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Abstract
Kindergarten to 3rd grade mathematics achievement scores from a prospective study of mathematical
development were subjected to latent growth trajectory analyses (n = 306). The four corresponding
classes included children with mathematical learning disability (MLD, 6% of sample), and low (LA,
50%), typically (TA, 39%) and high (HA, 5%) achieving children. The groups were administered a
battery of intelligence (IQ), working memory, and mathematical-cognition measures in 1st grade.
The children with MLD had general deficits in working memory and IQ, and potentially more specific
deficits on measures of number sense. The LA children did not have working memory or IQ deficits,
but showed moderate deficits on these number sense measures and for addition fact retrieval. The
distinguishing features of the HA children were a strong visuospatial working memory, a strong
number sense, and frequent use of memory-based processes to solve addition problems. Implications
for the early identification of children at risk for poor mathematics achievement are discussed.

About 7% of children and adolescents will experience a substantive learning deficit in at least
one area of mathematics (MLD) before graduating from high school (Barbaresi, Katusic,
Colligan, Weaver, & Jacobsen 2005; Lewis, Hitch, & Walker, 1994; Ostad, 1998; Shalev,
Manor, & Gross-Tsur, 2005), and are accompanied by another 5% to 10% of children and
adolescents, and perhaps more, with learning difficulties (for reviews see Berch & Mazzocco,
2007; Dowker, 2005). The latter students have specific difficulties in one more areas of
mathematics that are independent of cognitive ability and reading achievement, and in this
sense might be considered to have a moderate learning disability in mathematics. It is not
known if the factors underlying their difficulties are simply less pervasive or severe as those
that appear to underlie MLD or are qualitatively different (e.g., due to poor instruction; Geary,
Hoard, Byrd-Craven, Nugent, & Numtee, 2007; Murphy, Mazzocco, Hanich, & Early, 2007).
Thus, we distinguished the two groups and classified the children with moderate difficulties
as low achieving (LA), to be consistent with recent studies (e.g., Murphy et al., 2007). Other
unresolved issues concern the extent of the grade-to-grade stability of a child’s classification
as MLD or LA (Silver, Pennett, Black, Fair, & Balise, 1999) and identification of the early risk
factors for long-term inclusion in one or the other of these groups (Gersten, Jordan, & Flojo,
2005).

We addressed each of these issues using data from a longitudinal, prospective study of
children’s mathematical learning and learning disability (Geary, in press). Using latent growth
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trajectory analyses applied to mathematics achievement scores from kindergarten to 3rd grade,
we identified stable groups of MLD and LA children. We compared and contrasted the
performance of these groups to groups of typically achieving (TA) and high achieving (HA)
children on a battery of mathematical cognition, intelligence (IQ), and working memory tasks
administered in 1st grade. The approach allowed us to identify early risk for persistent MLD
and LA and determine if the cognitive factors contributing to inclusion in these groups
represented lower and higher points, respectively, of the same underlying ability continuum
or represented qualitatively different patterns of deficit.

Mathematical Cognition
The mathematical tasks were chosen based on areas in which children with MLD or LA children
have been found to have deficits or difficulties in earlier studies (Berch & Mazzocco, 2007;
Geary, 1993, 2004). The areas assessed include children’s early number sense, their implicit
knowledge of counting principles, and the mix of strategies they use to solve addition problems.

Number Sense
Children’s number sense includes a non-verbal and implicit understanding of the absolute and
relative magnitude of sets of small numbers of objects and of symbols (e.g., Arabic numerals)
that represent these quantities. This implicit knowledge is manifested in their ability to
apprehend the quantity of sets of 3 to 4 objects or actions without counting (Starkey & Cooper,
1980: Strauss & Curtis, 1984; Wynn, Bloom, & Chiang, 2002); use of non-verbal processes
or counting to quantity small sets of objects and to add and subtract small quantities to and
from these sets (Case & Okamoto, 1996; Gelman & Gallistel, 1978; Levine, Jordan, &
Huttenlocher, 1992; Starkey, 1992); and, proficiency at estimating the magnitude of sets of
objects and the results of simple numerical operations (Dehaene, 1997). We use two measures
to capture children’s number sense; specifically, the speed and accuracy of identifying and
processing number sets and the ability to represent quantity along a mathematical number line.

Number Sets—Children with MLD have potential deficits in the core non-verbal ability to
apprehend the quantity of small sets of objects and in the conceptual insight that numbers are
composed of sets of smaller numbers (Butterworth & Reigosa, 2007; Geary et al., 2007; Geary,
Bailey, & Hoard, 2009; Koontz & Berch, 1996). Koontz and Berch assessed the ability of
3rd and 4th grade children with MLD and TA children to apprehend, without counting, the
quantity of small sets of items or Arabic numeral representations of these sets. As an example,
the children were asked to determine if combinations of Arabic numerals and number sets were
the same (e.g., 2-▪▪) or different (e.g. 3-▪▪). Reaction time patterns for the TA children indicated
fast access to representations of quantities of two and three, regardless of whether the code was
an Arabic numeral or number set. The children with MLD showed fast access to numerosity
representations for the quantity of two, but appeared to rely on counting to determine quantities
of three. The results suggest that some children with MLD might not have an inherent non-
verbal representation for numerosities of three or more likely the representational system for
three does not allow for reliable discrimination of two from three.

Using the Number Sets Test (described below), we have also found evidence for less fluent
(slow and inaccurate) processing of number-set information by children with MLD and, to a
lesser extent, LA children (Geary et al., 2007; Geary et al., 2009). The test items require children
to match groups of objects and Arabic numerals (e.g., •• 3) to a target number, such as 5. Signal
detection methods can be applied to the corresponding number of hits and false alarms to
generate sensitivity (d′) and response bias (C) variables (Macmillan, 2002). The d′ variable
represents the child’s sensitivity to quantities represented in task items and the C variable
represents the child’s tendency to respond to task items, whether they match the target number
or not. Children who correctly identify many target quantities and commit few false alarms
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will have high d′ and low C scores, whereas children who have as many hits as false alarms
will have low d′ and high C scores. In the latter case, the high number of correct items is due
to the child’s bias to respond and not sensitivity to quantity. We found that higher d′ scores in
1st grade were associated with higher mathematics achievement scores through 3rd grade [rs
= .49 to .58 (ps<.001)], and that children at risk for MLD by 3rd grade–as determined by
achievement scores less than the 15th national percentile ranking–have lower d′ scores in 1st

grade (Geary et al., 2009).

Number Line—The mathematical number line (e.g., the difference between two consecutive
numbers is identical regardless of position on the number line) is a core component of many
aspects of mathematics and a critical part of basic education in mathematics. Children’s
competence with the number line is also theoretically interesting because magnitude
representations, including those that support the mathematical number line, may be based on
the potentially inherent number-magnitude system that contributes to performance on the
Number Sets Test; this system is represented by specific areas in the parietal cortices (Isaacs,
Edmonds, Lucas, & Gadian, 2001; Kadosh, Kadosh, Schuhmann, Kaas, Goebel, Henik, &
Sack, 2007). Making placements on a physical number line that are based on use of the inherent
number-magnitude system results in a pattern that conforms to the natural logarithm (ln) of the
number (Feigenson, Dehaene, & Spelke, 2004; Gallistel & Gelman, 1992; Siegler & Booth,
2004; Siegler & Opfer, 2003). More precisely, use of this representation results in placements
that are compressed for larger magnitudes such that the perceived distance between 92 and 93
is smaller than the perceived distance between 2 and 3. With instruction on the mathematical
number line, children’s placements become linear.

If children with MLD have deficits in the number-magnitude representational system (Koontz
& Berch, 1996), then their number line placements might not conform to the natural log model
or might show more compression (closer placements) for smaller numbers. We have found
several patterns in the number line placements of children with MLD and LA children that
suggest these types of deficits (Geary et al., 2007). We found that children with MLD were
more heavily reliant on the natural number-magnitude representational system to make their
number line placements than were LA and TA children; MLD children were learning the linear
mathematical number line more slowly than these other children (Geary, Hoard, Nugent, &
Byrd-Craven, 2008). Even when they made placements consistent with use of the natural
number-magnitude system, the placements of children with MLD and their LA peers did not
conform as precisely to the predicted natural-log pattern as those of the TA children early in
1st grade, before much if any formal instruction on the number line. By the end of 2nd grade,
LA children caught up with their TA peers, but the MLD children, though they improved,
lagged behind the other children. One possibility is that children with MLD and LA children
begin school with a less precise underlying system of natural number-magnitude
representations. This system may quickly mature improved ability to discriminate between
quantities of near equal value–in LA children and may not mature or do so at a slower rate for
children with MLD (Halberda, Mazzocco, & Feigenson, 2008).

Counting
Most school children quickly learn to count by rote, and this in and of itself is not a useful
indicator of MLD or LA status. Children’s understanding of the core principles of counting,
such as one-one correspondence, and their ability to actively apply counting to solve arithmetic
problems are, however, potential sources of poor mathematics achievement. We have explored
both of these facets using a task that assesses children’s sensitivity to the violation of counting
principles (Briars & Siegler, 1984; Gelman & Gallistel, 1978). More precisely, following
Gelman and Meck (1983) and Briars and Siegler, we assess this knowledge by asking the child
to monitor a puppet’s counting of objects. If the puppet violates a basic counting principle and
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the child detects the miscount, we assume the child at least implicitly understands the principle.
Children’s knowledge of counting principles and sensitivity to violations of these principles
emerge during the preschool years and mature during the early elementary-school years
(LeFevre, Smith-Chant, Fast, Skwarchuk, Sargla, Arnup et al., 2006).

Our studies suggest that children with MLD and LA children understand most basic counting
principles, but they are sometimes confused when counting deviates from the standard left to
right counting of adjacent objects (Geary, Bow-Thomas, & Yao, 1992; Geary, Hoard, Byrd-
Craven, & Desoto, 2004). A more consistent finding is that children with MLD, but not LA
children, fail to detect errors when the puppet double counts the first object in an array of
objects, that is, this single object is tagged “one,” “two”. They detect these double counts when
they occur with the last item, indicating they understand one-one correspondence, but have
difficulty retaining a notation of the counting error in working memory during the count (Geary
et al., 2004; Hoard, Geary, & Hamson, 1999). The forgetting of miscounts is potentially
important for children’s learning to use counting to solve arithmetic problems. Ohlsson and
Rees (1991) predicted that children who are skilled at detecting counting errors would more
readily learn to correct these miscounts and thus eventually commit fewer errors when using
counting to solve arithmetic problems. The evidence for this prediction is mixed (Geary et al.,
1992; Geary et al., 2004), but detection of these double-counting errors it still a good empirical
indicator of risk for MLD (Geary et al., 2007; Gersten et al., 2005).

Arithmetic
Children use a mix of counting strategies and memory-based processes to solve addition
problems (Ashcraft, 1982; Siegler & Shrager, 1984). The mix is initially dominated by finger
and then verbal (e.g., out loud) counting. With both counting strategies, children tend to use
the sum or min procedure (Fuson, 1982; Groen & Parkman, 1972); the former involves
counting both addends starting from one and the latter involves stating the cardinal value of
the larger addend (e.g., “five”) and counting a number of times equal to the value of the smaller
addend (e.g., “six, seven, eight” to solve 5+3). As a result of schooling and practice, the strategy
mix changes such that children use the min procedure more often and eventually rely primarily
on memory-based processes. The latter include direct retrieval of the answer and
decomposition. To solve 7+5, a child might decompose the 7 into 5 and 2, retrieve the answer
to 5+5 and then add 2.

In comparison to their TA peers, children with MLD, and LA children to a lesser extent, are
delayed in their ability to effectively use counting to solve addition problems. They rely on
finger counting for more years, adopt the min procedure at a later age, and commit more
counting errors (Geary, 1993; Hanich, Jordan, Kaplan, & Dick, 2001; Jordan & Montani,
1997; Ostad, 1997). The most consistent finding is that children with MLD show a deficit in
the ability to use retrieval-based processes (Barrouillet, Fayol, & Lathuliére, 1997; Geary,
1990; Geary, Hamson, & Hoard, 2000; Jordan, Hanich, & Kaplan, 2003a). It is not that these
children never correctly retrieve answers. Rather, they show a persistent difference in the
frequency with which they correctly retrieve basic facts, and rarely use decomposition. A
similar pattern is found with young LA children, but the grade-to-grade persistence of their
retrieval deficit is not currently known.

Intelligence and Working Memory
Intelligence (IQ), working memory, and speed of processing are the central cognitive
mechanisms that contribute to learning across academic domains (Baddeley, 1986; Engle,
Tuholski, Laughlin, & Conway, 1999; Fry & Hale, 1996; Kail, 1991; Walberg, 1984), including
mathematics (e.g., Andersson, 2008; Bull, Johnston, & Roy, 1999; Geary et al., 2004; McLean
& Hitch, 1999; Swanson, 1993; Swanson & Sachse-Lee, 2001). The contribution of speed of
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processing to performance on our mathematical tasks is not substantial, however, when we
control for individual differences in working memory (Geary et al., 2007). Thus, our focus
here is on IQ and working memory. These two constructs are highly related but capture
independent components of ability. The important features of working memory appear to be
the attentional and inhibitory control mechanisms of the central executive (Engle et al.,
1999), whereas the important feature of IQ may be the ability to logically problem solve
(Embretson, 1995).

Geary et al. (2008) found that individual differences in children’s accuracy at making
placements on a number line was related to IQ in 1st grade, but improvement in accuracy from
1st to 2nd grade was more strongly related to the central executive than to IQ. The relation
between IQ and number line performance in 1st grade is consistent with the ability to think
logically and systematically as related to learning the logical structure of the mathematical
number line. The attentional and inhibitory control aspects of the central executive may be
important during the actual placement of the numbers on the number line and for the inhibition
of the natural-magnitude representational system during these placements; access to this system
is associated with less accurate placements. The visuospatial sketch pad and phonological loop
may also contribute to mathematics learning but in more restricted domains; the visuospatial
sketch pad, for instance, may contribute to performance on the Number Sets Test and the
number line task.

Current Study
The current study adds to our previous results from the longitudinal project in several ways.
The use of four years of achievement scores and the estimation of latent growth trajectories
allowed for the identification of stable groups of MLD, LA, TA, and HA children. The
procedure obviates the need to use cutoff scores for group classification and thus avoids
fluctuations in the diagnosis of MLD due to measurement error in the achievement tests; for
instance, a child with scores at the 9th and 14th national percentile ranking for mathematics
achievement might be classified as MLD one year and LA the next with no substantive change
in cognitive competence. With four years of achievement test data and a battery of IQ, working
memory, mathematical-cognition measures administered in 1st grade, we were able to identify
the early cognitive predictors of longer-term growth in mathematical achievement, as well as
identify potential cognitive mechanisms that contribute to achievement growth differences
across groups. The approach does not address growth in the specific forms of mathematical
cognition deficit (e.g., Chong & Siegel, 2008; Jordan et al., 2003a), but does allow us to identify
groups that are learning mathematics at substantially different rates during the early school
years, and the early cognitive profiles of children that will form these achievement groups.
Finally, in contrast to our previous analyses from this project, we included the full range of IQ
scores when determining achievement groups. The cost was the introduction of IQ as a potential
confound to the classification of MLD and LA, but with the benefit of providing a more realistic
assessment of achievement groups that emerge in school settings.

Methods
Participants

All kindergarten children from 12 elementary schools were invited to participate in a
longitudinal prospective study of MLD. Parental consent and child assent were received for
37% (n = 311) of these children (see Geary et al., 2007), and the latent trajectory analysis
included the 306 children (142 male) with at least one year of achievement data. The ethnic
composition was mixed (68% White, 12% Black, 5% Asian, 4% Hispanic, 6% of mixed race;
the remaining participants did not report ethnicity) and came from schools that served families
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from a wide range of socioeconomic levels, although schools that have yielded high numbers
of children with MLD or LA children in previous studies were oversampled.

Standardized Measures
Intelligence—In 1st grade, the children were administered the Vocabulary and Matrix
Reasoning subtests of the Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999), and
these scores were used to estimate IQ based on norms presented in the manual. For this study,
we did not use scores for the Raven’s Coloured Progressive Matrices (Raven, Court, & Raven,
1993), which was administered in kindergarten. The cost was slightly lower mean IQ scores
(about 3 points) but the gain was more recent IQ norms that are calibrated with the achievement
test norms.

Achievement—During the second semester of each grade, the children were administered
the Numerical Operations and Word Reading subtests from the Wechsler Individual
Achievement Test-II-Abbreviated (Wechsler, 2001). The Numerical Operations subtest
assesses number discrimination, rote counting, number production, basic addition and
subtraction, multi-digit addition and subtraction, and some multiplication and division. The
Word Reading subtest includes matching and identifying letters, rhyming, beginning and
ending sounds, phoneme blending, letter sounds, and word recognition.

Mathematical Tasks
Number sets—The test was designed as a group-administered paper-and-pencil measure of
the speed and accuracy with which children can identify the quantity of sets of objects and
combine these with quantities represented by Arabic numerals (Geary et al., 2007). Figure 1
shows several example items from the measure. Two items matching a target number of 4 were
first explained for practice. Next, using 3 as the target number, four lines of two sets of items
were administered as practice. In these practice lines, one set was a match and one was clearly
not a match (3 vs. 9, 10, or 11). Once it was determined that the child understood the task, the
experimental items were administered. There are four pages of such items, and the child is
instructed to move across each line of the page from left to right without skipping any and to
“circle any groups that can be put together to make the top number, five (nine)” and to “work
as fast as you can without making many mistakes.” The child is given 60 sec and 90 sec per
page for the targets 5 and 9, respectively, and is asked to stop at the time limit. We chose to
time the task to avoid ceiling effects and because a timed measure should provide a better
assessment of fluency in recognizing number combinations than an untimed measure.

The task yields numbers of hits, misses, correct rejections, and false alarms for each problem
type and size. Geary et al. (2007) found that 1st graders’ performance was consistent across
target number and item content (e.g., whether the rectangle included Arabic numerals or
shapes) and could thus be combined to create an overall frequency of hits (alpha, α = .88),
correct rejections (α = .85), misses (α = .70), and false alarms (α = .90). Using a response
operator characteristic curve analysis, Geary et al. (2009) derived a sensitivity measure, d′, by
subtracting each participant’s z-score for misses from their z-score for hits (Macmillan,
2002). As noted, the value provides a measure of sensitivity to number while controlling for
the child’s response bias. We used the d′ measure in the current analyses.

Number line estimation—A series of twenty-four 25cm number lines containing a blank
line with two endpoints (0 and 100) was presented, one at a time, to the child with a target
number (e.g., 45) in a large font printed above the line. The child’s task was to mark on the
line, where the target number should lie; for a detailed description see Siegler and Booth
(2004). Accuracy is defined as the absolute difference between the child’s placement and the
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correct position of the number. For the number 45, placements of 35 and 55 produce difference
scores of 10. The overall score is the mean of these differences across trials.

Counting knowledge—The child watched a puppet count a series of alternating red and
blue chips at several different counting string lengths. Sometimes the puppet counted correctly
and other times did not. The correct counts could be the standard left to right count or could
be nonstandard (e.g., right to left), whereas the incorrect counts violated a basic counting
principle (e.g., one-one correspondence; Gelman & Gallistel, 1978). The child’s task was to
tell the puppet if the way he counted was “OK” or “not OK”, and thus assessed the child’s
awareness of counting principles and their understanding of whether variation from the
standard left to right counting could still be correct (Briars & Siegler, 1984). Across a series
of studies, we have found that children with MLD consistently miss trials on which the first
chip in the sequence is double counted (e.g., Geary et al., 1992). Therefore, the variable used
in this study was the percentage of trials (out of 3) on which the child correctly detected this
particular counting error.

Addition strategy assessment—Fourteen simple (e.g., 3 + 6) and six complex (9 + 15)
addition problems were horizontally presented in a large font (about 2 cm tall), one at a time,
at the center of a 5″ by 8″ card. The child was asked to solve each problem (without the use of
paper and pencil) as quickly as possible without making too many mistakes. It was emphasized
that the child could use whatever strategy was easiest get the answer, and was instructed to
speak the answer out loud. Based on the child’s description of how they got the answer and
the experimenter’s observations, the trial was classified into 1 of 6 strategies; specifically,
counting fingers, fingers (i.e., holding up fingers and then retrieving an answer without
counting), verbal counting, retrieval, decomposition, or other/mixed strategy (see Geary et al.,
2007; Siegler, 1987; Siegler & Shrager, 1984). A mixed trial was one in which the child started
using one strategy, but completed the problem using another. The four most commonly used
strategies were counting fingers, verbal counting, retrieval, and decomposition.

For the current analyses, we used five variables from the strategy tasks. The first was the
percentage of retrieval trials that were correct for simple problems (direct retrieval was
uncommon for the complex problems); because this percentage is correlated with mathematics
achievement scores (Geary, Bow-Thomas, Liu, & Siegler, 1996) and is an indicator of MLD
(Geary, 2004). The second and third variables were based on Geary et al. (2007); specifically,
the raw number of problems correctly solved by a memory-based process (i.e., retrieval or
decomposition) for simple (MemoryS) and complex problems (MemoryC). The two final
variables captured the sophistication and accuracy of the children’s use of backup strategies
when they could not correctly use a retrieval-based process. If the number of retrieval errors
was greater than the number of problems correctly solved by finger counting or verbal counting,
then backup (BackupS for simple problems, BackupC for complex problems) was coded as [0
– number of retrieval errors]. If the number of problems solved correctly by finger counting
or verbal counting was greater than the number of retrieval errors, then backup was coded [(2
× Correct Min counts) + (Correct Sum counts) – total counting errors]. Low scores indicated
frequent guessing, whereas high scores indicated frequent use of the sophisticated min counting
procedure.

Working Memory
The Working Memory Test Battery for Children (WMTB-C; Pickering & Gathercole, 2001)
consists of nine subtests that assess the central executive, phonological loop, and visuospatial
sketchpad. All of the subtests have six items at each span level. Across subtests, the span levels
rang from one to six to one to nine. Passing four items at one level moves the child to the next.
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At each span level, the number of items (e.g., words) to be remembered is increased by one.
Failing three items at one span level terminates the subtest.

Central executive—The central executive is assessed using three dual-task subtests.
Listening Recall requires the child to determine if a sentence is true or false, and then recall
the last word in a series of sentences. Counting Recall requires the child to count a set of 4, 5,
6, or 7 dots on a card, and then to recall the number of counted dots at the end of a series of
cards. Backward Digit Recall is a standard format backward digit span.

Phonological loop—Digit Recall, Word List Recall, and Nonword List Recall are standard
span tasks with differing content stimuli; the child’s task is to repeat words spoken by the
experimenter in the same order as presented by the experimenter. In the Word List Matching
task, a series of words, beginning with two words and adding one word at each successive
level, is presented to the child. The same words, but possibly in a different order, are then
presented again, and the child’s task is to determine if the second list is in the same or different
order than the first list.

Visuospatial sketch pad—Block Recall is another span task, but the stimuli consist of a
board with nine raised blocks in what appears to the child as a “random” arrangement. The
blocks have numbers on one side that can only be seen from the experimenter’s perspective.
The experimenter taps a block (or series of blocks), and the child’s task is to duplicate the
tapping in the same order as presented by the experimenter. In the Mazes Memory task, the
child is presented a maze with more than one solution, and a picture of an identical maze with
a path drawn for one solution. The picture is removed and the child’s task is to duplicate in the
path in the response booklet. At each level, the mazes get larger by one wall.

Procedure
All children were tested in the spring of their kindergarten year and in the fall and spring of
1st, 2nd and 3rd grade. The achievement tests were administered each spring and the 1st grade
mathematical tasks were administered in the fall. The majority of children were tested in a
quiet location at their school site, and occasionally in a testing room on the university campus
or in a mobile testing van if the child moved between assessments. The WMTB-C was
administered in the testing van or on the university campus during 1st grade. The assessment
times and corresponding sample sizes are shown in Table 1; as shown attribution is low after
the spring of 1st grade.

Results
The results are organized into three sections. In the first, we describe procedures for
determining latent groups, estimating growth trajectories, and corresponding group differences
on the achievement, IQ, working memory, and mathematical-cognition measures. In the second
and third respective sections, we describe univariate and multivariate ratios for the odds of
class membership using IQ, working memory, and the mathematical-cognition measures as
predictors.

Latent Class Models
Analyses were performed in Mplus, version 5.1 (Muthén & Muthén, 2008). Growth mixture
models and latent class growth analyses were considered (see Jung & Wickrama, 2007), but
for various reasons, we chose a latent trajectory analysis solution1. With the latter, individuals
were assigned to endogenous categories based on raw mathematics achievement scores at the
4 measurement occasions. The number of classes for the solution was determined based on the
interpretability and likely replicability of the classification of individuals as well as model fit
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indexes. The latter were the Bootstrapped Likelihood Ratio Test, Bayesian Information
Criterion (BIC), and the Adjusted Bayesian Information Criterion (ABIC; Nylund,
Asparouhov, and Muthén, 2007), and are shown in Table 2. As can be seen, the overall fit of
the 4-, 5-, and 6-class solutions is roughly similar. The 6-class solution, however, produced
one class representing less than 1% of the sample and we therefore examined the 4- and 5-class
solutions. The latter produced a slightly better fit than the former, but consisted of three high-
achieving classes that were not clearly distinct from one another based on posterior
probabilities. For this reason and because our objective is to identify lower-achieving children,
the 4-class model was retained.

The entropy value for the 4-class model–bound between 0 and 1 (with values of 1 indicating
a clear delineation between classes; Celeux & Soromenho, 1996)–was 0.82. Values on the
diagonal of the posterior probability matrix, which indicate the distinctness of the classification
for each of the four respective groups, ranged from 0.88 to 0.94.

As shown in Figure 2 (produced using the Sciplot package in R, Morales, 2008), the classes
show distinct mathematics achievement scores and trajectories across measurement occasions.
On the basis of mean achievement scores shown in Table 3, we refer to these classes, from
lowest to highest achieving, as MLD, LA, TA, and HA, with prevalence based on most likely
class membership: 6% (n = 17), 50% (n = 154), 39% (n = 120), and 5% (n = 15) of the sample
belonging to each respective class. The overall achievement trajectory of the LA group suggests
a moderate learning difficulty in mathematics, but to be consistent with terms used in recent
studies (Geary et al., 2007;Murphy et al., 2007) and because this is likely to be a heterogeneous
group of children, we used the term low achieving rather than learning disabled.

Independent ANOVAs confirmed significant group differences (ps < 0.001) for IQ, F(3,257)
= 23.63, and each of the working memory variables; CE, F(3,265) = 41.16, VSSP, F(3,265) =
16.50, and PL, F(3,265) = 16.27. Follow-up analyses revealed all pairwise comparisons of
means to be significant at Tukey-adjusted alpha = 0.05, except for PL differences between HA
and TA (p = 0.87) and between HA and LA [p = 0.09].

An ANCOVA with mathematics and reading achievement as within-subjects variables group
as a between-subject variable, and IQ as the covariate yielded significant main effects for group
and IQ [Fs (1, 253); (3, 253) = 35.89, 94.43, ps < 0.0001], which were qualified by significant
test by IQ, F(1, 253) = 11.26, p < 0.001, test by group, F(3, 253) = 14.12, p < 0.0001, time by
group [Wilks’ Lambda = 0.87, F(9, 611.02) = 4.04; p < 0.001], and test by time by group
[Wilk’s Lambda = 0.90, F(9, 611.02) = 2.95, p < 0.005] interactions. The critical tests
confirmed that the class differences for mathematics achievement were not due to class
differences in IQ at any grade [Fs (3, 253) = 32.71, 40.48, 97.29, and 113.97, ps < 0.0001].

Univariate Class Diagnoses
Because specific classes are clearly distinct (e.g., MLD vs. TA), individual children are not
likely to be misclassified as members of non-adjacent classes; for example, a child with MLD
is unlikely to be misclassified as TA. Some children, however, represent borderline cases
between adjacent classes; for example, a child with MLD might be misclassified as LA. As a
means to address these potentially ambiguous cases, we estimated the odds ratios that a child
is a member of one of two adjacent classes for each of the key variables used in this study;

1Lower-achieving children’s mathematics achievement scores show a floor effect in kindergarten and 1st grade. Therefore, classes are
predicted to grow differently across measurement occasions with respect to an intercept, slope, and quadratic factors. With more
measurement occasions, separate linear or even logistic functions might appropriately model growth across measurement occasions, but
due to the low number of measurement occasions and the complex nature of observed growth across these occasions, a parsimonious
LCA model was chosen.
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specifically, the IQ and working memory measures and the mathematical cognition measures
shown in Table 4. Because these variables are continuous, the interpretation of each ratio is
the increase in odds that an individual is a member of the first class for each one SD increase
in the variable; each variable has been standardized (M = 0, SD = 1). Each of these values
represents an odds ratio returned from a single variable diagnostic logistic regression model.
Using the IQ variable to illustrate, given that a child is in the region where they could be
classified as either HA or TA, a 1 SD increase in IQ was associated with a 1.98 fold increase
in the odds of membership in the HA class (95% confidence interval = [1.10, 3.57]; since the
interval does not include 1, it is significant at alpha = 0.05). As can be seen, the diagnostic
utility of IQ increases as achievement decreases. In the case of a child who is either LA or
MLD, a 1 SD increase in IQ is associated with a 30 fold increase in the odds that individual is
LA.

HA/TA—Examination of the odds ratios in Table 5 indicate that, among IQ and the working
memory measures, higher levels IQ, VSSP, and CE increased the odds of belonging to the HA
group as opposed to the TA group. Regarding mathematical tasks, higher levels in d′, PCR,
MemoryS, and MemoryC increased the odds of belonging to the HA group whereas higher
levels in BackupS decreased the odds of belong to this group.

TA/LA—Higher levels of IQ, PL, VSSP, and CE increased the odds of belonging to the TA
(compared to the LA) group. Among mathematical tasks, higher levels of d′, Count Error, PCR,
MemoryS, MemoryC, BackupS, and BackupC increased the odds of belonging to the TA
group; notably, a 1 SD increase in d′ resulted in a more than 17-fold increase in the odds of
placement in the TA group. Higher error levels on the Number Line task resulted in roughly
an 8.33 decrease in odds of belonging to the TA group.

LA/MLD—Higher levels in all IQ and working memory variables increased the odds of LA
group membership compared to MLD group membership. Higher levels in the mathematical
tasks of d′, Count Error, MemoryS, BackupS, and BackupC increased the odds of belong to
the LA group whereas higher error levels in the Number Line task resulted in decreased odds
of belong to this group.

Sex—Although not an a priori aspect of our study, the sex (female coded as 0, male coded as
1) of the child was related to class membership. In all three cases, the odds ratio was significant,
indicating different proportions of boys and girls across groups. Given that a child is LA or
MLD, the odds of being MLD are 5 times higher for boys. Given that a child is TA or LA, a
boy has more than twice the odds of being TA. We could not estimate the ratio for
discriminating between the HA and TA classes, because there were no girls in the HA class;
therefore, based on these data, girls are more likely to belong to the TA class.

Multiple Regression Analyses
To explore the constellation of strengths and deficits underlying class membership, cognitive
variables were entered into logistic regressions predicting dichotomous class membership and
linear regressions predicting continuous posterior probability variables; the latter are estimates
for the probability of membership in each of the four classes. Models were selected using the
backwards stepwise procedure with the AIC as a criterion for model fit (Akaike, 1974). Because
each predictor is standardized, the interpretation of the regression weights for the logistic
regressions is increase in the natural log (ln) odds of class membership given a one SD increase
in the predictor, independent of other predictors. The corresponding odds ratios are provided
by eb, where b is the regression coefficient. The interpretation of the regression weights for the
linear regressions is increase in the probability of class membership (compared to any other
class) given a one SD increase in the predictor, independent of other predictors. Both sets of
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analyses were based on the 228 children without any missing data; MLD (n = 12), LA (n =
101), TA (n = 103), HA (n = 12).

Logistic regressions—The best fitting equations are shown in Table 6. The individual
predictors may not be significant in any particular equation, due to collinearity, but the
combination represents the best fitting constellation of variables for predicting membership in
the four respective classes. Considering the first equation, it can be seen that being a boy results
in a 3.71 fold increase in the odds of classification into the MLD group (vs. LA, TA, or HA
class membership), independent of the other predictors. Notably, a 1 SD increase in the degree
of error on the number line measure resulted in a 5 fold increase in the odds of MLD. Higher
IQ, phonological loop, and visuospatial sketch pad scores were associated with a reduced
likelihood of MLD classification. Or stated differently, a 1 SD decrease in visuospatial sketch
pad scores, for instance, resulted in a 2.78 (1/.36) fold increase in the odds of MLD.

A contrast of this first equation with that associated with the LA classification reveals
similarities but more importantly many differences. The latter suggests different mechanisms
underlying the poor mathematics achievement of these two groups of children. Being a girl is
associated with a 2.08 (1/.48) fold increase in the likelihood of LA classification. Cognitive
differences emerged in terms of the importance of the central executive, the d′ variable, and
the percentage of correct retrieval of simple addition facts (i.e., PCR). A one SD increase in
these respective competencies independently result in 1.72 (1/.58), 1.56 (1/.64), and 1.47
(1/.68) fold decrease in the likelihood of LA classification.

Three of the four variables that emerged with the TA classification equation also emerged with
the LA equation, suggesting the LA and TA groups may be largely lower and higher ends,
respectively, of the same population. Increases in fluency in identifying number sets (d′) and
percentage of correct identification of double counting errors increased the likelihood of
classification into the TA group, whereas decreased accuracy in number line placements
decreased the likelihood of TA class membership. The most notable feature of the final equation
is the 10.18 fold increase in the likelihood of a HA classification for boys. Unlike the LA and
TA classifications and in inverse the relation to that found for MLD classification, the
visuospatial sketch pad emerged as an important predictor for HA (odds ratio = 2.92). A one
SD increase in the fluency of identifying number sets (d′) and accuracy in retrieving addition
facts from long-term memory independently resulted in more than a three-fold increase in the
odds of HA classification.

Linear regressions—As can be seen in Table 7, the predictors in the linear regressions were
largely the same as those that emerged in the logistic equations; overall model fits ranged from
R2 = .24 to .31, ps<.0001. As an example, independent of other predictors, a one SD decease
in the fluency of identifying number sets (d′) and in accuracy in detecting double counting
errors respectively resulted in a 5% increase in the probability of an MLD classification. Again,
there was considerable overlap in the predictors of the probability of LA and TA classification
and, unlike these two groups, the visuospatial sketch pad emerged as a predictor of the
probability of a HA classification.

Discussion
The central goals of the current study were to identify stable groups of MLD and LA children,
determine similarities and differences in the cognitive deficits contributing to group

2Odds ratio confidence intervals were estimated using robust estimates based on the Maximum Likelihood estimation function.
Confidence intervals based on bootstrap draws for IQ yielded extremely similar results, which did not change any interpretations of
statistical significance.
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membership, and to identify early cognitive predictors of group membership. We consider each
of these issues respectively.

Stability of MLD and LA
In their prospective, longitudinal study of mathematics learning, Murphy et al. (2007) classified
children as MLD if their mathematics achievement scores were below the 11th percentile of
their sample for at least two years, from kindergarten to 3rd grade, and as LA if their scores
were between the 11th and 25th percentiles, inclusive, for at least two of these years. Children
in these respective groups not only showed, by definition, lower and higher levels of
mathematical performance, but different growth trajectories. The children with MLD started
lower on the achievement test and showed more shallow growth, relative to their LA peers and
a comparison group of TA children. The two latter groups did not differ in terms of growth in
mathematics achievement, but their start points differed by design. Jordan and her colleagues
have also identified classes of children with different initial levels of mathematical competence
and sometimes with different growth rates (Jordan, Hanich, & Kaplan, 2003b; Jordan, Kaplan,
Oláh, & Locuniak, 2006).

Our results confirm Murphy et al.’s (2007) and Jordan et al.’s (2006) findings for the existence
of a small number of classes of children with different initial levels of mathematical
achievement, and Murphy et al.’s (2007) findings in terms of class differences in the growth
trajectories of achievement scores; Jordan et al. (2006) also identified groups with different
trajectories across the kindergarten year, but focused on growth on mathematical-cognition
tasks, not achievement measures. As with the MLD group identified by Murphy et al., our
group of children with MLD showed some grade-to-grade growth on the mathematics test, but
their below-average trajectory resulted in declining national percentile scores across grades.
Our MLD class and that of Murphy et al. also showed below average IQ and reading
achievement scores, but performance in both of these domains was above that found for
mathematics achievement. As detailed below, whatever the contributions of IQ and reading
competence to their mathematical development, children with MLD appear to have deficits
specific to mathematics.

Murphy et al. also found that 2 out of 3 of the children in their MLD group were boys and 2
out of 3 children in their LA group were girls. Although their results were not statistically
significant, the same pattern emerged in our study and suggests that low mathematics
achievement may manifest differently in boys and girls (see also Barbaresi et al., 2005). Either
way, our results add to accumulating evidence for the existence of an identifiable group of at
least 5% of children who have a persistent, grade-to-grade learning disability in one or several
areas of mathematics that cannot be entirely attributable to IQ or poor reading ability.

Cognitive Profiles of MLD and LA Groups
It has been demonstrated many times that children with MLD score below average on measures
that assess one or several working memory systems (Bull et al., 1999; Geary et al., 2004;
McLean & Hitch, 1999; Swanson, 1993) and have delayed procedural development in
arithmetic and difficulty learning basic arithmetic facts (Chong & Siegel, 2008; Geary, 1993;
Jordan et al., 2003a). However, the criterion used to define groups of children with MLD has
varied from one study to the next and, as a result, many of these groups included both children
with MLD and LA children, as defined here and by Murphy et al. (2007). The conflation of
these groups has made it difficult to determine if the same or different mechanisms are
underlying their poor mathematical development. There has also been a tendency in this
literature to classify children with poor mathematics achievement based on whether the deficits
are specific to mathematics (MD-only) or involve poor outcomes in both mathematics and
reading (MD/RD; Geary, Hoard, Hamson, 1999; Geary et al., 2000; Hanich et al., 2001; Jordan
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& Montani, 1997). Children with MD-only and MD/RD appear to be similar to the LA and
MLD groups, respectively, identified in this study and by Murphy et al., and thus the following
discussion may also apply to the MD-only and MD/RD classifications.

Murphy et al. (2007) identified subtle differences in the working memory deficits of their MLD
and LA groups, but there was no specific cognitive or mathematics variable that differentiated
the groups. Rather, the groups differed in terms of more or less severe deficits in the same
cognitive and mathematical domains. Geary et al. (2007), in contrast, identified a group of
average-IQ children with MLD that had substantial working memory deficits and a group of
average-IQ LA children with no such working memory deficits. We did not control for IQ in
the current analyses, but the same group differences in working memory emerged. The best
constellation of variables for predicting membership in the MLD class included IQ and the
phonological loop and visuospatial sketch pad scores, the means for all of which were about
1 SD below average (Table 3). However, the central executive variable did not emerge as a
significant predictor of MLD class membership in our current analyses, in contrast with Geary
et al. (2007), which may have been due to the emergence of the count error variable in these
equations and collinearity; specifically, the deficit of children with MLD on this counting
variable appears to be mediated by their central executive deficits (Geary et al., 2007). In other
words, the central executive deficits of the children with MLD were better captured by the
count error variable than by the central executive measure per se.

The emergence of the central executive and phonological loop variables for prediction of LA
class membership was not due to deficits in these components of working memory. In fact,
controlling for other predictors, higher phonological loop scores were associated with higher
odds of classification as LA, potentially due to the over-representation of girls in this class.
Lower central executive scores were associated with higher odds of LA classification, despite
scores in the average range (Table 3), due to the contrast with the above average central
executive scores of the children in the TA and HA groups.

Independent of working memory and IQ scores, the best predictor of membership in the MLD
class was the number line variable for the logistic regression and the d′ and count error variables
in the linear regression. As stated, the count error variable could be capturing variance in central
executive competence, but the emergence of the number line and d′ variables suggest these
children have a poor number sense, in support of other findings (Butterworth & Reigosa,
2007; Geary et al., 2009; Koontz & Berch, 1996). The children with MLD also correctly
retrieved fewer addition facts than did TA and HA children (Table 4), as is typically found,
but this did not emerge in the regressions as their most serious deficit. The number line and d
′ measures also emerged as core predictors of membership in the LA class, as did their low
frequency of correct addition-fact retrieval. Whether the number sense and retrieval deficits of
the children with MLD and LA children represent different cut points along the same
underlying ability continuums or different forms of deficit is not clear. For instance, the IQ
and working memory deficits might contribute to the poor performance of the children with
MLD on these tasks (Geary et al., 2008), but this cannot be the case for the LA children.

In fact, given the unexpectedly large percentage (50%) of children in our overall sample who
were classified as LA, it is unlikely that all of them have number sense or fact retrieval deficits
of the magnitude that would support a learning disability diagnosis. The poor performance of
some proportion of these children may result from instructional practices or lack of early
informal exposure to number-information at home. Our planned follow-up analyses of the
grade-to-grade changes on the mathematical-cognition measures may provide a means to better
separate children in our LA class into those who have actual mathematics cognition deficits
from those whose low achievement is the result of experiences that do not support full
development of their potential in mathematics.
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For this particular sample, the emergence of similar sets of predictors in the regressions and
based on the pattern of mean scores, the LA and TA classes appear to represent lower and
higher ends, respectively, of largely the same constellation of ability continuums. No doubt
the children in the MLD and HA classes vary along the same continuums for individual
competencies, but there were several potentially interesting differences within the
constellations of variables that best predicted inclusion in these two classes. The children
classified into the MLD group had across-the-board deficits in all three working memory
systems, if we assume the count error variable is capturing poor central executive abilities. The
other notable feature is that the mathematical tasks that emerged in the regressions assess their
number sense, and not their competence in procedural execution or addition-fact retrieval. The
children with MLD do, in fact, have difficulties in these two latter areas (Table 4), as found in
most previous studies (Geary, 2004), but an earlier emerging and potentially more fundamental
deficit may exist in their number sense (Butterworth & Reigosa, 2007;Koontz & Berch,
1996); potentially related to the inherent number-magnitude representational system.

In addition to the finding that they were all boys, the most distinct aspect of the regressions for
predicting HA class membership was the importance of the visuospatial sketch pad. In an earlier
study in which we identified HA children based on IQ scores–mean of 126 as compared to 115
for the current HA–group and not mathematics achievement scores, the key working memory
mechanism that contributed to their advantages on most of the mathematical tasks was the
central executive (Hoard, Geary, Byrd-Craven, & Nugent, 2008). The central executive is
important for the current HA group as well, but the visuospatial sketch pad may contribute as
much or more to their growth trajectory in mathematics as the central executive (see also Dark
& Benbow, 1991).

Predictors of MLD and LA Status
The results of this study are consistent with those of other studies of early potential predictors
of poor outcomes in mathematics (Gersten et al., 2005; Mazzocco & Thompson, 2005) and
confirm the importance of an early number sense for mathematical development (Case &
Okamoto, 1996). More precisely, the Number Sets Test, the number line task, the double-count
error items from the counting knowledge task, and assessment of the ability to correctly retrieve
basic addition facts from long-term memory all emerged as important mathematical-cognition
variables in the prediction MLD or LA class membership, independent of the contributions of
IQ and working memory. The critical distinction between membership in the MLD or LA
classes was the below average IQ and working memory competencies of the former group.
The implication is that risk assessment for poor long-term outcomes in mathematics should
include IQ and working memory measures, as well as measures that assess children’s number
sense, their ability to monitor the act of counting, and their knowledge of very simple addition
and presumably subtraction facts.
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Figure 1.
Example items from the Number Sets Test.
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Figure 2.
Mathematical achievement raw score growth by class across measurement occasions. HA =
high achieving, TA = typically achieving, LA = low achieving, MLD = mathematical learning
disability.
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Table 5

Estimates and 95% Confidence Intervals for Univariate Odds Ratios

Class/Class

Variable HA/TA TA/LA LA/MLD

Intelligence and Working Memory

IQ 1.98 (1.10, 3.57)* 2.89 (1.82, 4.60)* 30.05 (9.18, 98.39)*

PL 1.14 (0.64, 2.02) 1.91 (1.36, 2.67)* 4.70 (2.21, 9.97)*

VSSP 2.30 (1.20, 4.42)* 1.74 (1.24, 2.43)* 4.66 (1.77, 12.28)*

CE 2.22 (1.15, 4.28)* 3.86 (2.28, 6.55)* 12.38 (4.18, 36.72)*

Mathematical Tasks

d′ 3.37 (1.11, 10.24)* 17.36 (8.21, 36.69)* 6.46 (3.00, 13.94)*

Number linea 0.11 (0.005, 2.09) 0.12 (0.06, 0.24)* 0.32 (0.15, 0.68)*

Count Error 0.99 (0.33, 2.93) 2.31 (1.41, 3.78)* 3.01 (1.62, 5.60)*

PCR 1.94 (1.19, 3.17)* 2.97 (1.81, 4.87)* 3.00 (0.86, 10.46)

MemoryS 2.69 (1.54, 4.71)* 4.74 (2.51, 8.96)* 5.23 (1.06, 25.92)*

MemoryC 2.02 (1.46, 2.81)* 3.50 (1.83, 6.56)* 0.51 (0.13, 2.01)

BackupS 0.45 (0.26, 0.77)* 2.81 (1.94, 4.07)* 5.67 (2.80, 11.50)*

BackupC 0.77 (0.43, 1.35) 3.18 (2.15, 4.71)* 6.23 (2.71, 14.34)*

Note. MLD = mathematical learning disability, LA = low achieving, TA = typically achieving, HA = high achieving. d′ = sensitivity measure from
Number Sets Test; Number line = mean of absolute error scores on the number line task, Count Error = percentage of trials detecting double-counting
error, PCR = percentage of correct retrieval trials for simple addition, MemoryS = frequency of correct retrieval and decomposition for simple addition,
MemoryC = frequency of correct retrieval and decomposition for complex addition, problems, BackupS = backup strategies for simple addition
problems, BackupC = backup strategies for complex addition problems.

*
Significant at alpha = 0.05

a
Lower number line deviation scores indicate more accurate placements and thus the odds ratios are lower than 1
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Table 7

Best Fitting Multivariate Predictors from Linear Regression

Mathematical Learning Disability

Estimate Std. Error t value Pr(>|t|)

Intercept 0.04 0.015 2.66 0.008

Sex 0.04 0.023 1.76 0.079

PL −0.02 0.013 −1.67 0.097

VSSP −0.01 0.013 −0.98 0.328

d′ −0.05 0.015 −3.33 0.001

Number Line 0.03 0.016 1.63 0.105

Count Error −0.05 0.013 −3.75 0.000

Low Achieving

Intercept 0.53 0.035 15.14 0.000

Sex −0.13 0.054 −2.34 0.020

CE −0.09 0.031 −2.46 0.015

d′ −0.06 0.036 −1.72 0.087

Number Line 0.08 0.044 2.27 0.024

PCR −0.07 0.029 −2.45 0.015

Typically Achieving

Intercept 0.42 0.025 16.92 0.000

CE 0.06 0.030 2.18 0.030

d′ 0.11 0.034 3.08 0.002

Number Line −0.13 0.034 −3.70 0.000

High Achieving

Intercept 0.03 0.017 1.72 0.086

Sex 0.05 0.026 2.04 0.042

IQ 0.03 0.014 2.38 0.018

PCR 0.07 0.013 5.19 0.000

VSSP 0.03 0.014 2.42 0.017
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