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Abstract
The hepatotoxin okadaic acid (OA) was incubated with nine human recombinant cytochrome P450s
(1A1, 1A2, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 and 3A5). Both CYP3A4 and CYP3A5 converted OA
to a mixture of the same four metabolites, but incubation with CYP3A4 resulted in higher levels of
conversion. Michaelis-Menten parameters, Km (73.4 μM) and Vmax (7.23 nmol of metabolites
nmol-1 min-1) for CYP3A4 were calculated by analyzing double-reciprocal plots. LC-MSn analysis
and chemical interconversion indicate that metabolites 2 and 3 are the 11S-hydroxy and 11R-hydroxy
okadaic acid respectively, while metabolite 4 is 11-oxo okadaic acid. LC-MSn analysis of metabolite
1 shows a molecular ion which corresponds to an addition of 16 amu to OA, also suggesting
hydroxylation, but the specific site has not been identified. The same four metabolites were produced
upon incubation of okadaic acid with pooled human liver microsomes. This transformation could be
completely inhibited with ketokonazole, and inhibitor of the CYP3A family of enzymes. The
metabolites were determined to be only slightly less potent inhibitors of serine threonine protein
phosphatase 2A (PP2A) when compared to OA. As PP2A is the principle molecular target for OA,
these oxidative transformations may not effectively detoxify OA.
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1. Introduction
Okadaic acid (OA, Fig. 1) and the related dinophysistoxins (DTX-1 and DTX-2) are produced
by several dinoflagellates (marine phytoplankton) belonging to the genera Prorocentrum and
Dinophysis. Consumption of OA-contaminated shellfish results in a syndrome known as
diarrheic shellfish poisoning (DSP) which is characterized by severe gastrointestinal
symptoms. DSP has been associated with the consumption of mussels, scallops or clams tainted
with OA and its derivatives. DSP has worldwide distribution, however it appears to be most
prevalent in Japan and Northern Europe (Luckas, et al., 2005;Yasumoto and Murata, 1993).
The effects of long-term and chronic exposure to OA may be of greater concern, as it has been
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demonstrated to be a potent tumor promoter that differs from the phorbol ester class (Fujiki
and Suganuma, 1993;Haystead, et al., 1989).

OA and DTX’s are inhibitors of protein phosphatases PP1 and PP2A (Dounay and Forsyth,
2002). Inhibition of PP1/2A results in the hyperphosphorylation of many proteins in the cell
and loss of regulation of cellular processes. OA can act both as a tumor promoter and inducer
of apoptosis (Gehringer, 2004). A growing body of evidence suggests that OA exhibits
genotoxic effects. Fessard demonstrated the formation of OA-DNA adducts in fibroblasts and
keratinocytes (Fessard, et al., 1996). Tohda reported a positive Ames test in mammalian cells
with OA (Tohda, et al., 1993). A statistically significant increase in micronucleous formation
was observed in the haematocytes of the mussel Perna perna, upon exposure to OA (Carvalho
Pinto-Silva, et al., 2003). Utilizing the cytokinesis-block micronucleous assay and fluorescence
in situ hybridization (FISH), LeHegarat reported that OA had an aneugenic (chromosome loss)
effect on CHO-K1 cells, but only after metabolic activation with a rat liver postmitochondrial
S9 fraction (Le Hegarat, et al., 2003, 2004). This effect could be abolished by heat inactivation
of the S9 fraction. The authors suggested that OA is metabolically activated to one or more
genotoxic products.

A few studies on the distribution of OA in vertebrates have been reported. Two independent
studies report the systemic distribution of tritiated OA to all organs examined after oral
administration to mice. This included the heart, stomach, kidney, liver, skin, large and small
intestines and bile (Matias, et al., 1996, 1999; Ito, et al., 2002). Highest concentrations within
the first 24 hours were observed in the stomach, large and small intestines and bile. However,
OA appeared to have the longest residence time in the liver, with detectable levels present up
to two weeks after administration.

No studies on the metabolism of OA in vertebrates have been reported. However, Pfohl-
Leszkowicz reported an induction of EROD activity 24 h and 48 h after injection of OA into
the fish Dicentrarchus labrax (Pfohl-Leszkowicz, et al., 1998) which would be indicative of
upregulation of the CYP1A family of enzymes. The metabolism of OA in shellfish has been
described. Three OA metabolites, which were oxidized in the alcohol portion of the ester, were
isolated from the diatom Thalassiosira weissflogii, and partially characterized (Windust, et al.,
2000) although the specific site of oxidation was not identified. In bi-valves, OA, DTX-2 and
DTX-1 are converted to complex mixtures of fatty acid esters, by acylation of the 7-hydroxyl
group, collectively known as DTX-3 (Marr, et al., 1992; Vale and Sampayo, 1999; 2002;
Torgersen, et al., 2008).

In this study, the effect of nine human cytochrome P450s (1A1, 1A2, 2C8, 2C9, 2C19, 2D6,
2E1, 3A4 and 3A5) on OA was examined. These enzymes were chosen because taken together,
they represent on average 70% of the cytochrome P450s present in human liver and are the
major enzymes involved in xenobiotic metabolism (Lewis, 2001). Among these nine
cytochrome P450s, we observed that CYP3A4 and CYP3A5 converted OA into four oxidized
metabolites.

2. Materials and methods
2.1 Chemicals and Biochemicals

Okadaic acid was isolated from cultures of P. hoffmanianum according to published methods
(Hu, et al., 1992), prepared as the ammonium salt and compared by LC-MS to okadaic acid (>
99.7% purity) which was purchased from Calbiochem (San Diego, CA). Human recombinant
cytochrome P450s were purchased from Codexis (Pasadena, CA). Pooled human liver
microsomes were purchased from BD Biosciences (Woburn, MA). Protein phosphatase Type
2A was purchased from Upstate Biotechnology Inc. (Temecula, CA). HPLC-grade acetonitrile
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was purchased from Fisher Chemicals (Fair Lawn, NJ). All other chemicals were purchased
from Sigma-Aldrich (St. Louis, MO).

2.2 Confirmation of Enzyme Activity
All enzymes were determined to be active by incubating with positive controls according to
previously described protocols; ethoxyresorufin deethylation for CYP 1A1 and 1A2 (Leclercq,
et al., 1996); paclitaxel hydroxylation for CYP 2C8 (Cresteil, et al., 2002); harmin
demethylation for CYP 2C9, 2D6 (Yu, et al., 2003); omeprazole hydroxylation for CYP 2C19
(Yamazaki, et al., 1997); chlorzoxazone hydroxylation for CYP 2E1 (Peter, et al., 1990);
testosterone hydroxylation for CYP 3A4 and 3A5 (Krauser, et al., 2004).

2.3 Incubation of OA with P450s
Incubations were performed at 37 °C on a temperature-controlled shaker. The standard
incubation (final volume 0.5 mL) contained 500 pmol of P450 enzyme, 50 μM of OA
ammonium salt and reaction mix which contained an NADPH regeneration system provided
by the manufacturer (Codexis, Pasadena, CA). The reaction mix/OA mixtures were vortexed
and preincubated for 5 min at 37 °C prior to addition of enzyme. The reactions were monitored
at 0, 30, 60 min. The reactions were quenched with an equal volume of cold methanol. The
vial was vortexed and stored at - 20 °C for 20 min. The solution was centrifuged to remove
precipitated protein and diluted to about 2.5 μM (OA concentration) with methanol. Proteins
were precipitated a second time at - 20 °C for 20 min and centrifuged again. The samples were
analyzed by LC-MS.

2.4 CYP3A4 Enzyme kinetics
From preliminary experiments it was established that the formation of metabolites from OA
was linear for up to 15 min. Kinetic experiments were performed in 0.5 mL volume with OA
ammonium salt concentrations ranging from 10-100 μM, 300 pmol of 3A4 enzyme and reaction
mix. Reactions were monitored at 5, 7.5 and 10 min. The reactions were analyzed by LC-MS
after workup described above.

2.5 Incubation of OA with pooled human liver microsomes
The standard incubation mixture (final volume of 0.5 mL) contained human liver microsomes
(5.0 mg protein mL-1), 0.1 M potassium phosphate buffer (pH = 7.4), an NADPH regenerating
system consisting of 1.3 mM NADP+, 3.3 mM glucose 6-phosphate and 0.4 U mL-1 glucose
6-phosphate dehydrogenase, 3.3 mM MgCl2 and 5 μM OA ammonium salt. Incubation was
carried out at 37 °C for 30 min and terminated by adding an equal volume of cold methanol.
The vial was vortexed and stored at - 20 °C for 20 min. The solution was centrifuged to remove
precipitated protein. The sample was assayed by LC-MS.

2.6 LC-MSn Analyses
HPLC analysis was carried out on a Finnigan Surveyor series HPLC system (Thermo Fisher
Scientific Inc., Waltham, MA). A 5 μm C18, 250 mm × 4.6 mm Discovery column (Supelco,
Bellefonte, PA) was used to separate metabolites. The chromatographic conditions were as
follows: flow rate of 0.5 mL/min; solvent A, CH3CN; solvent B, 2 mM NH4OAc buffer
containing 0.05% formic acid; 0 - 25 min, 40% to 85% A (v/v); 25 - 30 min, 85% to 90% A
(v/v); 30 - 35 min, hold at 90% A (v/v). MS analysis was performed on a Finnigan LCQ Deca
XP MAX mass ion-trap spectrometer (Thermo Fisher Scientific Inc., Waltham, MA). Full-
scan mass spectra were acquired in negative electrospray ionization (ESI) mode with collision
energy of 35 eV, over the mass range m/z 500-1000. The sheath gas flow rate was 40 (arbitrary
units) and the auxiliary gas was set at 10 (arbitrary units). The spray voltage was set at 3.5 kV
and the capillary voltage was set at -45 V. The capillary temperature was set at 200 °C. A
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setting of 35% normalized collision energy was applied to ions of all MSn experiments. Four
metabolites were further purified by HPLC. The column effluent was split post column (1:4)
with the smaller portion directed to the MS interface and the remainder of the effluent was
collected. Fractions were dried in vacuuo and reanalyzed by LC-MS as described above. For
enzyme kinetics experiments, total area normalization method was utilized to determine the
relative contributions of OA and its metabolites. For protein phosphatase inhibition
experiments with isolated metabolites, concentrations of metabolites were determined against
a single point calibration curve generated by injecting 10 μL of a 6.2 μM solution (50 ng) of
OA. The instrument’s limit of detection (LOD, defined as S/N = 3) was 0.1 ng for OA.

2.7 Reduction of Metabolite 4
Ten μL of sodium borohydride (NaBH4) in DMF (1 μg μL-1) was added to a stirred mixture
of metabolite 4 (~ 10 μg), cerium chloride heptahydrate (~ 1 mg) and methanol (1 mL). The
mixture was stirred at room temperature for 30 min. Methanol was evaporated under a stream
of N2 and the residue was redissolved in 0.5 mL of CH2Cl2/MeOH (85:15, v/v). Residual salts
were removed by rapid chromatography technique on a PrepSep Silica gel cartridge (Fisher
Scientific, Fair Lawn, NJ). Elution was performed using 15 mL CH2Cl2/MeOH (85:15, v/v).
Eluant was collected and evaporated to dryness under a stream of N2 and the residue was
reconstituted in 200 μL MeOH for LC-MS analysis.

2.8 Oxidation of Metabolite 2
To a solution of 20 μg of metabolite 2 in 200 μL of CH2Cl2 was added 20 μL of a suspension
of activated MnO2 in CH2Cl2 (4 mg MnO2 per 1 mL CH2Cl2). The reaction mixture was stirred
at room temperature for 30 min. MnO2 was removed by 0.45 μ filter. The filtrate was evaporated
under a stream of N2 and redissolved in 200 μL of methanol for LC-MS analysis.

2.9 Protein Phosphatase 2A Inhibition Assay
The protein phosphatase inhibition assay was carried out in 96-well plates based on a method
previously described (Simon and Vernoux, 1994; Tubaro, et al., 1996). Samples were allowed
to incubate for 1 h at room temperature and read using a Bio-Tek Instruments Synergy 2 plate
reader (Winooski, VT) scanning at 405 nm. A standard curve was prepared with pure OA,
prepared exactly as the samples. Inhibitor concentrations giving 50% inhibition against the
reference value was determined from dose-response curves of activity versus the log of
concentration. IC50 concentrations were calculated using the program Prism (v3, GraphPad
Software).

3. Results and Discussion
3.1 Metabolism of okadaic acid by cytochrome P450s

Okadaic acid (OA) was incubated with nine recombinant human P450 enzymes (CYP1A1,
1A2, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 and 3A5). The reactions were monitored by LC-MS and
the results indicated that CYP3A4 and CYP 3A5 metabolize OA, with CYP 3A4 resulting in
higher turnover. The total ion current chromatogram obtained from the negative ion LC-MS
analysis of the reaction mixture after incubation of OA with CYP 3A4 for 30 min is shown in
Fig. 2B. Four new peaks eluting before OA (tR 23.75 min) in the LC-MS profile of the reaction
mixture were observed, including two major peaks (metabolite 1, tR 13.15 min; metabolite 2,
tR 17.92 min) and two minor peaks (metabolite 3, tR 19.23 min; metabolite 4, tR 20.65 min).
These four metabolites were absent from the incubation mixture when quenched at 0 min (Fig.
2a) and increased with incubation time. Likewise, incubation of OA with CYP3A5 produced
four peaks at the same retention times and having identical molecular ions as those of
metabolites 1-4, suggesting that they are identical to metabolites produced by CYP3A4.
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However, the overall conversion of OA was less in the CYP 3A5 reaction. After 6 hrs of
incubation, the overall yield of all four metabolites was only 6.1% for the CYP 3A5 reaction
while it was 31.3% for the CYP3A4 reaction. Within the limits of detection (0.1 ng OA) none
of the seven other P450s metabolized OA when incubated under the same conditions,
suggesting that those enzymes play no significant role in the metabolism of OA.

Preliminary experiments indicated that OA metabolism by CYP3A4 was linear up to 15 min
(Fig. 3a). The Michaelis-Menten parameters, Km (73.4 μM) and Vmax (7.23 nmol of metabolites
nmol-1 min-1) for the oxidation of OA by CYP3A4 were calculated by analyzing double-
reciprocal plots (Fig. 3b) for incubations of OA with at concentrations ranging from 10 μM to
100 μM.

Okadaic acid (OA) was also incubated with pooled human liver microsomes (final protein
concentration of 5 mg mL-1). LC-MS analysis revealed that four metabolites, identical to those
formed in CYP3A4 incubations, were produced (Fig. 2c), suggesting that OA can be
metabolized by human liver. Within the limits of detection, this transformation was completely
inhibited by the presence of 10 μM ketoconazole (Dilmaghanian, et al., 2004), a known CYP3A
inhibitor. This result further suggested than in human liver, CYP3A is principally responsible
for OA metabolism.

3.2 Characterization of metabolites
In the negative ESI full-scan mass spectrum, metabolites 1-3 produced the same molecular ion
peaks [M-H]- at m/z 819, while metabolite 4 yielded a [M-H]- ion of m/z 817. A difference of
16 in the m/z ratios for the molecular ion peaks of metabolites 1-3 when compared to OA (m/
z 803) is suggestive of a hydroxylation or epoxidation of the okadaic acid molecule.

MSn experiments were further employed to identify the structures of these metabolites. Some
important fragments of OA and metabolites 1-4 are listed in Tables 1 and 2. In the MS2 spectrum
from deprotonated OA (m/z 803), two important intense negative ions at m/z 563 and 255 are
typically observed (Fig. 4a). The former originates from the cleavage between C26 and C27,
the latter results from RDA (retro Diels-Alder) cleavage in ring B (Fig. 1) (Torgersen, et al.,
2008;Paz, et al., 2007;Gerssen, et al., 2008). From metabolites 1-3, negative parent ions [M-
H]- at m/z 819 were selected to perform MS2 measurements. Metabolite 1 displays major
fragments m/z 563 and 255 (Fig. 4b) identical to OA in the MS2 spectrum. On the other hand,
a minor peak at m/z 321 in the MS2 spectra of OA, possibly resulting from cleavage through
rings D and E (Fig. 1), is replaced by m/z 337 in the MS2 spectrum of metabolite 1. Noteworthy
is the observation of a fragment of m/z 335 from DTX-1, an analog of OA which has a methyl
group at C35 (Torgersen, et al., 2008). These observations support the conclusion that
hydroxylation occurred in fragment C of metabolite 1.

In the MS2 spectra of m/z 819 from metabolites 2 and 3 (Fig. 4c), m/z 563 and 255 are replaced
by m/z 579 and 271, suggesting that a hydroxylation occurred in fragment A of metabolites 2
and 3. The MS2 spectrum of m/z 817 from minor metabolite 4 is shown in Fig. 4d. Two major
ions at m/z 577 and 269 were observed representing a difference of two protons when compared
to fragment A from metabolites 2 and 3. This suggested the oxidation to a carbonyl in Fragment
A of metabolite 4.

The relationship between metabolites 2 and 4 was established by chemical interconversions.
Metabolite 2 was converted quantitatively to metabolite 4 by treatment with activated MnO2
(Fatiadi, 1976). Furthermore, Luche reduction (Gemal and Luche, 1981) of metabolite 4
provided metabolite 2 exclusively. These chemical transformations established unequivocally
that metabolite 2 is an allylic alcohol, metabolite 4 is an α,β-unsaturated carbonyl and that
metabolites 2 and 4 resulted from oxidation of OA at the same carbon. Inspection of OA

Guo et al. Page 5

Toxicon. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



identifies two allylic positions in fragment A: C-11 and C-43. The MS3 spectrum of fragment
A (m/z 269) from metabolite 4 (Fig. 5c and Table 2) yielded a fragment of m/z 241 (-28 amu)
which was not present in OA or any of the other metabolites. This represents a loss of CO,
indicating that metabolite 4 must have a keto group at C11.

The presence of fragment ions at m/z 201, 173, 167, 139, 111, 97 in the MS3 spectra (from m/
z 271) of metabolites 2 and 3 (Fig. 5a, 5b), and their identical fragmentation patterns (Fig. 6)
indicate that these two metabolites must be stereoisomers. The fact that Luche reduction of
metabolite 4 failed to produce metabolite 3 may be result of the conformational bias of the B
ring. In solution, the B-ring of OA adopts a chair conformation with the alkyl groups equatorial
(Matsumori, et al., 1995). The preferred axial attack of NaBH4 on the C-11 ketone will yield
the equatorial alcohol. Therefore, the configuration of the hydroxyl group at C-11 in metabolite
2 is assigned 11S. While metabolite 2 was oxidized completely to 4 by activated MnO2,
metabolite 3 was not oxidized under the same conditions. A stereochemical effect has been
observed previously in the MnO2 oxidation of 2-eno-pyranosides (Fraser-Reid, et al., 1971).
Equatorial alcohols were readily oxidized whereas axial alcohols were resistant to oxidation.
An axial orientation of the 11-hydroxyl group of metabolite 3 would require that metabolite 3
has the 11R configuration.

Two major metabolites 1 and 2 were analyzed for protein phosphatase inhibition. We were
unable to isolate pure metabolite 3, however a mixture of 2 and 3 (54%: 46%) was also analyzed
for protein phosphatase inhibition. The dose response curves for OA and it metabolites are
shown in Fig. 7. As can be seen, OA strongly inhibited PP2A, with an IC50 of 0.61 nM. The
calculated IC50 values for metabolites were only slightly higher than that of OA; 0.94 nM for
metabolite 1; 1.34 nM for metabolite 2; 0.95 nM for a mixture of 2 and 3, respectively. The
crystal structure of PP2A bound to OA, shows that the F and G-rings of OA are located in a
hydrophobic binding pocket (Xing, et al., 2006). The site of oxidation for metabolite 1 is
probably not deep in this pocket, as the IC50 for metabolite 1 is similar to that of OA.
Metabolites 2 and 3 have the hydroxyl group oriented toward and away from the enzyme,
respectively and the relative IC50s are consistent with this observation.

In conclusion, four human metabolites of OA have been prepared by incubation with CYP3A4
or CYP3A5. The metabolites were also formed upon incubation with pooled human liver
microsomes. The cytochrome P450s that we examined are responsible for the majority of
xenobiotic metabolism in human liver. However, it is important to note that other cytochrome
P450s not tested could also be involved in the metabolism of OA. Because the small quantities
of metabolites obtained preclude NMR studies, these metabolites have been tentatively
characterized by a combination of MSn experiments and chemical transformations. The
inhibition of PP2A by three of the four metabolites is only slightly lower than OA, suggesting
that these transformations do not significantly detoxify OA. However, given that the LD50 for
OA with various liver cell lines ranges from 10-100 nM (depending on cell line) (Souid-Mensi,
et al., 2008), it seems unlikely that these metabolites play a significant role in the toxicity of
OA. Currently these reactions are being scaled up and metabolites will be evaluated for their
toxicity. This work represents the preliminary steps toward a more thorough understanding of
the metabolic fate, disposition and toxicity of OA and its metabolites.
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Figure 1.
Structure of OA and metabolites and proposed fragmentation pathways.
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Figure 2.
Total ion chromatogram (TIC) of metabolic products of OA incubated with CYP3A4. (a) 0 h
(b) 30 min. (c) Total ion chromatogram (TIC) of metabolic products of OA incubated with
HLM. The mass range was from m/z 800 - 850.
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Figure 3.
(a) Metabolic profile of 50 μM OA incubated with 500 pmol CYP3A4 in 0.5 ml final volume.
(b) Double-reciprocal plot (1/V vs 1/S)
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Figure 4.
Typical negative ESI MS/MS spectra of OA (a), metabolite 1 (b), 3 (c) and 4 (d).
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Figure 5.
MS3 spectra of fragment A from metabolite 2 (a), 3 (b) and 4 (c) in negative ESI mode.
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Figure 6.
Proposed MS3 fragmentation pathways of m/z 271 from metabolites 2 and 3 in negative ESI
mode.
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Figure 7.
The dose-response inhibitory activity of OA and its metabolites on PP2A .
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