

DNA variations contributing to cis-eQTL would reside within 1 Mb

of the gene itself. Thus, mapping the distance between the peak

eQTL and the 59 or 39 end of the gene provides a measure of the

accuracy of our association analysis. The results indicate that the

peak SNPs usually occur within 1 Mb of either end of the gene (Fig.

3A). These results contrast with the resolution achieved using RI

strains alone, where only 18% map within 1 Mb (Fig. 3B).

In general, cis-eQTL have a high genetic effect associated with

them, and thus we modeled low and medium effect traits using

detailed simulations. We found that a SNP, with an effect size of 5%,

has a 95% confidence interval of 2.6–2.7 Mb in the HMDP. This

compares favorably with the BXD RI panel, which has a 95%

confidence interval of 4.5–4.6 Mb (Fig. 3C). As expected the mini-

mum P-values for these simulations did not always reach statistical

significance. In the HMDP, 23% of the minimum detected SNPs

had a nominal P-value less than 1 3 10�5, while in the BXD RI

panel only 2% of the tested SNPs had a P-value less than 1 3 10�5.

Figure 1. Power calculations. We estimated the power for the 29 inbred strains, the individual RI panels (BXD, AXB/BXA, and BXH) and the combined
HMDP. Simulations assume five replicates per strain. The x-axis indicates increasing effect size of SNP, and the y-axis is estimated power. Each panel
represents simulations performed under different scenarios in which the genetic background (or population structure effect) accounts for an increasing
proportion of the total variance of the phenotype.

High-resolution association mapping panel
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Simulated resolution of SNPs with effect sizes varying between

2.5% and 17.5% are shown in Supplemental Figure 2.

Application of the HMDP: Mapping high
density lipoprotein levels

A major goal of the HMDP is to achieve high-confidence, high-

resolution genetic data contributing to complex phenotypes. Of

particular interest are phenotypes related to

human disease, such as those contributing

to metabolic syndrome and atherosclerosis,

and we focus on plasma lipids to demon-

strate theoverall approach.Wephenotyped

the HMDP strains, using 6–12 males per

strain, for a variety of metabolic traits and

corrected for population structure using

efficient mixed model association (EMMA)

(see Methods). Supplemental Figure 3

compares the P-values for uncorrected

and EMMA corrected high-density lipo-

protein (HDL) data. Supplemental Figure

3B shows the dramatic reduction of

P-value inflation following application of

EMMA, many of which are false posi-

tive signals (Payseur and Place 2007). Us-

ing permutation analysis (see Methods),

we determined that a P-value of 4.1 3

10�6 was significant at a genome-wide

level.

To validate the association approach,

we first asked whether we could detect

a previously identified common varia-

tion among inbred strains affecting HDL-

cholesterol levels. We and others have

previously shown that variations of the

apolipoprotein A-II (Apoa2) gene locus af-

fecting APOA2 protein levels in the plasma

commonly occur among inbred strains,

and that these significantly influence HDL-

cholesterol levels (Doolittle et al. 1990;

Warden et al. 1993; Wang et al. 2004;

Castellani et al. 2008; Flint and Mott 2008).

Figure 4 shows the variation observed

for HDL in the HMDP and the correspond-

ing genome-wide association results. Im-

proved mapping resolution of clinical traits

is demonstrated by comparing the HMDP

results for HDL levels with linkage results

from a large cross of C57BL/6J and C3H/

HeJ (Fig. 4C). We observed a total of 21

SNPs on distal chromosome 1 associated

with HDL-cholesterol at P-value < 4.1 3

10�6. One of the peak SNPs in the region

is located 30 kb upstream of the Apoa2

gene at 173.1 Mb. Surprisingly, the peak

SNP at 172.4 Mb, within an intron of the

gene Nos1ap, is the peak HDL-associated

SNP.

Power calculations, presented above,

indicate that an approach combining RI

and CI strains would have greater power

to detect genetic signals. To illustrate

this we mapped the HDL signal on distal chromosome 1, for the CI

set and each individual RI, a combined RI set (BXN) and the HMDP

set independently (Supplemental Fig. 4). The combined RI panel

simulates the design of a linkage approach proposed by Williams

et al. (2001). In this case, several loci are associated, but they show

poor resolution. These analyses highlight the improved power and

resolution to map complex traits in the HMDP, compared to the

combined RI panel, the individual RI inbred panels of mice, or

Figure 2. Expression SNPs from HMDP. (A) Transcript levels in liver of HMDP mice were profiled and
significant associations are plotted according to chromosomal position (x-axis) versus the location of the
structural gene (y-axis). The strong diagonal line represents cis-eQTL, whereas the remainder are trans-
eQTL signals. (B) Genome-wide association results in the HMDP demonstrating a strong association for
Cyp2c37 transcript levels in liver on chromosome 19. (C ) Chromosome 19 specifically, with an overlay
between the linkage results from the BXHApoe�/� F2 cross and the association from the HMDP panel for
the Cyp2c37 cis-eQTL on chromosome 19. (Red box) The location of Cyp2c37. The tick marks on the
x-axis are the location of the chromosome 19 markers used in the BXHApoe�/� F2 intercross.
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the improved power to confidently map complex clinical traits

compared to the inbred panel alone.

Our second, more global analysis, was to identify the con-

cordance between our association results with the previously

reported QTL for plasma HDL levels (Wang and Paigen 2005). We

compared our associations to previously reported QTL loci and

eight of the 10 associations were within the 95% confidence in-

terval of a previously reported QTL (Supplemental Table 4). Using

a binomial probability distribution and assuming 43% of the

mouse genome has been mapped with a HDL QTL (Wang and

Paigen 2005), there is significant overlap between the HMDP re-

sults and previous QTL, eight of 10 possibilities (P < 0.03), which is

further evidence that the HMDP identifies true genetic signals.

Linkage disequilibrium patterns in the HMDP

EMMA corrects for background genetic effects at a global level. One

additional factor affecting resolution with this approach is the

complex linkage disequilibrium (LD) patterns in this population.

To calculate the linkage disequilibrium between markers, we cal-

culated the Pearson’s pairwise correlation coefficient between all

pairs of markers for each chromosome. LD blocks were defined

as groups of SNPs with an r2 greater than 0.7. To determine the

average correlation between markers for each chromosome, we

generated a distribution of mean r2 values for all pairs of infor-

mative markers at various distances from each other, using in-

creasing window sizes of 100 kb bins. Figure 5A shows the mean for

each window size using all 20 mouse chromosomes to determine

the average r2 for each window size across the genome. Thus, on

average, blocks showing high LD (r2 > 0.7) extended an average of

500 kb. The average correlation in chromosome 1 for markers 100 kb

apart is r2 = 0.7, and for markers 1 Mb apart is r2 = 0.5 (Fig. 5B).

The RI strains exhibit extensive LD due to infrequent re-

combination, and a low level of LD will be observed for many

megabases. At individual loci this can have significant implica-

tions on actual identification of underlying candidate genes, and

we focus on loci associated with HDL on chromosome 1 as an

example. Figure 5C shows a plot of the correlation coefficient

squared (r2) for the distal region of chromosome 1 containing the

Apoa2 and Nos1ap genes. We next calculated the pairwise correla-

tion between the peak SNP on chromosome 1 at 172.4 Mb and all

SNPs on chromosome 1. The LD pattern for this SNP is centered

around the LD block at 171–172 Mb (Fig. 5D). We repeated this

analysis for the SNP closest to Apoa2 at 173.1 Mb. This particular

SNP has a complex LD pattern with correlation among SNPs

spanning 160–185 Mb (Fig. 5D). Notably, we did not observe cor-

relation above 0.7 (r2) between these two individual SNPs, an in-

dication of distinct genetic signals.

Application of the HMDP: Interrogating novel
human GWAS genes

In addition to plasma HDL levels, we found significant associations

for total cholesterol (TC), triglycerides (TG), and unesterified

cholesterol (UC). The values for these traits are presented in Sup-

plemental Figure 5 and genome-wide mapping results presented in

Supplemental Figure 6 and summarized in Table 1. Several of these

are of particular interest because they demonstrate how murine

studies complement human associations. For example, the signal

on chromosome 15 at 58.6 Mb is within 1 Mb of the novel human

GWAS plasma lipid genes, Trib1 and Nsmce2 (Willer et al. 2008). A

considerable advantage of murine studies is the availability of pe-

ripheral tissues for transcriptional, proteomic, and metabolomic

profiling. For example, the expression of Trib1 in liver is under

cis-regulation (P < 1 3 10�5) and is negatively correlated with TC

(r =�0.27), HDL (r = �0.23), and UC (r = �0.30) levels. Conversely

Nsmce2 is under distant regulation (P < 1.6 3 10�6) and is also

significantly correlated with TC (r = �0.30), HDL (r = �0.30), and

UC (r = �0.29) levels.

Discussion
Why is a mouse association resource important for the dissection of

complex diseases? Mice provide the ability to carry out experimental

validation, and unlimited access to tissues. A primary motivation for

these studies was increased resolution of murine genetic studies.

Less obvious, though equally important, is the systems-based ap-

proach that the HMDP enables, as similar to RI panels, the data are

cumulative. High-resolution mapping studies in mice should com-

plement human association studies and also make possible the de-

velopment of coexpression networks allowing functional annota-

tion of the identified genes (Oldham et al. 2006; Lusis et al. 2008;

Figure 3. Expression traits demonstrate high resolution of HMDP. (A)
Distance between peak cis-eQTL and the transcription start site of the
corresponding gene in the HMDP. The majority of cis-eQTL map within
500 kb of the transcription start site of the corresponding gene. (B)
Comparison of resolution in the full HMDP (red bars) to BXD recombinant
inbred panel (blue bars) showing 1000 cis-eQTL in both populations. (C )
Simulated resolution of a SNP with 5% effect in the HMDP (red bars) and
BXD recombinant inbred panel (blue bars).

High-resolution association mapping panel
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Schadt et al. 2008). From our initial results presented here, and freely

available at http://mouse.cs.ucla.edu/emmaserver/, several signifi-

cant results have emerged that support the use of the HMDP for

systems genetic studies. First, we focus on cis-eQTL to demonstrate

the robust nature and high-resolution mapping in this population.

Second, we map a complex clinically relevant phenotype, plasma

HDL levels, to demonstrate concordance with previous mouse

studies and, more importantly, to demonstrate how the HMDP can

be used to further inform novel human GWAS genes. Third, as with

any approach, there are limitations to the HMDP, and alternative

approaches, such as the Collaborative Cross and studies of outbred

stocks, have their own strengths. Each of these points is discussed

below.

A variety of ‘‘genetical genomic’’ studies in humans, rats,

mice, and plants have shown that genetic variations influencing

gene expression are very common in natural populations (Petretto

et al. 2006; Emilsson et al. 2008; Price et al. 2008). Trans-acting loci

contributing to transcript levels have proven difficult to validate

Figure 4. Detection of associations for plasma lipids in HMDP strains coincide with a corresponding QTL in C57BL/6 3 C3H/HeJ F2 crosses. Six to ten
mice of each strain were examined for the given phenotypes as described in Methods. (A) Plasma HDL levels in the HMDP. (B) GWAS for plasma high-
density lipoprotein cholesterol. (C ) Comparison of association results with linkage results on chromosome 1. Linkage data from a previously reported F2

cross between C3H/HeJ and C57BL/6J (Wang et al. 2007). These results demonstrate the power of the HMDP to detect associations for QTL observed in the
F2 cross, and also highlight the vastly improved resolution of association testing with the HMDP.

Bennett et al.
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due to the problem of multiple comparisons, but cis-acting loci

provide a relatively straightforward means of examining the power

and resolution of our HMDP association approach. We and others

have previously validated the cis-acting of the loci by quantifying

transcript levels derived from each allele in heterozygous mice

using coding polymorphisms (Doss et al. 2005). Using whole ge-

nome expression array analysis in livers of the HMDP strains, we

identified over 2500 cis-eQTL, comparable to the numbers identi-

fied in large crosses with several hundred mice. Moreover, analyses

of cis-eQTL provide a convenient measure of the resolution of this

approach.

Actual identification and validation of genes contributing to

disease phenotypes are of considerable interest, but relatively few

genes contributing to common complex variations in mice have

been identified and validated. However, one gene that has been

shown in a number of studies to contribute to complex metabolic

traits is the apolipoprotein A2 gene on distal mouse chromosome 1

(Mehrabian et al. 1993; Warden et al. 1993; Purcell-Huynh et al.

1995). In addition to Apoa2, we have identified a number of addi-

tional loci contributing to plasma lipid traits. Two of these loci

contain genes identified as novel candidates associated with plasma

lipid traits in human GWAS, Trib1 on mouse chromosome 15, and

Amac1 on mouse chromosome 11. Therefore, studies in mice may

provide additional mechanisms for novel human GWAS genes.

As with any genetic technique there are limitations to the

HMDP approach. One potential problem with our association

approach is long-range LD. In particular, Petkov et al. (2005) have

provided convincing evidence of functional LD both within blocks

and also between regions on separate chromosomes. Thus, some

association signals could represent such regions of distant LD. We

have addressed this concern by testing for the presence of LD be-

tween loci identified for HDL.

The HMDP is only one of several recent strategies that attempt

to improve mapping resolution in mice. Clearly, association anal-

ysis in outbred, heterogeneous stocks of mice can be used (Valdar

et al. 2006b; Flint and Mott 2008; Ghazalpour et al. 2008; Farber

et al. 2009). One of these studies found hundreds of significant

associations for 97 typed traits with an average 95% confidence

interval of 2.8 Mb, which is similar to the resolution in the HMDP

(Valdar et al. 2006b). A recent analysis focused on eQTL dem-

onstrates that outbred stocks have similar resolution to the

HMDP (Huang et al. 2009). Two disadvantages of using outbred

stocks are the cost of high-density genotyping and the fact that

each mouse is unique and thus can only be studied for a limited

number of phenotypes. An advantage of outbred stock strategies

over the HMDP is that there is no limit to the number of genetically

distinct animals that can be included in the study, while the HMDP

is limited to the number of available inbred strains.

There have also been a number of studies that have exploited

the mosaic structure of common inbred mouse strains to perform

association mapping (Grupe et al. 2001; Klein et al. 2004; Liao et al.

2004; Guo et al. 2006; Liu et al. 2006, 2007; Moran et al. 2006;

Figure 5. Linkage disequilibrium in the HMDP. The average r2 for marker pairs was calculated per chromosome and the average of 20 chromosomes is
presented here. (A) Average of 20 chromosomes. (B) Average r2 for chromosome 1. The average correlation for markers 100 kb apart is r = 0.7, and for
markers 1 Mb apart is r2 = 0.5 (C ) Linkage disequilibrium blocks on distal chromosome 1. (D) Long-range LD patterns in the HMDP for these peak SNPs at
172.4 Mb, within coordinates of the Nos1ap gene, and 173.1, 30 kb upstream of the Apoa2 transcription start site on chromosome 1.

High-resolution association mapping panel
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Cervino et al. 2007; Guo et al. 2007; McClurg et al. 2007). The

methods have proved effective for localizing genes with large ef-

fects, but not for genes with effect sizes less than 10%, as is usually

observed with complex traits (Cervino et al. 2007; Flint and Mott

2008). In addition to the lack of power, population structure is

a major problem that can result in false positives (Cervino et al.

2007; Kang et al. 2008). Recently, genes previously identified in

murine association mapping have failed to replicate in linkage

studies designed to confirm these novel loci (Manenti et al. 2009)

underscoring the importance of developing population structure

correction methods designed to improve power and reliability of

murine association mapping.

Another recently proposed strategy for increasing the reso-

lution and mapping power in mice is through the development of

a very large set of RI strains, termed the Collaborative Cross

(Churchill et al. 2004). Although it may not have gene-level reso-

lution (Flint and Mott 2008), simulation studies have predicted

a power of 94% for a QTL with 5% at a resolution of 1.75 Mb

(Valdar et al. 2006a). Additionally, the Collaborative Cross will

include many loci that are polymorphic among the wild-derived

strains and a genetic structure more representative of the quantity

of genetic variation present in human populations when it is

completed, estimated to be 2012. Our current strain panel is only

capable of mapping SNPs polymorphic in the set of strains within

the HMDP and has limited ability to map loci that are polymorphic

among the wild-derived strains or have low sequence diversity

among the inbreds, since they are poorly represented in the HMDP.

Once even a subset of the Collaborative Cross strains are fully

backcrossed to homozygosity and genotyped, these mice would

complement the methods described here and significantly in-

crease the power to map additional loci.

In summary, we have utilized a ‘‘hybrid’’ strategy for associa-

tion mapping in mice that combines CI strains, as well as RI strains,

to address several key limitations of complex genetic mapping in

mice: low resolution of linkage approaches, the high degree of false

positive signals found in murine association mapping, and the

critical need for permanent resources for systems-based approaches.

Our simulated data indicated that such a hybrid population has

sufficient power to detect seven out of 10 variations with a modest

effect size of 10%. Our results from mapping complex metabolic

traits and expression phenotypes support these simulations and

validate this approach.

Methods

Animals
Male mice from the hybrid HMDP panel were purchased from the
Jackson Labs. Mice were between 6 and 10 wk of age and to ensure
adequate acclimatization to a common environment the mice were
aged until 16 wk of age. All mice were maintained on a chow diet
(Ralston-Purina Co.) until sacrifice at 16 wk of age. A complete list of
strains included in the study is listed in Supplemental Table 1. Fol-
lowing a 16-h fast, mice were bled retro-orbitally under isoflurane
anesthesia. Plasma lipids were determined as previously described
(Mehrabian et al. 1993). Mice were euthanized by cervical disloca-
tion, livers dissected out and flash frozen in liquid nitrogen.

Genotyping

Inbred strains were previously genotyped by the Broad Institute
(http://www.broadinstitute.org/mouse/hapmap), and they are com-
bined with the genotypes from Wellcome Trust Center for Human
Genetics (WTCHG). Genotypes of RI strains at the Broad SNPs were
inferred from WTCHG genotypes by interpolating alleles at poly-
morphic SNPs among parental strains, calling ambiguous geno-
types missing. Details of genotype imputation are in Supplemental
Methods. Of the 140,000 SNPs available, 107,145 were informative
with an allele frequency greater than 5% and were used for GWAS.

RNA isolation and expression profiling

Flash frozen samples were weighed and homogenized in Qiazol
according to the manufacturer’s protocol. Following homogeniza-
tion, livers were isolated in RNeasy 96 columns (Qiagen) using the
manufacturer’s protocol. The image data were processed using the
Affymetrix GCOS algorithm, utilizing quantile normalization or
the robust multiarray (RMA) method to determine the specific
hybridizing signal for each gene. Expression data can be obtained
from Gene Expression Omnibus (GEO) databases for liver (acces-
sion no. GSE16780). A detailed protocol of RNA processing is pro-
vided in the Supplemental Methods.

Genome-wide association mapping accounting
for population structure

We applied the following linear mixed model to account for the
population structure and genetic relatedness among strains in the
genome-wide association mapping (Kang et al. 2008):

y = m + xb + u + e;

where m represents mean, x represents SNP effect, u represents
random effects due to genetic relatedness with Var(u) = s2

gK and
Var(e) = s2

e , where K represents IBS (identity-by-state) matrix across
all genotypes. A restricted maximum likelihood (REML) estimate of
s2

g and s2
e are computed using EMMA, and the association map-

ping is performed based on the estimated variance component
with a standard F-test to test b 6¼ 0. A potential problem with our
approach is that we assume the variance of the phenotype is the
same for each strain. Unfortunately, the optimization technique
utilized by EMMA, which increases the efficiency by two orders
of magnitude over other mixed model implementations, requires
this assumption (Kang et al. 2008). We are currently exploring

Table 1. Summary of significant and suggestive associations with
plasma lipid traits in the HMDP

Chromosome

Trait

Triglycerides
Total

cholesterol

High density
lipoprotein

(HDL)
Unesterified
cholesterol

1 1.6 3 10�7 1.5 3 10�7 4.4 3 10�10

2 8.49 3 10�6

3 6.9 3 10�6 2.0 3 10�6

4 5.6 3 10�6 9.8 3 10�6

5 8.3 3 10�6 4.1 3 10�6 7.9 3 10�6 3.0 3 10�7

6 2.3 3 10�6

11 8.1 3 10�6 2.4 3 10�6 1.9 3 10�9

12 5.6 3 10�8

13 4.2 3 10�7

14 8.0 3 10�7 4.9 3 10�9

15 1.0 3 10�5

19 3.7 3 10�7 3.4 3 10�6 2.70 3 10�7

Values given are P-values. Numbers in bold indicate significant associa-
tions.
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extending the EMMA methodology to allow for multiple variance
components that will allow us to incorporate different per-strain
variance estimates. We defined an eQTL as local if the peak asso-
ciation signal was within a 10-Mb sliding window of the physical
location of the gene(s). We then calculated the average distance
between these local eQTL and the transcription start site of the
corresponding gene(s) transcription start site.

Estimation of power and mapping resolution

We evaluated the statistical power of the HMDP through simula-
tion studies with various parameters including the variance ex-
plained by SNP, variance explained by genetic background, and
variance explained by random errors, and the number of repeated
measurements per strain. For the comparison of power with single
RI set or CI only studies, we selected a subset of the simulated
phenotypes for each RI or CI set and evaluated the power in the
same way. Since there are eight possibilities of SNPs being poly-
morphic among three sets of RI strains, the putative causal SNPs are
categorized into eight classes and power is evaluated for each class.
The significance threshold per each RI set is determined separately
using parametric bootstrapping described below. See Supplemental
Methods for comparison of the BXD RI set to the full HMDP and
simulations.

Genome-wide significance threshold

Genome-wide significance threshold in genome-wide association
mapping is determined by the family-wise error rate (FWER) as the
probability of observing one or more false positives across all SNPs
per phenotype. We ran 100 different sets of permutation tests and
parametric bootstrapping of size 1000, and observed that the mean
and standard error of the genome-wide significance threshold at
FWER of 0.05 were 3.9 3 10�6 6 0.3 3 10�6 and 4.0 3 10�6 6 0.3 3

10�6, respectively. This is approximately an order of magnitude
larger than the significance threshold obtained by Bonferroni
correction (4.6 3 10�7). We also performed parametric boot-
strapping under simulated genetic background effect from pop-
ulation structure using EMMA. With 50% and 100% of variance
explained by genetic background, the thresholds were determined
to be 1.6 3 10�6 6 0.2 3 10�6 and 1.7 3 10�6 6 0.2 3 10�6. The
reduction in the significance threshold compared to no genetic
background effect is due to the fact that inter-SNP correlation due
to long-range LD reduces when conditioning on the population
structure. A detailed explanation of these analyses is provided in
the Supplemental Methods.

Validation of clinical and expression associations

We also compare eQTL and clinical HDL associations in the HMDP
to QTL identified in a previously reported F2 cross between C3H/HeJ
and C57BL/6J to demonstrate the improved resolution of the ap-
proach (Wang et al. 2007).
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