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Abstract
Recent evidence has emerged demonstrating that metabolic hormones such as ghrelin and leptin can
act on ventral tegmental area (VTA) midbrain dopamine neurons to influence feeding. The VTA is
the origin of mesolimbic dopamine neurons that project to the nucleus accumbens (NAc) to influence
behavior. While blockade of dopamine via systemic antagonists or targeted gene delete can impair
food intake, local NAc dopamine manipulations have little effect on food intake. Notably, non-
dopaminergic manipulations in the VTA and NAc produce more consistent effects on feeding and
food choice. More recent genetic evidence supports a role for the substantia nigra-striatal dopamine
pathways in food intake, while the VTA-NAc circuit is more likely involved in higher-order aspects
of food acquisition, such as motivation and cue associations. This rich and complex literature should
be considered in models of how peripheral hormones influence feeding behavior via action on the
midbrain circuits.
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Introduction
Emerging evidence has suggested that peripheral hormones can act on the midbrain
dopaminergic systems to control food intake. For instance the adipocyte-derived hormone
leptin, in addition to acting through the hypothalamus, also acts on midbrain circuits to
influence food intake [1], providing a molecular and cellular mechanism for predicted cross-
talk between metabolic hormones and reward systems [2]. These results effectively connect
the peripheral hormone system to dopamine circuitry that has been long studied for its role in
behavior, including food intake. The literature on dopamine and food intake is vast and here
we attempt to distill some of the major findings to set the stage for understanding how metabolic
factors might influence feeding via these networks.

The acquisition of food requires motivation, goal-directed behavior, motor control, and the
recognition of rewarding stimuli. Dopamine-containing brain systems have been implicated in
these behavioral processes. Studies of drug addiction have clearly established that recognition
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of reward is intimately involved with projections of dopamine-containing neurons in the
midbrain to the ventral striatum (or nucleus accumbens, NAc), cortex, and subcortical nuclei
[3;4]. Similarly, it has been proposed that dopamine mediates the motivational and rewarding
aspects of food seeking [5;6;7;8;9] via specific dopaminergic projections from the VTA to the
NAc (the ‘mesolimbic’ projection) [5], and that dysfunction of reward processing may
contribute to the pathogenesis of obesity [6].

Metabolic signals act on the midbrain
The majority of leptin-responsive neurons in the midbrain are dopaminergic, although non-
dopaminergic leptin-responsive cells exist [1;10]. Leptin administered to animals reduces the
firing of dopmanergic neurons[1]. Furthermore, leptin administration to the VTA decreases
food intake, as well as decreasing the firing of dopaminergic neurons [1]. In addition, leptin
receptor knockdown in the VTA increases food intake without changing body weight [1].

Other metabolic factors from the periphery also influence midbrain function. Ghrelin is a
peripheral orexigenic peptide secreted from the stomach [11]. Receptors for ghrelin are
expressed in mesolimbic circuits [12], and ghrelin administration to the VTA or to the NAc
stimulates feeding in a dose-dependent manner [12;13]. Ghrelin modulates midbrain
dopaminergic electrical and synaptic activity, and stimulated dopamine release in the NAc
through the ghrelin receptor[12].

These lines of evidence, along with data suggesting that insulin also modulates dopamine
circuits [2;14], invite inquiry into how these peripheral hormones might act on midbrain circuits
to influence feeding. Here, we will review experimental evidence linking mesolimbic systems
with feeding behavior. We will explore both dopaminergic as well as non-dopaminergic
mechanisms by which these peripheral hormones might alter intake by acting on the midbrain.

Neural substrates of feeding behavior
Feeding is intimately associated with energy homeostasis whereby the perceptions of caloric
need leads to subsequent intake of food. One approach to determining the role of brain regions
or molecules in feeding is to assess food intake following lesions or genetic mutations. As an
example, damaging the lateral hypothalamus causes dramatic losses in body weight [15], while
stimulating the lateral hypothalamus causes an increase in food intake [16]. Based on results
from this early stimulation and lesion work, most mechanistic and molecular work has focused
on the hypothalamus, where peripheral signals can influence the brain [17;18]. More recently,
genetic studies have revealed that ob/ob mice lacking a functional version of leptin, an
adipocyte-derived hormone, have increased feeding and dramatic gain weight [19;20], whereas
leptin administration reduces body weight [21;22]. Work on leptin has traditionally focused
on the hypothalamus but is now being recognized as now acting in multiple brain regions
[23]. While hypothalamic lesions produce the most dramatic effects on feeding and weight,
manipulations of many other regions has been shown to influence food intake. For example,
neurochemical disruptions in the NAc can influence food intake [24;25;26] and it is clear that
food intake involves a diverse neurohumoral ensemble that engages a number of
extrahypothalamic brain areas [27;28].

The simplest way to measure feeding behavior and the one we focus on in this review is free
feeding. This consists of recording food intake (i.e., by measuring food intake) of normal chow
over time. This measure, albeit crude, is relatively simple and consistently reported in the
literature, enabling more direct comparisons of present-day manipulations with previous
studies [29;30]. In addition, it is an innate behavior that does not require training. Free feeding
can be measured over several minutes, or several days and the microstructure of feeding (i.e.,
patterns) can be measured for more detailed assessment [31]. However, several pitfalls exist
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with using free feeding as the sole behavioral assessment. First, the complex behavioral
repertoire underlying food intake cannot be dissociated into its component processes by only
recording food intake. Second, in order to acquire food, an animal must be able to detect the
presence of food, move towards a food source, and then chew and swallow this food source.
Interfering with movement would decrease animals’ food intake during free feeding
necessitating motor controls for studies of food intake. Thus, while we emphasize free-feeding
in this review, we acknowledge the limitations and also address the role of dopamine in other
more complex feeding-related behaviors.

Disrupting dopamine and feeding
Mesolimbic circuits have been implicated in many behaviors, such as reward prediction [32],
hedonia [33], reinforcement [5], motivation [4], or incentive salience [34] and it would seem
that such processes are involved in ad-libitum feeding, [6]. If dopaminergic mesolimbic
circuitry is necessary in feeding [5;6;7;8;9], then disrupting dopamine in the mesolimbic
system should affect the overall food intake of the animal. Some of this work, and the
complexities of its interpretation, is reviewed below.

The hypothesis that midbrain dopamine provides a specific motivation to eat [4;5;6] is based
on dopamine neuron depletion studies using the neurotoxin 6-hydroxydopamine, which
irreversibly depletes cathecholamines (including dopamine) and eventually leads to neuronal
degeneration of these cathecholaminergic neurons depending on dosage used [35].
Intraventricular administration of 6-hydroxydopamine dramatically impairs free feeding and
decreases body weight [36;37]. Interestingly, dopamine neuron depleted rats gradually recover
the ability to eat and drink despite a permanent depletion of dopamine (as well as some other
catecholamines) from central dopaminergic nuclei [38]. In addition, peripheral dopamine
blockade can block feeding elicited by electrical stimulation of the lateral hypothalamus [39].
Some investigators have described intact movement in these animals [40] although no
movement controls were reported in original studies [36]. Peripheral dopamine blockade also
can disrupt feeding elicited via hunger [33;41;42], and this work was influential in bringing
attention to the role of dopamine systems in feeding behavior. However, this line of research
used pimozide, an antipsychotic drug with a complex receptor binding profile [43], and the
effects were not localized to a central brain structure. As reviewed below, effects on feeding
due to specific dopamine receptor antagonists in the NAc have not produced as dramatic results.

Dopamine’s role in feeding was further advanced by unique data from animals in which
tyrosine hydroxylase is genetically removed [44;45]. These animals cannot synthesize
dopamine and have dramatically decreased eating and drinking. These dopamine deficient
animals only survive a few weeks after birth. However, daily L-DOPA (3,4-dihydroxy-L-
phenylalanine; a precursor of dopamine synthesis converted from L-tyrosine) injections
enabled survival and subsequent analysis of animals lacking detectable dopamine (hours after
the L-DOPA injections). While these animals are hypophagic, they also exhibit deficits in
movement. Subsequent experiments have suggested that dopamine deficient animals can
exhibit preferences for sucrose [46], raising the possibility that preference and reward-related
decisions are possible without dopamine. Taken together, studies in which dopaminergic
transmission is disrupted allude to a clear role for dopamine in feeding, though they did not
initially identify which dopaminergic pathways are involved (see below) and whether food
intake reduction is a primary behavioral effect.

Central dopaminergic pathways
There are a limited number of central dopaminergic pathways that arise from the mediobasal
hypothalamus (tuberoinfundibular neurons), or the midbrain (substantia nigra and VTA).
Deficits in feeding with dopamine neuron depletion described above likely involve one of these
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nuclei [36;37;38], although it is possible that one of several other minor dopaminergic nuclei
might be also involved in feeding.

Of the three major dopaminergic nuclei, the mediobasal hypothalamic dopaminergic neurons
are primarily involved in prolactin secretion [47;48]. To our knowledge, deficits in free feeding
have never been reported after dopamine neuron depletion of this area and most experiments
have focused on the two other dopaminergic nuclei, the substantia nigra and the VTA, and their
projection sites in the brain.

Substantia nigra
There is evidence that the substantia nigra is involved in intake of food. In humans,
dopaminergic neurons in the substantia nigra preferentially degenerate in Parkinson’s disease
[49], although some ventral tegmental neurons may be involved [50;51;52]. Notably, patients
with Parkinson’s disease experience mild weight loss [53] relative to controls (statistically
significant only in women), although impaired movement or cognition may contribute to this
phenomenon [54;55].

In rats, dopamine neuron depletions of the substantia nigra produce animals with deficits in
feeding and drinking [37;56]. Animals with unilateral lesions of the substantia nigra also
demonstrated persistent deficits in body weight [57], though with partial nigral dopamine
neuron depletions, there appears to be no effect on free-feeding, but deficits in fine motor
movement [30]. Interestingly, in tyrosine hydroxylase deficient mice [44], restoring tyrosine
hydroxylase in the dorsal striatum (the major target of the substantia nigra) but not the ventral
striatum (i.e., NAc) [58] corrects the feeding. These data point to a clear link between
nigrostriatal dopamine and food intake.

Complicating the interpretation of these data are alterations in movement with nigrostriatal
dopamine neuron depletion, as well as deficits in sensorimotor performance [59;60]. Although
a deficit in movement does not rule out an effect in feeding, it requires more extensive
experiments to establish that animals can acquire food in spite of movement deficits. For
example, dopamine deficient animals will consume food placed into their mouth and will show
normal preference for sucrose when experiments are designed to limit the movement required
for ingestion [46]. This confound notwithstanding, these studies provide compelling data that
nigrostriatal dopamine is necessary for intact feeding behavior, likely acting as a permissive
signal for goal-directed behaviors [61].

Finally, PET imaging studies, which image dopamine release through the D2 agonist C11-
raclopride, have shown that dopamine is released during feeding from dorsal striatal regions
(which receive projections from the substantia nigra) in humans. Visual display of food
stimulated dopamine release in the dorsal striatum only when dopamine uptake was blocked
by methylphenidate [62]. A subsequent study reported that eating a meal increased dopamine
release in the dorsal striatum, and that this release correlated with the pleasantness of a meal
[63]. These data in humans that striatal dopamine is released during eating support a role for
the nigrostriatal pathway in eating and the response to food intake.

Ventral tegmental area
Experiments exploring the role of VTA dopamine in feeding suggest that mesolimbic dopamine
can influence, but is not necessary for, feeding behavior. Initial studies that depleted dopamine
neurons in the VTA [29] reported no effect on body weight despite increased locomotor activity
and deficits in passive-avoidance behavior. To our knowledge, while VTA dopamine neuron
depletions can influence a wide range of higher-order behavior, such as drug self-
administration [64], motivation [65;66], perseveration [4;30], and memory [67], no data
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suggests that mesolimbic dopamine neuron depletions specifically impact feeding. However,
negative data in dopamine neuron depletion experiments are somewhat difficult to interpret,
as small amounts of residual dopamine function may be sufficient for critical feeding-related
signals. As reviewed below, some studies suggest that lesions (not dopamine specific) in the
region do affect food intake. Moreover, specific pharmacological or viral manipulation of
neurons in the VTA can produce changes in food intake. This approach, which modulates
specific populations of VTA neurons, has demonstrated clear effects on feeding behavior [1;
13;68], in contrast to the negative data seen with traditional lesion strategies.

Supporting a role for the VTA in feeding is extensive literature establishing dopamine release
in the NAc during feeding. These data derive chiefly from microdialysis studies [69], in which
changes in extracellular dopamine and breakdown products are seen in the NAc in response to
both feeding and hypothalamic stimulation [70]. Food anticipation corresponds with dopamine
release in the shell; whereas food stimuli promote dopamine release in the core [71].
Voltammetry studies, which detect changes in dopamine efflux with high temporal resolution,
reported rapid dopamine release (~70 ms) in response to food cues and food seeking behavior
[72].

In-vivo recording studies also suggest that mesolimbic dopaminergic neurons are modulated
in pursuit of food rewards. Such experiments are difficult to interpret outside of a specific
behavioral context and free-feeding has not been directly studied in detail. However, the work
of Wolfram Schultz and colleagues has shed considerable light on the activity of VTA
dopaminergic neurons [32;73;74]. These studies recorded from non-human primate
dopaminergic VTA neurons and reported phasic modulations in activity following liquid or
food rewards [73;75]. Food rewards also change activity among midbrain dopaminergic
neurons in rodents [76]. Increases in activity are seen in response to stimuli that predict rewards,
and decreases in activity are observed when rewards are omitted [77]. Dopaminergic neurons
increase in firing rate when an animal touches food [78;79] and when liquid reward is
administered to the animal outside of a behavioral context [77]. Such neurons respond primarily
to novel rewards, and when outcomes are somewhat unexpected [80;81]. These persuasive data
have led to the hypothesis that dopamine neurons in the midbrain encode reward prediction
errors [32;73;74]. These experiments suggest that mesolimbic dopamine neuron response is
more consistent with a limited role in ad-libitum free feeding and a potentially greater role in
signaling unexpected reward, cue associations, or reward valence. These data are also
consistent with the finding that novel or unexpected food causes more dopamine release in the
NAc shell [71].

Dopamine terminal depletion in mesolimbic target areas
This more restricted, yet important role for the mesolimbic system, is supported from studies
that depleted dopamine terminals in major brain structures targeted by VTA projections: the
NAc, amygdala and prefrontal cortex. Of these, the NAc (ventromedial striatum) is the primary
target of mesolimbic dopaminergic projections [82]. Initial studies indicated that dopamine
terminal depletions in the NAc produced mild short-term but not long-term increases in feeding
[24] and changes in the rate of feeding. However, this study also depleted dopamine terminals
in the olfactory tubercle along with the prefrontal cortex. Subsequent studies have indicated
that NAc dopamine terminal depletions alone do not impact feeding [83;84]. Conversely,
dopamine terminal depletions in regions targeted by nigrostriatal projections (i.e., ventrolateral
striatum) reliably diminish feeding [83]. NAc dopaminergic terminal depletions have a
transient impact on instrumental bar-pressing for food [85], and they can impair bar-pressing
when more effort is required [86;87]. NAc D1/D2 receptor blockade affected motor behavior,
had small effects on feeding patterns, but did not reduce the amount of food consumed [88].
These data provide support for the involvement of mesolimbic circuitry in effort-related
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functions [89] rather than in free feeding. In addition, dopamine in the NAc potentiates
responses to cues associated with food intake [28;90], again suggesting additional roles for
dopamine in tasks beyond free feeding.

The amygdala is another structure that influences feeding [91], in combination with prefrontal-
hypothalamic networks [92]. Some evidence indicates that dopamine may be released in the
amygdala in response to food [93;94]. However, amygdalar dopamine terminal depletion only
transiently reduces feeding while having long term impact on other behaviors, such as
conditioned avoidance [95].

Finally, prefrontal cortex, particularly medial regions, have extensive top-down projections to
the VTA, amygdala, and NAc [96]. Although feeding can induce dopamine release in the
prefrontal cortex [97], no data has described an effect of prefrontal dopamine terminal depletion
in feeding. Prefrontal dopamine terminal depletions do not influence more complex behaviors
such as cocaine self-administrations [98]. Furthermore, lesions of ventromedial prefrontal
cortex do not appear to influence free-feeding in familiar contexts; although lesions do impair
cue-driven food consumption [99].

There are extensive minor to moderate targets of midbrain dopaminergic projections, including
arcuate and medial hypothalamic nuclei, habenula, the olfactory tubercle, septal nuclei, and
medial temporal regions. To our knowledge, there are no data that implicate these projections
specifically in feeding.

Non-dopaminergic signaling in midbrain neurons
Midbrain nuclei contain dopaminergic and non-dopaminergic neurons [82]. Trudeau and
colleagues report evidence that the glutamate transporter VGLUT2 is expressed in midbrain
neurons that do not express tyrosine hydroxylase [100;101], demonstrating that glutamatergic,
non-dopaminergic neurons are intermixed with dopaminergic neurons in the VTA. Some VTA
neurons also express presynaptic machinery for the release of GABA [102;103]. These neurons
can project specifically to distant areas, such as prefrontal cortex [104] or receive distant
cortical input [102]. Such GABAergic neurons can also interact locally to regulate dopamine
neurons and potentiate learning within dopaminergic networks [105].

If non-dopaminergic neurons were important for feeding behavior, then gross lesions or
stimulation of mesolimbic networks (which would affect all cell types and all forms of
neurotransmission) might produce distinct effects when compared with studies of dopamine
neuron-specific depletions. Lesion data lends some support to this notion. In contrast to the
dopamine neuron depletion literature reviewed above, electrolytic [106] or radiofrequency
lesions of the midbrain [107] produce marked aphagia. The effect of these lesions on aphagia
was more pronounced than dopamine neuron depletions [107], although in this work, the
amount of dopaminergic cell loss was not quantified. Direct electrical stimulation of the
midbrain [108], or specifically the VTA can elicit feeding [109]. Furthermore, stimulation-
induced feeding depended on intact mesolimbic projections to the NAc shell [110]. One critique
of these techniques is lesions or stimulation may affect fibers of passage in addition to midbrain
neurons. Future approaches could address these concerns by using channelrhodopsin-guided
stimulation [111;112;113] of specific populations of VTA neurons.

Despite these data, there are no experiments to date that specifically investigate the role of non-
dopaminergic/glutamatergic/GABAergic subpopulations of midbrain neurons in feeding.
However, evidence from opioid manipulation of mesolimbic systems may shed light on this,
as the mu-opioid receptor is expressed primarily in non-dopaminergic neurons [114;115]. It is
unknown if these receptors are expressed on GABAergic projection neurons [104]; however,
opioid receptors can powerfully modulate dopaminergic projection neurons [116] from the
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VTA. Microinjections of morphine into both the VTA and NAc triggered food intake in both
sated and hungry animals [117]. This effect does not exhibit tolerance, and can be potentiated
by amphetamine [118]. Opioid-receptor antagonists such as naloxone into the VTA produce
anorexia [119]. Opioid-induced feeding depends on the mu-opioid receptor, and is
interdependent with dopaminergic transmission [68]. These data clearly indicate that specific
opioid manipulation of the VTA influences feeding.

Taken together, this evidence illustrates how non-dopaminergic circuit elements might interact
with dopaminergic projection neurons to control food intake, and provides some insight into
how peripheral hormones might influence food acquisition via direct modulation of non-
dopamine neurons of the midbrain. Thus, while the limited feeding effects of NAc dopamine
blockade indicate that dopamine is not necessary for feeding, the midbrain manipulations above
suggest that altered patterns of dopamine release may be sufficient to alter feeding.

Non-dopaminergic signaling in mesolimbic target areas
The work of Kelley and colleagues has linked neuronal excitability of the NAc shell to feeding
behavior [26]. For example, blocking glutamate receptor in the NAc stimulates feeding via
projections to the lateral hypothalamus [120]. GABAergic agonists in the NAc shell also
stimulate feeding behavior [121;122]. Moreover, opiate administration specifically into the
NAc triggers feeding via the mu-opioid receptor [123]. NAc administration of the lateral
hypothalamic-derived melanin-concentrating hormone also drives feeding via inhibition of
neuronal firing [124;125]. Combined with data from dopamine receptor blockade [88;89] and
dopamine neuron depletions [83;84], these experiments establish a relationship between NAc
neurochemistry, neuronal exitability, and food intake.

The robust feeding changes with GABA and glutamate manipulations may reflect the important
role of non-mesolimbic glutamate projections from the cortex, or other afferent areas. It is also
possible that non-dopaminergic signaling in mesolimbic target areas may be sufficient to
control feeding beyond pure dopaminergic mechanisms (e.g. via glutamate or GABA release),
and the above results invite consideration of how non-dopaminergic mesolimbic projections
might influence feeding.

Complexities in dopaminergic signaling and feeding
Interpreting the evidence reviewed thus far can be difficult in light of dopamine’s cellular
effects as a synaptically released signal. For instance, dopamine is not a high-fidelity signal of
neural activity (like glutamate, GABA, or acetycholine); rather it is neuromodulator acting on
a somewhat slower time scale [126]. Typically, dopamine binds to one of 5 known G-protein
linked receptors and leads to distributed protein phosphorylation and diverse downstream
changes in cellular machinery. These receptors can have opposing effects on intracellular
signaling [127]. Furthermore, the relationship between dopaminergic neuron discharge and
dopamine release is complex [128]. Dopamine can also have distinct effects at different time
scales [32;129]. Manipulations of the dopaminergic system may change tonic discharge of
dopaminergic neurons [130;131;132], whereas phasic discharges from dopaminergic neurons
that convey feeding signals [32] may be preserved. Moreover, dopaminergic signaling is
nonlinear, and may merely ‘optimize’ neural activity on an inverted U-shape curve [132;
133], further obscuring interpretations from dopamine neuron depletion studies. Finally,
dopamine alone may not be necessary nor sufficient for signaling an event, but may modulate
corticostriatal pathways [134].

These complexities demonstrate the difficulty in understanding the role of dopamine and in
developing models that connect feeding with drug addiction [6;25]. Mesolimbic circuitry is
involved in processes thought to be crucial for food intake i.e., reward [73], hedonia, [33],
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reinforcement, motivation [4], or incentive salience [34], though little data exist to suggest that
mesolimbic dopamine is crucial for free feeding. Moreover, without dopamine, animals can
still exhibit preferences for rewards [46;135]. These data raise the possibility that mesolimbic
dopamine is not necessary for feeding, but may play an important modulatory role in feeding
pathways. Despite this view, it is likely that dysfunction of mesolimbic circuitry is intertwined
with obesity. Sated organisms in stimulus-rich environments with complex reward payoffs
may be dramatically influenced by small changes in their reward-acquisition circuitry [136;
137] that could contribute to the pathogenesis of obesity [6].

For instance, it is possible that mesolimbic systems are preferentially engaged when animals
have access to highly reinforcing foods and food of different reward valences, or when animals
must make choices in an environment with complex stimuli. Pharmacological manipulations
of opiate receptors in the NAc is consistent with a role in choice of highly reinforcing food.
This hypothesis can be extended to dopamine neurons by exploring if animals with VTA
manipulations (via lesion or genetic approaches) can become obese in these environments.

Some possibilities for how mesolimbic dopamine might influence feeding
Considering this broad literature, it is difficult to really specify the role of mesolimbic dopamine
in free feeding: whereas mesolimbic dopamine neuron depletions do not specifically impact
free feeding, neurochemical manipulations of the VTA and NAc [25;26] as well as infusions
of opioid, leptin or ghrelin directly into the VTA prominently modulate free feeding [1;12;
13;117]. There are many potential explanations for this and here we present some of the more
likely models.

A first possibility, consistent with data reviewed above from the NAc, [120;121;122] is that
midbrain neurons are involved in feeding chiefly through non-dopaminergic mechanisms of
influencing the NAc. As discussed above, non-dopaminergic neurons can express receptors to
feeding hormones, such as leptin [1;10;14], and may control feeding via these neurons.
However, such an account unjustifiably ignores the vast majority of dopaminergic neurons that
express receptors for metabolic factors and does not seem likely to explain the complete role
of the midbrain in modulating food intake. Moreover, pharmacological manipulations of the
VTA that drive food intake depend upon NAc dopamine [68].

A second possibility is that dopaminergic neurons in the midbrain are involved in feeding
through glutamate cotransmission. Electrical stimulation of VTA neurons produces fast
transients in the NAc [138] and in the prefrontal cortex [139], implying fast rather than slow
neurotransmission. As noted above, midbrain dopaminergic neurons express glutamate
transporters [101] and glutamate-dopaminergic co-transmission may be behaviorally relevant
in addiction [140]. This could account for the finding that VTA dopamine neuron depletions
do not impact feeding, whereas lesions of the VTA [107] and modulation of NAc glutamate
[26] can profoundly impact feeding. However, the relevance of such cotransmission in feeding
behavior has not been established.

A third possibility is that subpopulations of dopaminergic neurons exist in balance with other
types of dopaminergic neurons, which effectively masks their role in food intake. There clearly
exist pools of neurons expressing receptors for metabolic signals that can control feeding [1;
12;14], and these neuromodulators may change the balance of dopaminergic transmission that
may in turn facilitate feeding. In this scenario, modulating a subpopulation of midbrain neurons
would produce distinct results from removing the entire nuclei. Some data indicate that
complete dopamine neuron depletion of the VTA produces distinct effects from incomplete
dopamine neuron depletions [141], demonstrating the difficulty of interpreting dopamine
neuron depletion data. Future experiments might test the hypothesis by studying feeding
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behavior when mesolimbic systems are partially inactivated by manipulation of genetically
identified cell-classes.

Some electrophysiological evidence supports a variant of this possibility, whereby changes in
specific firing patterns and dopamine release might encode information. Dopaminergic neurons
maintain prominent tonic activity [130]. Grace and colleagues have proposed that behaviorally
salient stimuli could trigger phasic deviations in this tonic activity and might constitute a
behaviorally relevant signal to the animal [74;131]. Phasic stimulation of dopaminergic
neurons is sufficient for behavioral conditioning [113]. According to this scenario, depleting
dopamine would deprive target nuclei of phasic and tonic stimulation, eliminating transmission
of information from this nucleus. Both leptin and ghrelin have been shown to influence
midbrain dopamine neuron firing rates [1;12], however, it is unclear if they influence phasic
or tonic patterns of dopaminergic discharge, or both. Future studies that specifically stimulate
[112] leptin-expressing dopaminergic neurons, or that simultaneously record [142] from
ensembles of midbrain neurons and neurons in target areas will address this hypothesis.

A fourth possibility that accounts for discrepancies in the literature is our lack of understanding
of the most relevant circuits. For instance, midbrain dopaminergic projections directly target
a variety of brain structures, including NAc, prefrontal cortex, and the amygdala. If leptin
expressing midbrain neurons projected preferentially to the amygdala or prefrontal cortex, they
could directly control feeding (perhaps via projections involving the lateral hypothalamus).
Without detailed information on the projections of leptin receptor-expressing and ghrelin
receptor-expressing neurons, speculation on how these neurons achieve control over feeding
is limited. Once such targets are identified, lesion, receptor knockdown and recording
experiments can be designed in order to elucidate this pathway in pursuit of a common pathway
regulating feeding. It is notable that recent detailed anatomical and functional analysis suggests
that properties of dopamine neurons projecting from the VTA vary according to projection
sites [143].

A fifth possibility, is that dopamine is strictly modulatory or state-dependent [126] and not
necessary for free-feeding behavior. For instance, GABAergic medium spiny neurons in the
NAc may control feeding via direct projections to the lateral hypothalamus [28;144]. Dopamine
release may simply modulate this circuit [134] rather than being solely necessary for feeding
behavior. This scenario accounts for inconsistencies in dopamine neuron depletion data;
indeed, if dopamine only modulated feeding circuitry, then depletion or removal would not
directly influence feeding because critical circuitry would still be in place. Peripheral or whole
animal dopamine manipulations could disturb dopaminergic tone [36;37;44] and dysregulate
this network, whereas area-specific dopamine manipulations may allow dopamine-modulated
networks to compensate. Of course, as noted above, free-feeding of laboratory chow in a cage
does not mimic the human condition and it is possible that dopamine plays a greater role in
food intake under changing environments that humans experience. In particular, NAc
dopamine likely plays a role in effort to obtain food[89] as well as responses to cues associated
with food intake [28;90]. While we have emphasized free-feeding in this review, it is critical
that future research on dopamine’s role continues to evaluate other aspects of behavior that are
relevant to food intake.

These possibilities are not mutually exclusive and even could be seen as overlapping.
Distinguishing between these possibilities will require careful experiments that manipulate
pools of dopamine neurons that respond to different neuromodulators. For such experiments,
using genetic tools to identify and manipulate both genes and firing patterns in populations of
subpopulations of neurons within the midbrain [1;44;45;112;145] will be critical for better
defining mesolimbic control of feeding.
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Conclusion
Emerging evidence has suggested that peripheral hormones such as ghrelin and leptin can
influence feeding via mesolimbic circuits. Here we have reviewed how mesolimbic systems
might, in turn, control food intake. Peripheral or whole brain disruptions of dopamine function
markedly impair feeding behavior. Studies of dopaminergic neuron depletion and genetic
studies have implicated nigrostriatal dopaminergic pathways in feeding, whereas mesolimbic
dopaminergic pathways seem to be involved in higher-order aspects of feeding, such as
motivation and response to novelty or food-associated cues. Furthermore, while dopamine
neuron depletions in the NAc do not directly impair feeding, non-dopaminergic manipulations
of glutamate, GABA, and opioids in the NAc or VTA can dramatically influence feeding and
food choice. We discussed several possible explanations for the complex data that connects
dopamine systems and feeding. Further experiments will elucidate these mechanisms, and
isolate specific circuits within the midbrain that are in command of food acquisition and are
also responsive to metabolic factors.
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Figure 1.
Dopamine Circuits. The midbrain is the primary site of dopaminergic neurons in the rodent
brain. A schematic of the major dopamine projections from the midbrain are shown in red. The
substantia nigra (SN) neurons project primarily to the caudate putamen (C-P), while the ventral
tegmental area (VTA) neurons project primarily to the nucleus accumbens (NAc), the
prefrontal cortex (PFC) and the amygdala (AMG). Metabolic signals emanating from the
periphery, such as leptin and ghrelin, have recently been shown to not only act in the arcuate
nucleus of the hypothalamus (ARC), but also in the VTA.
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Figure 2.
Focus on midbrain circuits and their potential role in influencing free feeding behavior.
Midbrain (VTA) and nucleus accumbens are expanded disproportionately to demonstrate some
of the mechanisms discussed in the text. We have concluded with five non-mutually exclusive
possibilities to explain the discrepancy between dopamine depletion and midbrain lesions in
mediating free feeding. The ventral tegmental area (VTA) contains dopamine (DA) neurons
and GABAergic (gamma-aminobutyric acid) interneurons. Both cell types express receptors
for leptin (LepR) and ghrelin (GSHR). The mu-opioid receptor (Oprm1) is expressed on
primarily non-dopaminergic neurons and may account for some aspects of possibility one
(GABA projections neurons are not shown). Glutamate (GLU) may be co-released from DA
neurons and this is basis of possibility two. There may be subpopulations of DA neurons
involved in feeding, perhaps expressing a subset or specific combination of metabolic signal
receptors, and these may account for possibility three. The DA neurons also project to the
prefrontal cortex (PFC) and amygdala (AMG) and this accounts for possibility four. Finally
DA may be strictly a neuromodulator of glutamate transmission coming from the PFC, AMG,
the dorsal medial thalamus (DMT) or the hippocampus (HIP) and this is the basis of possibility
five.

Narayanan et al. Page 18

Front Neuroendocrinol. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


