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Editorial Comment
Despite significant research efforts of investigators in academia, medicine, and the
pharmaceutical industry, no effective pharmacological alternative to defibrillation by electric
shock has been developed. Thus, defibrillation, which is steadily improving its efficacy and
safety, has become the only effective therapy against sudden cardiac death. However, despite
major improvements over the last several decades, defibrillation is not free of side effects,
which may include both contractile and electrical dysfunction.1–3 Furthermore, defibrillation
is also associated with psychological side effects.4,5 Therefore, reduction of defibrillation
energy is highly desirable, and defibrillation remains a subject of extensive research.

The basic mechanisms of defibrillation still remain debatable a century after its inception,
which has slowed further improvement of the therapy. In 1899, while studying induction of
ventricular fibrillation in the dog heart, physiologists Prevost and Batelli working at the
University of Geneva discovered that they could defibrillate a dog heart by applying an
appropriate, high-current shock directly to the surface of the myocardium.6 Since they used
very high voltage (4,800 V and more), the myocardium was incapacitated after their shocks.
Thus, the initial theory of defibrillation was based on “incapacitation” effects. In 1946, Gurvich
and Yuniev7 reported defibrillation of the mammalian heart with a capacitor discharge applied
externally across the closed chest. The next year, Beck et al.8 reported the first successful
human defibrillation using AC stimulation applied to the open heart. In 1956, Zoll et al.9
performed the first successful human external defibrillation again using AC stimulation.
However, the superiority and safety of DC over AC stimulation for defibrillation were
demonstrated by several investigators such as Kouwenhouven and Milnor,10 Lown et al.,11
and Gurvich.12 In 1969, Mirowski and colleagues began research on the implantable
cardioverter defibrillator (ICD). In 1980, the first ICD was implanted in a human patient.13,
14 All this work led to a significant reduction of energy required for defibrillation, avoidance
of myocardial “incapacitation,” and, thus, the development of stimulatory theory of
defibrillation.12,15 This theory postulated that defibrillation was achieved by directly
stimulating and exciting the myocardium.

The stimulatory theory of defibrillation was later refined into the critical mass hypothesis in
which experimentalists as well as theorists proposed that a critical mass of the myocardium
(75–90%) needs to be directly defibrillated in order to fully terminate fibrillation.16–18 In
1967, Fabiato and colleagues19 demonstrated the first correlation between shock-induced
fibrillation and defibrillation in a mechanism they called the “threshold of synchronous
response.” This idea was later extended by Chen and coworkers20 into the “upper limit of
vulnerability” hypothesis. This hypothesis states that the shock must terminate all wavefronts
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of fibrillation and that, in order to be successful, the shock must produce a sufficient voltage
gradient (above the upper limit of vulnerability [ULV]) everywhere in the myocardium so as
not to re-induce fibrillation. This correlation was subsequently demonstrated in several
experimental studies21,22 and in humans.23,24

Although the concept of stimulus-induced reentry had been laid down decades earlier by
Wiener and Rosenblueth,25 Frazier and colleagues26 were the first to obtain experimental
evidence of this mechanism in 1989 in what they called the “stimulus-induced critical point”
mechanism. Frazier et al. demonstrated that the chirality of reentry could be predicted based
on the direction of the preshock repolarization gradient and voltage gradient of the applied
shock. After its discovery, the critical point mechanism was held responsible for reinduction
of fibrillation after a failed defibrillation shock.27,28

Thus, the stimulatory theory of defibrillation in all possible flavors appeared to explain many
empirical phenomena. Therefore, a simple resistor–capacitor (RC) model of the heart,
borrowed from pacing, has become a popular tool in explaining the interaction of electric field
and cell membrane.29 When applied to pacing, this model predicted quite well optimal pacing
waveforms based on strength–duration curves. Thus, rheobase and chronaxie are commonly
accepted as the principle parameters predicting the efficacy of electric stimulation. Following
the same RC approach and using empirical evidence from defibrillation, several generations
of investigators have worked on optimizing defibrillation waveforms. However, the RC theory
had hard time explaining well-known differences between anodal and cathodal defibrillation,
and between biphasic and monophasic defibrillation.30,31

Meanwhile, mounting theoretical and experimental evidence was showing that effects of shock
are more complex than what the stimulatory hypothesis suggests. The advancement of our
understanding was especially rapid after the advent of fluorescent optical mapping with
voltage-sensitive dyes32 and, in parallel, advancements in numerical simulations using the
biodomain model of cardiac tissue33,34 that provided the theoretical means to interpret these
complex experimental findings.

Using these novel methodologies, numerous groups demonstrated that both positive and
negative membrane polarization are induced by an applied stimulus in different areas of the
heart.35–40 Although the shock may stimulate or prolong repolarization in regions of the
myocardium that are positively polarized by shock, it may be shortened or deexcited in others
that are negatively polarized by the same shock. Thus, this new evidence casts doubt on the
purely “stimulatory” response of defibrillation shocks with its simplistic RC framework. An
alternative theory that accounts for both shock-induced excitation and deexcitation is the virtual
electrode hypothesis of defibrillation.40–42

The term “virtual electrode” was first coined by Furman et al.43 to explain the clinical
observation of stimulation far from a chronically implanted pacemaker lead. Later, this term
was adopted by investigators studying both pacing and defibrillation in parallel with a
synonymous but more rigorously defined term “activating function” to designate the “driving
force” that drives transmembrane potential in either a depolarizing (positive) or a
hyperpolarizing (negative) direction following an externally applied electric field.44,45 Over
the last decade and a half, the virtual electrode hypothesis has significantly advanced our
understanding of both pacing and defibrillation, showing that the reduction of the heart to an
RC circuit is not an accurate representation of electric stimulation. The heart is a distributed
system with RC properties ranging in space, time, and frequency domains.

In this issue of the Journal, Lawo et al.47 show experimental evidence that suggests that
strength–duration curve may offer additional insights that seem to have been overlooked so
far by old theories. It is well known that stimulatory chronaxie depends on both excitable
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properties of the cell membrane and the cell or tissue geometry.46 Knowing that excitable
properties are strongly affected by arrhythmia, Lawo et al.47 demonstrate significant difference
in chronaxie among near-field or far-field stimulation, fibrillation induction, and defibrillation,
respectively. Importantly, the far-field stimulation has a chronaxie that is an order of magnitude
shorter than that of defibrillation induction or defibrillation. These findings suggest that
reentrant arrhythmias with large excitable gaps that are accessible to far-field stimulation may
be effectively treated with stimulatory paradigm-based methods. In particular, it suggests that
very short pulses (0.25–0.30 ms) as compared to that typically used in defibrillation could
improve the outcome for cardioversion. Although hypothetical, this new approach may yield
significant improvement in treatment of VT. Unfortunately, the study does not demonstrate
such possibility and offers little mechanistic insight into the hypothetical role of the sodium
channels. But this report clearly opens a new window of opportunity to both improve
electrotherapy of arrhythmia and further enhance our understanding of mechanisms of
electrotherapy.
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