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Abstract
Targeted gene therapy can potentially minimize undesirable off-target toxicity due to specific
delivery. Neuron-specific gene delivery in the central nervous system is challenging because neurons
are non-dividing and also outnumbered by glial cells. One approach is to transfect dividing neural
stem and progenitor cells (NSCs and NPCs, respectively). In this work, we demonstrate cell-specific
gene delivery to NPCs in the brains of adult mice using a peptide-modified polymeric vector. Tet1,
a 12-amino acid peptide which has been shown to bind specifically to neuronal cells, was utilized as
a neuronal targeting ligand. The cationic polymer polyethylenimine (PEI) was covalently modified
with polyethylene glycol (PEG) for in vivo salt stability and Tet1 for neuron targeting to yield a Tet1-
PEG-PEI conjugate. When plasmid DNA encoding the reporter gene luciferase was complexed with
Tet1-PEG-PEI and delivered in vivo via an injection into the lateral ventricle, Tet1-PEG-PEI
complexes mediated increased luciferase expression levels in brain tissue when compared to
unmodified PEI-PEG complexes. In addition, cells transfected by Tet1-PEG-PEI complexes were
found to be exclusively adult NPCs whereas untargeted PEG-PEI complexes were found to transfect
a heterogenous population of cells. Thus, we have demonstrated targeted, nonviral delivery of nucleic
acids to adult NPCs using the Tet1 targeting ligand. These materials could potentially be used to
deliver therapeutic genes for the treatment of neurodegenerative diseases.

INTRODUCTION
Gene therapy to the central nervous system (CNS) has the potential to benefit both acute
injuries, such as stroke, as well as neurodegenerative diseases, such as Parkinson’s,
Alzheimer’s, and Huntington’s disease. A major germinal center for new neurons in the adult
mammalian brain is the subventricular zone (SVZ), which lies in the walls of the lateral
ventricle [1]. Many neurodegenerative diseases are associated with abnormal levels of neural
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stem and progenitor cell (NSC and NPC, respectively) proliferation in the SVZ, which
designates these cells as potential therapeutic targets [2]. Potential applications for CNS gene
therapy include the delivery of genes that encode mitogenic factors to stimulate proliferation
of NSCs and NPCs for neurogenesis [3] or transcription factors to alter NPC fates [4]. The first
requirement for gene therapy is a safe and efficient delivery vehicle.

Recombinant viruses have been predominantly used as gene carriers; however, currently they
face safety limitations including immunogenicity and insertional mutagenesis. In response to
the safety concerns of viral-based carriers, a multitude of synthetic carriers have been
developed as alternatives [5]. There have been several applications of polymer-based carriers
to the CNS [6–9]. However, existing nonviral gene carrier technology is still in nascent stages
and limited by low in vivo efficiency after CNS delivery [10]. In order to address this, one
strategy that has been employed is the incorporation of peptides to improve intracellular
trafficking [11], including peptides for targeting [12] and vesicular escape [13,14].

Cell-specific targeting is important to minimize off-target delivery and has been shown to
increase the specificity and efficiency of gene delivery vehicles [15]. Neuron targeting has
been achieved with polypeptide materials, from peptides to full-length proteins [10]. One
prevalent example is tetanus toxin, a protein derived from bacteria that binds specifically to
neuronal cells through the triasialoganglioside receptor, GT1b [16]. Although little is known
about ganglioside function and expression in NSCs and NPCs, GT1b expression has been
suggested to occur during early stages of neuronal differentiation [17]. When synthetic particles
were modified with a non-toxic fragment of tetanus toxin, particles were able to efficiently
bind and be internalized by neuronal cells in vitro [18], indicating that mediating uptake via
the tetanus receptor is a viable strategy for neuron targeted gene delivery. Recently, phage
display against GT1b has identified a 12-mer peptide, referred to as Tet1, that exhibits high
affinity and specificity for GT1b [19]. The use of small peptides over full-length polypeptides
is advantageous for nanoparticulate delivery systems because they can be easily synthesized
and incorporated while having minimal effects on the physicochemical properties of the
particle. The Tet1 peptide has been successfully used in our group to target polyethylenimine
(PEI)-based gene delivery vehicles in vitro to cultured neuronal cells [20,21].

The goal of this work is to evaluate Tet1-modified vehicles for in vivo targeting to neuronal
populations in the CNS. Because cationic polymer-based nanoparticle delivery vehicles
aggregate in physiological levels of salt, they may cause toxicity after in vivo delivery [22,
23]. Polyethylene glycol (PEG) modification has been widely used for stabilization of delivery
vehicles in biological fluids [23]. It has been shown that targeting ligands should be tethered
at the distal ends of PEG to prevent steric interference to receptor binding [24]. Herein we
describe the synthesis, characterization, and application of a Tet1-targeted vehicle system
stabilized with PEG for in vivo CNS delivery. Tet1-targeted vehicles and untargeted controls
were administered by injection into the lateral ventricle of adult mice and the populations of
transfected cells were identified by immunohistochemistry.

MATERIALS AND METHODS
Synthesis of Tet1-PEG-PEI and PEI-PEG

Tet1 (HLNILSTLWKYRC) was synthesized using solid phase peptide synthesis and HPLC
purified. 25,000 Mw branched PEI (Sigma, St. Louis, MO) was dissolved in DMF at 20 mg/
mL and 2 mole equivalents of 5,000 Mw SPA-PEG-OPSS (Nektar Therapeutics, Huntsville,
AL) in DMF was added. After stirring overnight at room temperature, 2.3 mole equivalents of
Tet1 peptide in DMF were added and the reaction was stirred for an additional day. The
resulting Tet1-PEG-PEI conjugate was acidified to pH 4 and purified by dialysis against water
in a 3,500 MWCO membrane. A control polymer without Tet1 modification was synthesized

Kwon et al. Page 2

Biomaterials. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



by reacting PEI with 2 mole equivalents of 5,000 Mw SPA-PEG (Nektar) for 24 hours. Extent
of PEG modification was determined using 1H NMR.

Complex formation and characterization
Complexes were formed by adding equal volumes of polymer to gWiz Luciferase plasmid
DNA (Aldevron, Fargo, ND) and rapidly mixing. Polymer amine to DNA phosphate (N/P)
ratio was calculated based on subunits of 43 g/mol and 330 g/mol for PEI and DNA,
respectively. Particles were incubated for 10 minutes after mixing to allow for complete
complexation. For measuring hydrodynamic size, polyplexes were formulated as described
above using 1 μg of DNA in 10 μL. 50 μL of water was added and hydrodynamic size was
measured using dynamic light scattering on a ZetaPlus Zeta Potential Analyzer (Brookhaven
Instruments Corporation, Holtsville, NY). To measure the stability of particles in physiological
salt concentrations, an equal volume of 300 mM phosphate buffered saline (PBS) was added
and hydrodynamic size was measured again. Water was added for a final concentration of 10
mM PBS and zeta potential was measured. All samples were measured in triplicate and are
reported as the mean diameter ± SD.

In vivo evaluation
Lateral ventricle delivery—All animal procedures were done after approval by the
Institutional Animal Care and Use Committee at the University of Washington. Polyplexes
were prepared as described above in 5% glucose using 2.5 μg of DNA in 10 μL at N/P 15. 7–
9 week old female C57/Bl6 mice from Jackson Laboratories were housed for 1 week prior to
experimentation. Mice were anesthetized by an intraperitoneal injection of Avertin. A 1 mm
diameter craniotomy was made on the left side of the skull using a dental drill and 10 μL
polyplex, DNA or 5% glucose solution was stereotaxically injected at 1 mm lateral, 0.5 mm
caudal to bregma, and 1.75 mm deep from the dura using a 33 gauge 10 μL Hamilton syringe.
The injection was made over 10 minutes and the syringe was kept in place for 2 minutes after
injection to prevent backflow.

Lysate preparation—Brains were harvested from mice at the designated day post injection
and separated into four sections: olfactory bulb, hindbrain, and left and right hemispheres (Fig.
2b). Tissues were collected in lysis buffer supplemented by protease inhibitors (Roche, Nutley,
NJ) and three freeze-thaw cycles were performed in liquid nitrogen. Tissues were mechanically
homogenized and lysate was cleared by spinning at 21,000 g for 15 minutes at 4 °C. 20 μL of
lysate was assayed for luminescence with 100 μL of luciferase substrate. Luminescence was
measured for 10 seconds in a Berthold LB 953 tube luminometer. Luminescence measurements
were normalized by protein content, determined using a BCA Protein Assay Kit (Pierce), and
reported as relative light units (RLU) per mg protein.

Immunofluorescent labeling—Injections were done as described above using polyplexes
formulated with gWiz Beta-gal plasmid (Aldevron). Three days post injection, mice were
euthanized with sodium pentobarbital and perfused intracardially with 0.9% saline followed
by 4% paraformaldehyde in 0.1 M phosphate buffer (PB) after which brains were excised and
cryoprotected in 30% sucrose in PB. Brains were embedded in OCT and 20 μm-thick coronal
tissue sections were cut onto glass slides.

For immunofluorescent labeling, slides were rinsed with PBS and blocked in 0.5%
TritonX-100, 5% donkey serum for 1 hour. Primary antibodies were applied to tissue sections
in PBS, 0.5% TritonX-100, 5% donkey serum overnight at 4 °C. Rabbit anti-β-galactosidase
(Cappel Labs; Cochranville, PA) was used at 1:2000 or mouse anti-β-galactosidase (Cappel)
was used at 1:200. Phenotype markers included: NPC markers goat anti-nestin (Santa Cruz
Biotechnology, Santa Cruz, CA; 1:100) and goat anti-sox2 (Santa Cruz Biotechnology; 1:250),
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astrocyte markers rabbit anti-S100β (S. Want, Bellinzona, Switzerland; 1:400) and guinea pig
anti-GFAP (glial fibrillary acidic protein; Advanced ImmunoChemical Inc. Long Beach, CA;
1:2000), glial progenitor markers rabbit anti-Olig2 (oligodendrocyte transcription factor 2;
Immuno-Biological Laboratories Co., Ltd. Gunma, Japan; 1:400) and rabbit anti-NG2
(chondroitin sulphate proteoglycan; a generous gift from W. Stallcup, Burnham Institute, La
Jolla, CA; 1:500), immature neuronal markers mouse anti-Map2ab (microtubule associated
protein, forms a and b; Sigma-Aldrich, St. Louis, MO; 1:500), goat anti-doublecortin (Santa
Cruz Biotechnology; 1:100) and mouse anti-TUJ1 (Covance, Denver, PA; 1:500), microglial
markers rabbit anit-Iba1 (ionized calcium binding adaptor molecule 1; Wako Chemicals USA,
Inc., Richmond, VA; 1:500), mouse anti-OX-42 (CD11b, AbD Serotec, Raleigh, NC; 1:200)
and rat anti-F4/80 (AbD Serotec; 1:20), radial glial markers chicken anti-vimentin (Chemicon/
Millipore, Billerica, MA; 1:1000), mouse anti-RC2 (a generous gift of P. Leprince at the
University of Liège, Liège, Belgium; 1:50), and mouse anti-GT1b (Seikagaku Corporation,
Tokyo, Japan; 1:50). Slides were rinsed 3 times for 10 minutes in PBS and species appropriate
secondary antibodies conjugated with fluorophore were incubated in PBS, 0.5% TritonX-100
with 5% donkey serum overnight at 4 °C. Slides were rinsed 4 times for 10 minutes in PBS,
with the last rinse containing the nuclear marker, 4′,6-diamidino-2-phenylindole (DAPI;
1:1000). Slides were then coverslipped with gelvatol and imaged using confocal microscopy.

RESULTS
Synthesis of Tet1-PEG-PEI and PEI-PEG

Liu et al. used phage display to identify Tet1, a 12-amino acid peptide that binds to the neuronal
ganglioside GT1b [19]. Tet1-PEG-PEI was synthesized using a heterobifunctional PEG to
tether between a primary amine of PEI and cysteine-terminated Tet1. Control conjugate PEI-
PEG was synthesized using a monofunctional PEG that was capped with a methoxy
group. 1H NMR was used to determine extent of PEG substitution by comparing the ratio of
PEI protons (δ = 2.5–3 ppm) to PEG protons (δ = 3.6 ppm). Substitution for both conjugates
was found to be ~2 PEG molecules per PEI.

Polyplex characterization
Complexes of plasmid PEI and DNA, termed polyplexes, were formed by mixing equal
volumes of each component followed by incubation at room temperature for 10 minutes.
Hydrodynamic sizes of triplicate samples were measured using dynamic light scattering (DLS)
(Fig. 1a). PEI-PEG polyplexes were 127 ± 3 nm in water and 116 ± 1 nm after addition of
saline whereas Tet1-PEG-PEI polyplexes were 158 ± 3 nm in water and 152 ± 3 nm after
addition of saline. Sizes were found to be similar before and after the addition of physiological
levels of salt and Tet1-PEG-PEI polyplexes were slightly larger than untargeted polyplexes.
When polyplexes were formulated without PEG modification, polyplexes aggregated in
physiological levels of salt (Fig. 1a) as reported previously in the literature [23]. The zeta
potential of PEI-PEG polyplexes (19 ± 4 mV) was similar to Tet1-PEG-PEI polyplexes (19 ±
9 mV) (Fig. 1b).

Bulk analysis of brain tissue after in vivo delivery
In order to compare the transfection efficiency of PEI-PEG and Tet1-PEG-PEI in vivo,
polyplexes were injected into the left lateral ventricle of mice at an N/P ratio of 15. Three days
post injection, mice brains were excised and dissected into olfactory bulb (OB), hindbrain
(HB), and left (L) and right (R) hemispheres for bulk tissue analysis (Fig. 2). Normalized
luciferase activity in OB, HB, L, and R lysate, respectively, was 1426 ± 779 RLU/mg, 33756
± 9052 RLU/mg, 15859 ± 9089 RLU/mg, and 20386 ± 7104 RLU/mg in PEI-PEG polyplex
delivered mice and 2270 ± 1912 RLU/mg, 50464 ± 15074 RLU/mg, 40156 ± 28710 RLU/mg,
and 17798 ± 10748 RLU/mg in Tet1-PEG-PEI polyplex delivered mice. In glucose injected
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control mice, expression was less than 500 RLU/mg in all sections. Expression after delivery
of Tet1-PEG-PEI polyplexes compared to PEI-PEG polyplexes was 1.5-fold higher in the left
hemisphere and 2.5-fold higher in the right hemisphere (p-value < 0.05). The results shown
are representative of three separate experiments. In all experiments, transfection efficiencies
were higher in brains delivered Tet1-PEG-PEI polyplexes over PEI-PEG polyplexes.

To evaluate the duration of transgene expression, Tet1-PEG-PEI polyplexes were delivered
and whole brain luciferase expression was quantified 3, 7, 10, and 14 days post injection and
compared to glucose control (Fig. 3). Expression declined exponentially, but was sustained
above glucose control at 10 days (p<0.05) but not at 14 days.

Immunofluorescent staining of brain tissue sections
In order to identify the distribution and cell phenotypes of transfected cells, 20 μm brain tissue
sections were taken from mice injected with Tet1-targeted and untargeted polyplexes 3 days
post injection. Tissue sections were stained with antibodies against β-galactosidase, GT1b, and
cell-specific markers for neural progenitors (sox2 and nestin), microglia (Iba1, F4/80, OX-42),
astrocytes (GFAP and S100β), radial glia (vimentin and RC2), and glial progenitors (olig2 and
NG2). The results of staining are summarized in Table 1. β-galactosidase+ cells were found in
the SVZ, just below the ependymal surface of the lateral ventricles. The increase in bulk
luciferase expression observed in Tet-PEG-PEI polyplex treated mice over PEI-PEG polyplex
treated mice (Fig. 2) is supported in the staining of over 100 tissue sections for each group,
with an average of 1.03 β-galactosidase+ cells/tissue section in Tet1-PEG-PEI polyplex treated
mice and 0.34 β-galactosidase+ cells/tissue section in PEI-PEG polyplex treated mice. In tissue
sections from mice injected with Tet1-PEG-PEI polyplexes, all β-galactosidase+ cells were
sox2+/nestin+ across over 30 stained sections and 18% of β-galactosidase+ cells were
vimentin+, indicating transfection of neural progenitors (Fig. 4, Table 1). In addition, β-
galactosidase+ cells were negative for all other markers listed above. In contrast, in tissue
sections from mice treated with PEI-PEG polyplexes, the population of β-galactosidase+ cells
comprised of nestin+/sox2+ (33%), vimentin+ (30%), S100β+ (25%), and vimentin/S100β+

(18%) subpopulations (Fig. 5, Table 1). 58% of transfected cells were positive for GT1b when
mice were treated with Tet1-targeted vehicles, compared with 13% when mice were treated
with untargeted vehicles.

DISCUSSION
There is an unmet need for treatment of neurodegenerative diseases. Neural progenitor cells
(NPCs) of the subventricular zone (SVZ) are an attractive target for gene therapy to increase
neurogenesis in the diseased brain [3]. Using a nonintegrating platform to deliver genes that
encode proteins to increase division, improve survival, and control fate of NPCs is particularly
suitable since expression of these proteins should be transient.

In this work, we describe the application of a PEG-stabilized, targeted gene delivery vehicle
that exclusively transfects NPCs when administered in vivo. We demonstrated that particles
formed were between 120–160 nm in size with positive surface charge and were stable in
physiological levels of salt (Fig. 1). The physicochemical properties of targeted and untargeted
complexes were similar and thus unlikely the cause of differences in cell specificity and
transfection efficiency observed. When these vehicles were delivered to the brains of adult
mice via the lateral ventricle, bulk analysis of tissue showed that targeted material was able to
mediate a ~2.5-fold increase in the ipsilateral hemisphere and a ~1.5-fold increase in the
contralateral hemisphere compared to untargeted material (Fig. 2). The increase in bulk
expression achieved using targeted over untargeted materials is comparable to previously
reported studies that deliver plasmid in vivo to the CNS [25–27]. Bulk expression level after
targeted delivery was sustained above glucose control for up to 10 days, which is a time length
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appropriate for stimulating cell proliferation as demonstrated by the delivery of growth factors
via osmotic pumps [28].

In order to investigate the distribution and phenotype of cells expressing the transgene β-
galactosidase, tissue sections were immunofluorescently labeled using antibodies against β-
galactosidase and cell-specific markers, the results of which are summarized in Table 1.
Transfected cells were found to be in the SVZ, just below the ependymal cell layer (Figs. 4
and 5). Besides mediating increased transgene expression (Fig. 3), β-galactosidase+ cells in
brains delivered with Tet1-targeted complexes are positively stained by antibodies to NPC-
associated proteins nestin and sox2 (Fig. 4) and negatively stained for all other cell-specific
markers tested. The proximity of transfected cells to the lateral ventricle wall together with the
positive staining for both nestin/sox2 and negative staining for GFAP is highly indicative of
NPCs [29]. In brains injected with untargeted complexes, transfected cells included several
subpopulations that were positive for nestin, sox2, vimentin, and S100β (Fig. 5). These results
suggest untargeted complexes transfect a heterogeneous population of cells, including NPCs,
radial glia, and immature astrocytes. Based on results from bulk luciferase measurements and
immunolabeling, Tet1-targeted complexes transfect cells more efficiently when compared to
untargeted complexes and are specific for NPCs.

We hypothesize that expression was limited to NPCs that reside in the SVZ due to several
reasons. First, expression was likely limited to NPCs in the SVZ and not other germinal niches
due to the proximity of the SVZ to the lateral ventricles. Second, it has been shown that the
success of PEI-based vehicles depends on cell division [30], allowing for passive targeting of
dividing NSC and NPC populations. Lastly, preferential transfection of NPCs by Tet1-
modified vehicles compared with unmodified vehicles (Figs. 4 and 5) indicates active targeting
via GT1b and is reflected by the number of transfected cells positively stained for GT1b found
after Tet1-mediated delivery (58%) as compared to untargeted delivery (13%). Although a
complete study of ganglioside expression in early neural cells has yet to be established, GT1b
has been observed to be expressed on the surface of neural progenitor cells [17]. Incomplete
GT1b staining of transfected cells may be due to below detectable GT1b expression or loss of
GT1b expression. Previous literature has reported that expression from ventricular delivery of
unPEGylated polyplexes prepared from linear PEI was largely limited to subependymal
GFAP+ neural stem cells and their progeny [9], although others have observed that expression
occurred in both ependymal and subependymal layers even with a nestin specific promoter
[31]. In our system prepared from PEGylated branched PEI, we found that expression after
delivery of untargeted vehicles was generally nonspecific, whereas targeted vehicles showed
exclusive transfection of sox2+/nestin+ cells.

Cultured NPCs were explored as an in vitro model to screen and optimize formulations since
cultured monolayers were shown to be positive for sox2 and nestin (Supplemental Information,
Figure S1). However, in vitro results did not corroborate with in vivo results when transgene
expression and particle association were studied in NPCs isolated from the SVZ of adult mouse
brains (Supplementary Information) as well as NGF-differentiated PC-12 neuron-like cells
(data not shown). These differences may be because the requirements for successful in vivo
delivery include cell-specific delivery in the presence of multiple cell-types as well as
optimization for three-dimensional cellular architecture. The discordance between the relative
efficiencies of delivery vehicles in vitro and in vivo has been observed previously [14, 32].

Before selecting direct injection into the lateral ventricle, several administration routes for
polyplex delivery were surveyed. Intrathecal delivery has been successfully used to delivery
PEI polyplexes [6]. In our hands, significant transfection was observed after intrathecal
delivery, but expression levels were highly variable between mice. Variability may have been
due to the technical difficulties associated with injecting into the small confines of the
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intrathecal space. It has been reported that co-delivery of mannitol can increase transgene
expression, presumably by providing an osmotic shock that would allow for a transient increase
in particle penetration [33]. Mannitol was delivered by co-injection with polyplex or
intravenously 20 minutes prior to polyplex injection. Although mannitol increased transfection
efficiency in some mice, observed increases were also variable. Lateral ventricular delivery
was chosen as the route of administration since it consistently yielded expression levels above
those observed in control glucose injections.

It was previously shown that PEGylation can adversely affect the intracellular trafficking of
gene delivery vehicles [34,35]. The negative effects of PEG on transfection efficiency are also
reflected in our studies in vitro, with unPEGylated PEI showing increased transgene expression
over PEGylated PEI (Supplementary Information, S2A). It may be that PEG decreases cell-
association (Supplementary Information, S2B). However, PEG is necessary for in vivo delivery
due to particle stabilization [23]. In initial studies, significant mouse morbidity (50%) was
observed when unPEGylated polyplexes were delivered, likely due to complex aggregation.

CONCLUSIONS
In this work, we described a targeted and salt-stabilized nonviral gene delivery system that
exclusively transfects neural progenitor cells. In addition, targeted vehicles mediated transgene
expression that was increased compared to untargeted vehicles. Despite Tet1-mediated
increases in transgene expression, the observed efficiency remains relatively low.
Incorporation of peptides to improve intracellular trafficking of delivery vehicles, such as the
use of membrane-active peptides for enhanced vesicular escape of vehicles or peptides to
mediate the nuclear delivery of vehicles may further increase efficiency of synthetic gene
delivery systems.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) Hydrodynamic diameters of PEI-PEG (PP), Tet1-PEG-PEI (TPP) and PEI complexes
formulated at N/P ratio 15. Diameters were measured in water (grey bars) and after the addition
of physiological levels of salt (white bars). (b) Surface charge PP and TPP complexes
formulated at N/P ratio 15. Triplicate formulations were characterized at each charge ratio.
Results are reported as mean diameter ± SD.
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Figure 2.
(a) Bulk luciferase activity in mouse brains 3 days after injection of glucose control (black
bars), DNA (dark grey bars), PEI-PEG complexes (light grey bars), and Tet1-PEG-PEI
complexes (white bars) (* p<0.05). (b) Brains were sectioned into the olfactory bulb (OB), left
(L) and right (R) hemispheres, and the hindbrain (HB).
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Figure 3.
Bulk luciferase activity in mouse brains 3, 7, 10, and 14 days post injection of Tet1-PEG-PEI
polyplexes. Whole brain expression is reported and is compared to glucose control (dashed
line).
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Figure 4.
Merged confocal images of immunofluorescently labeled 20 μm brain sections collected from
mice 3 days after injection with Tet1-PEG-PEI complexes shows β-galactosidase+ cells (green)
are located in the SVZ and are immunopositive for nestin (red; A) and sox2 (red; B). C and D
are rotated, zoomed single z-plane views to demonstrate marker co-localization (yellow).
Figure E shows a representative β-galactosidase+/GT1b+ positive cell and F shows
representative β-galactosidase+/GFAP− cells. Scale bars = 50 μm; white line indicates edge of
lateral ventricle (LV).
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Figure 5.
Merged confocal images of immunofluorescently labeled 20 μm brain sections collected from
mice 3 days after injection with PEG-PEI complexes shows β-galactosidase+ cells (green) are
located in the SVZ and that some cells are immunopositive for S100 (red; A) and vimentin
(red; B). Images C-D show examples of β-galactosidase+ cells that are negative for GFAP (red;
C), nestin (red; D), sox2 (red; E), and GT1b (red; F). Scale bars = 50 μm; white line indicates
edge of lateral ventricle (LV).
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Table 1

Summary of positive marker staining of β-galactosidase+ cells after Tet1-PEG-PEI or PEG-PEI delivery.

Marker Tet1-PEG-PEI PEG-PEI

nestin/sox2 100% 33%

GT1b 58% 13%

vimentin 18% 30%

S100β 0% 25%

olig2 0% 0%

NG2 0% 0%
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