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Abstract
Endotoxemia plays an important role in the pathogenesis of sepsis and is accompanied by
dysregulated apoptosis of immune and non-immune cells. Treatment with statins reduces mortality
in rodent models of sepsis and endotoxemia. Inhibition of protein isoprenylation, including
farnesylation, has been proposed as a mechanism to mediate the lipid lowering-independent effects
of statins. Nonetheless, the effects of the inhibition of isoprenylation have not yet been studied. To
investigate the role of farnesylation, we evaluated the effects of farnesyltransferase inhibitor and
statin on survival following lipopolysaccharide (LPS) challenge in mice. Both simvastatin (2 mg/kg
BW) and FTI-277 (20 mg/kg BW) treatment improved survival by two-fold after LPS injection, as
compared with vehicle alone (p<0.01). LPS-induced cleavage (activation) of caspase-3, an indicator
of apoptotic change, and increased protein expression of proapoptotic molecules, Bax and Bim, and
activation of c-Jun NH2-terminal kinase (JNK/SAPK) in the liver and spleen were attenuated by both
simvastatin and FTI-277. These results demonstrate that farnesyltransferase inhibitor as well as statin
significantly reduced LPS-induced mortality in mice. Our findings also suggest that inhibition of
protein farnesylation may contribute to the lipid lowering-independent protective effects of statins
in endotoxemia, and that protein farnesylation may play a role in LPS-induced stress response,
including JNK/SAPK activation, and apoptotic change. Our data argue that farnesyltransferase may
be a potential molecular target for treating patients with endotoxemia.
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INTRODUCTION
Sepsis is the leading cause of death amongst critically ill patients [1]. Despite extensive
investigation over the past three decades, the incidence of sepsis and sepsis-related deaths
appear to be increasing [2]. Lipopolysaccharide (LPS), the major structural component of the
outer membrane of Gram-negative bacteria, has been implicated as the bacterial endotoxin
responsible for the clinical syndrome of sepsis, including septic shock and multiple organ
dysfunction syndrome.

3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) have had
a major impact on healthcare by decreasing cardiovascular events. The efficacy of statins has
been attributed primarily to their lipid-lowering properties. However, a growing body of
evidence highlights statin effects that are independent of its lipid-lowering properties [3].
Observations, such as the rapid onset of clinical benefits and weak correlations between plasma
cholesterol levels and coronary lumen change or cardiovascular events, argue that other non-
lipid lowering actions must be involved [4,5]. In fact, statins exert beneficial effects on
increased flow-mediated vasodilation in normocholesterolemic subjects [6–8], as well.
Recently, the National Cholesterol Education Project (NCEP) Adult Treatment Panel III
guideline recommended that patients with diabetes and cardiovascular disease should initiate
statin therapy regardless of baseline LDL cholesterol levels [9]. The lipid lowering-
independent beneficial effects of statins also have been shown in animal models of
atherosclerosis [10,11].

Retrospective and prospective observational studies have shown that prior statin treatment
reduces the incidence and mortality of sepsis in the intensive care unit [12–16], although
controversial results also have been reported [17]. Prospective clinical trials are under way to
evaluate the safety and efficacy of treatment with statins in septic patients [17]. Consistent with
these observational studies in humans [12–16], other studies have demonstrated that statins
reduce mortality in mouse models of sepsis and endotoxemia, along with preservation of
cardiac function, amelioration of inflammatory alterations, or improved bacterial clearance
[18–21]. In the latter studies, the beneficial effects of statins were attributed to the lipid-
lowering-independent properties of the drug.

The non-lipid-lowering effects of statins presumably are accounted for by direct, pleiotropic
actions, including anti-inflammatory and anti-oxidant effects. Nevertheless, the molecular
mechanisms by which statins exert these pleiotropic actions remain to be determined. HMG-
CoA reductase is the rate-limiting enzyme of cholesterol biosynthesis. Mevalonate, the
immediate product of HMG-CoA reductase, is a precursor of farnesyl pyrophosphate and
geranylgeranyl pyrophosphate, as well as cholesterol. Hence, the inhibition of this enzyme
results in decreased production not only of cholesterol, but also of farnesyl pyrophosphate and
geranylgeranyl pyrophosphate, which, in turn, leads to reduced protein isoprenylation, namely,
farnesylation and geranylgeranylation. Therefore, the inhibition of geranylgeranylation and/or
farnesylation has been proposed as an appropriate mechanism to mediate the lipid lowering-
independent protective effects of statins, although direct evidence is lacking.

Protein farnesylation, a lipid modification of cysteine residues, is catalyzed by protein
farnesyltransferase and is essential for activity of the Ras family of small GTPases, such as
p21ras. Previous studies have shown that farnesyltransferase inhibitors prevent apoptosis and
ameliorate organ dysfunction in rodent models of trauma, such as ischemic/reperfusion and
brain injury [22–24]. The activity of farnesyltransferase and protein farnesylation are increased
by LPS, heat shock, and trauma [25–27]. The Ras family of small GTPases is a collection of
key signaling molecules involved in the regulation of a variety of cellular processes, including
apoptosis, survival, proliferation, and differentiation. Activation of Ras is required for the LPS-
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induced inflammatory response, including the induction of inducible nitric oxide synthase and
oxidative stress [28], which suggests an important role of Ras activation in endotoxemia. We
have shown previously that farnesyltransferase inhibitor prevents the development of
atherosclerosis in apoE-deficient mice fed a high-fat diet, without altering serum cholesterol
levels [29].

Nonetheless, the effects of farnesyltransferase inhibitor have not yet been investigated in
endotoxemia or sepsis. In the present study, we investigate the effects of farnesyltransferase
inhibitor in endotoxemia, by evaluating the actions of simvastatin and farnesyltransferase
inhibitor, FTI-277, on survival following LPS challenge in mice.

MATERIALS AND METHODS
Animals

Male C57BL/6 mice at 7 weeks of age, purchased from the Jackson Laboratory (Bar Harber,
ME), were used for this study. The study was approved by the Institutional Animal Care
Committee of Massachusetts General Hospital. The animal care facility is accredited by the
Association for Assessment and Accreditation of Laboratory Animal Care. The mice were
housed in a pathogen-free animal facility maintained at 25°C and illuminated by 12: 12-h light-
dark cycles. The mice were provided with standard rodent chow and water ad libitum. The
animals received a bolus injection of LPS (27.5 mlg/kg BW, IP, Sigma, St. Louis, MO) or
phosphate-buffered saline (PBS). At 2 h after the injection of LPS, treatment with simvastatin
(2 mg/kg BW, IP, b.i.d., American Radiolabeled, St. Louis, MO), a specific inhibitior for
protein farnesyltransferase, FTI-277 (20 mg/kg BW, IP, b.i.d., Sigma), or vehicle alone was
initiated and continued up to 50 h after the LPS injection. The effects of the inhibitors on
survival were observed up to 100 h after LPS injection.

Tissue homogenization
The liver and spleen were collected at 18 h after the LPS injection under anesthesia with
pentobarbital sodium (50 mg/kg BW, IP). Tissue samples were homogenized in ice-cold
homogenization buffer (50 mM HEPES-NaOH, pH 7.5, 150 mM NaC1, 2 mM EDTA, 1%
lithium dodecylsulfate, 1% Nonidet P-40, 10% glycerol, 10 mM sodium fluoride, 2 mM sodium
vanadate, 1 mM phenylmethylsulfonyl fluoride, 10 mM sodium pyrophosphate, 10 µg/ml
aprotinin, and 10 µg/ml leupeptin), as described previously [30].

Immunoblotting
Immunoblotting was performed as described previously [31]. Anti-cleaved caspase-3 (Cell
Signaling, Danvers, MA), anti-Bax, anti-Bim, anti-JNK, anti-phosphorylated c-Jun, anti-c-Jun
(Santa Cruz Biotechnology, Santa Cruz, CA), anti-phosphorylated JNK (Millipore, Billerica,
MA), anti-β-actin (Sigma) were used as primary antibodies. Anti-rabbit or -mouse IgG
antibody conjugated with horseradish peroxidase was used as secondary antibody. Western
blotting chemiluminescence luminol reagent (Perkin-Elmer, Boston, MA) was used to
visualize the blots. Bands of interest were scanned with the use of Power Look (UMAX
Technologies, Dallas, TX) and quantified by NIH Image 1.62 software (NTIS, Springfield,
VA).

Statistical analysis
The data were compared with one-way ANOVA followed by Newman-Keuls multiple
comparison test. The effects of statin and farnesyltransferase inhibitor on survival were
analyzed using Kaplan-Meier survival curve and log rank test. A value of P < 0.05 was
considered statistically significant. All values are expressed as means ± SEM.
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RESULTS
Statin and farnesyltransferase inhibitor improved survival following endotoxin challenge in
mice

The majority of mice died within 100 h of LPS injection when treated with vehicle alone.
Simvastatin and farnesyltransferase inhibitor, FTI-277, significantly prolonged survival
following LPS challenge to a similar extent (p<0.01) compared with vehicle (Fig. 1). Both
simvastatin and FTI-277 increased the median survival time more than two-fold (vehicle: 48
h; simvastatin: 96 h; FTI: > 96 h). Without LPS injection, however, none of the mice died by
treatment with vehicle alone, simvastatin, or farnesyltransferase inhibitor (data not shown).

Statin and farnesyltransferase inhibitor ameliorated apoptotic changes in the liver and
spleen of LPS-administered mice

Previous studies indicate that apoptosis plays an important role in organ damage, dysfunction
and mortality in rodent models of endotoxemia [32–34]. To characterize the beneficial effects
of statin and farnesyltransferase inhibitor, we evaluated apoptotic change in the liver and
spleen. LPS injection induced cleavage (activation) of caspase-3 in the liver and spleen,
although without endotoxin challenge cleaved caspase-3 was undetectable. Consistent with the
improved survival outcome, simvastatin and FTI-277 decreased LPS-induced cleavage of
caspase-3 in the liver and spleen relative to vehicle (Fig. 2). However, the protein expression
of β-actin was not affected by LPS or the inhibitors. In parallel with increased cleavage of
caspase-3 by LPS, the expression of Bax and Bim, proapoptotic molecules, was increased in
the liver and spleen of LPS-administered mice as compared with control exogenous endotoxin-
naïve mice. Treatment with simvastatin and FTI-277 decreased the expression of Bax and Bim
in LPS-administered mice, as compared with vehicle (Fig. 3). The inhibitors, however, failed
to affect the protein expression of Bam and Bim in the liver and spleen of LPS-naïve mice
(data not shown).

Statin and farnesyltransferase inhibitor attenuated LPS-induced activation of c-Jun NH2-
terminal kinase (JNK/SAPK)

To further characterize the protective effects of the inhibitors, we assessed the phosphorylation
(activation) status of c-Jun NH2-terminal kinase (JNK/SAPK, also known as stress-activated
protein kinase), which plays a role in LPS-induced apoptosis in the liver and spleen [35,36].
LPS injection resulted in increased phosphorylation of JNK/SAPK and c-Jun, an endogenous
substrate of JNK/SAPK, in the liver and spleen. Both simvastatin and FTI-277 attenuated LPS-
induced increased phosphorylation of JNK/SAPK and c-Jun in the liver (Fig. 4) and spleen
(Supplementary Fig. S1). The protein expression of JNK/SAPK and c-Jun was not affected by
LPS, simvastatin, or FTI- 277.

DISCUSSION
Here, we demonstrate that both simvastatin and farnesyltransferase inhibitor, FTI-277,
prolonged survival following LPS challenge in mice (Fig. 1). The improved survival was
accompanied by decreases in LPS-induced apoptotic changes in the liver and spleen (Fig. 2,
Fig. 3). LPS injection led to cleavage (activation) of caspase-3 and increased protein expression
of Bax and Bim, proapoptotic molecules, in the liver and spleen. The LPS-induced apoptotic
changes observed in the liver and spleen are concordant with previous studies [34,37–39]. Both
simvastatin and farnesyltransferase inhibitor attenuated LPS-induced cleavage of caspase-3
and increased expression of Bax and Bim (Fig. 2,Fig. 3). The apoptotic changes induced by
LPS and the attenuation of these changes by statin and farnesyltransferase inhibitor in LPS-
administered mice correlated with LPS-induced activation of JNK/SAPK and decreased JNK/
SAPK activation by the inhibitors as judged by the phosphorylation status of JNK/SAPK and
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its substrate, c-Jun (Figs. 4,S1). These findings are consistent with previous studies, which
showed that JNK/SAPK plays an important role in endotoxin-induced apoptosis [35,36].

Liver integrity and function are crucial to survival in patients with infection. During the course
of bacterial infection, the liver clears the blood of endotoxins (e.g., LPS) and also bacteria. It
has been proposed that apoptosis and caspase activation play important roles in endotoxin-
associated liver damage. A number of previous studies have shown the beneficial effects of
various treatments on LPS-induced liver damage, including insulin [37], erythropoietin [38],
melatonin [40], and early growth response-1 deficiency [39]. In these studies, the mitigation
of liver damage and dysfunction was associated with attenuation of LPS-induced activation of
caspase-3. Combined with the previous studies, our data suggest that inhibition of LPS-induced
apoptotic changes in the liver might contribute to the protective effects of statin and
farnesyltransferase inhibitor in LPS-injected mice.

Endotoxin-mediated immune suppression is thought to contribute significantly to the
development of sepsis and multiple organ dysfunction syndrome. Apoptosis of immune cells,
including splenocytes and T and B lymphocytes [34,41], plays a crucial role in immune
suppression. The predominant hypothesis is that mortality in sepsis results from an unbridled
hyper-inflammatory cytokine-mediated response [42]. However, more than 30 clinical trials
have attempted to treat sepsis by controlling this pro-inflammatory cytokine response,
including antagonists of TNF-α and IL-1β, and all have failed to improve survival in septic
patients, or in some cases have exacerbated the condition [43,44]. These failures led to
reassessment of the presumption that mortality in sepsis is due to a hyper-inflammatory
response [44]. Recent studies indicate that most septic deaths result from a substantially
impaired immune response that manifests as an inability to eradicate the primary infection and/
or the development of new secondary infection [45]. Autopsies of patients with sepsis have
revealed extensive apoptosis of lymphocytes, in comparison with autopsies of ICU patients
who died of non-septic etiology [46,47]. Postmortem immunohistochemical analysis of septic
spleens has revealed a striking decrease in B and T cells [48]. In aggregate, one can reasonably
speculate that the decreased endotoxin-induced apoptotic changes that occur in spleen
secondary to statin and farnesyltransferase inhibitor effects (Fig. 2, Fig. 3) may contribute to
amelioration of immune suppression and multiple organ dysfunction in endotoxemia. Further
studies will be required to clarify this point.

Inhibition of protein farnesylation prevents apoptosis in cultured (non-transformed) cells and
in rodents in vivo. Although farnesyltransferase inhibitors promote apoptosis in cancer cells,
farnesyltransferase inhibitors are non-toxic to normal (non-transformed) cells [49].
Farnesyltransferase inhibitors reduce apoptosis in excitotoxic insult-induced traumatic brain
injury and post-ischemic renal injury by inhibiting the Ras pathway in rodents in vivo [22–
24].

Our findings suggest that inhibition of farnesylation may contribute to the lipid lowering-
independent protective effects of statins, at least in part, by preventing endotoxin-induced
apoptosis of immune and non-immune cells. Statin-induced myopathy leading to
rhabdomyolysis, a relevant clinical issue particularly in critically ill patients with renal
insufficiency, could dampen the beneficial effects of statins. Statins, but not farnesyltransferase
inhibitors, inhibit the biosynthesis of ubiquinone (coenzyme Q), an essential cofactor for
mitochondrial electron transport, and protein geranylgeranylation. Statin-induced myopathy is
thought to attributable, at least in part, to coenzyme Q deficiency [50] and/or insufficient
geranylgeranylation, but not to inhibition of farnesylation [51]. Collectively, our results argue
that protein farnesyltransferase may be a novel, potential molecular target that could be useful
in treating patients with endotoxemia and preventing the development of severe sepsis. These
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findings also suggest that protein farnesylation may play an important role in stress response
and apoptosis induced by endotoxin.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Farnesyltransferase inhibitor and statin improved survival following LPS challenge in mice.
At 2 h after LPS injection, treatment with simvastatin (n=15), farnesyltransferase inhibitor,
FTI-277 (n=20), or vehicle alone (control, n=16) was initiated, and the mice received injection
of inhibitors or vehicle five times up to 50 h after LPS injection. **p<0.01 vs control.
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Fig. 2.
Farnesyltransferase inhibitor and statin prevented LPS-induced cleavage of caspase-3 in the
liver (A) and spleen (B). At 18 h after LPS injection, the liver and spleen were excised under
anesthesia. Immunoblot analysis (IB) revealed that LPS induced cleavage of caspase-3. Both
simvastatin and farnesyltransferase inhibitor, FTI-277, decreased cleavage of caspase-3 in
LPS-administered mice, as compared with vehicle. β-Actin expression was not altered by LPS
or the inhibitors. *p<0.05, **p<0.01, ***p<0.001 vs without LPS, ##p<0.02 vs LPS +
vehicle, §p<0.05, §§p<0.01 vs LPS + vehicle.
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Fig. 3.
Farnesyltransferase inhibitor and statin attenuated LPS-induced increased expression of Bax
and Bim in the liver (A) and spleen (B). At 18 h after LPS injection, the liver and spleen were
excised under anesthesia. Immunoblot analysis (IB) revealed that LPS challenge increased the
protein expression of Bax and Bim, proapoptotic molecules, in the liver and spleen. Both
simvastatin and farnesyltransferase inhibitor, FTI-277, decreased expression of Bax and Bim
in LPS-administered mice, as compared with vehicle. **p<0.01, ***p<0.001 vs without
LPS, #p<0.05 vs LPS + vehicle, §p<0.05, §§p<0.01 vs LPS + vehicle.
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Fig. 4.
LPS-induced phosphorylation of JNK/SAPK and c-Jun were attenuated by statin and
farnesyltransferase inhibitor in the liver. To assess the effects on JNK/SAPK activation, we
examined the phosphorylation status of JNK/SAPK and c-Jun at 18 h after LPS injection.
Immunoblot analysis (IB) revealed that LPS increased phosphorylation of JNK/SAPK and c-
Jun. Both simvastatin and farnesyltransferase inhibitor, FTI-277, decreased phosphorylation
of JNK/SAPK and c-Jun in LPS-administered mice, as compared with vehicle. Neither LPS
nor the inhibitors significantly altered the protein expression of JNK/SAPK and c-Jun.
**p<0.01 vs without LPS, §p<0.05 vs LPS + vehicle.
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