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Virus-like particles (VLPs) present viral antigens in a native conformation and are effectively recognized by the
immune system and therefore are considered as suitable and safe vaccine candidates againstmany viral diseases.
Here we demonstrate that chimeric VLPs containing Rift Valley fever virus (RVFV) glycoproteins GN and GC,
nucleoprotein N and the gag protein of Moloneymurine leukemia virus represent an effective vaccine candidate
against Rift Valley fever, a deadly disease in humans and livestock. Long-lasting humoral and cellular immune
responses are demonstrated in a mouse model by the analysis of neutralizing antibody titers and cytokine
secretion profiles. Vaccine efficacy studies were performed inmouse and rat lethal challengemodels resulting in
high protection rates.
Taken together, these results demonstrate that replication-incompetent chimeric RVF VLPs are an efficient RVFV
vaccine candidate.

© 2009 Elsevier Inc. All rights reserved.
Introduction

Rift Valley fever virus (RVFV) is a devastating mosquito-borne
viral zoonotic disease that causes serious morbidity and mortality in
both humans and livestock. In ruminants, RVF is characterized by
substantial mortality of young animals (especially of lambs), fetal
deformities and abortion (Flick and Bouloy, 2005; Gerdes, 2004;
Swanepoel and Coetzer, 2003). In humans the disease is often
associated with benign fever but can lead to more complicated cases
such as retinal vasculitis, encephalitis, neurologic deficits, hepatic
necrosis, or fatal hemorrhagic fever (Flick and Bouloy, 2005; Geisbert
and Jahrling, 2004; Meegan, 1979). Interestingly, human case fatality
rates increased significantly during the last several years. While
historically less than 2% of infected individuals developed a fatal
hemorrhagic fever, analysis from recent outbreaks (2007/2008)
reveal a 20–30% fatality rate in humans (LaBeaud et al., 2008).
However, differences in case definition, accuracy in disease surveil-
lance methods and data gathering methodology likely impact these
numbers.

RVFV is a member of the Bunyaviridae family, which includes more
than 300 viruses grouped into five genera (Orthobunyavirus, Hanta-
ll rights reserved.
virus, Nairovirus, Phlebovirus, and Tospovirus). Bunyaviruses are
enveloped viruses with a tripartite, single-stranded RNA genome of
negative and sometimes ambisense polarity (Elliott, 1996; Elliott et
al., 1991; Schmaljohn and Hooper, 2001). The large (L) genomic RNA
segment encodes the RNA-dependent RNA polymerase (L), the
medium (M) segment the glycoprotein precursor, which is post-
translationally processed into the two mature spike proteins (G1 and
G2, or by the new convention: GN and GC), and in some viruses a non-
structural protein (NSM), while the small (S) segment encodes the
nucleoprotein (N), and in some viruses a non-structural protein NSS
(Elliott, 1996; Schmaljohn and Hooper, 2001).

RVFV has traditionally caused recurrent outbreaks affecting
humans and ruminants predominantly in Sub-Saharan Africa, but
spread to Egypt in 1977 and to the Arabian Peninsula in 2000 (Al-
Hazmi et al., 2003; Anonymous, 2000; Balkhy and Memish, 2003;
Madani et al., 2003; Shoemaker et al., 2002). More recently, RVFV
circulated in East Africa causing serious epidemics in Kenya, Tanzania,
Somalia, Sudan and was reported in the Comoros Islands (LaBeaud et
al., 2008; WHO, 2007) in 2007, and subsequently expanded to
Madagascar and South Africa in 2008 [http://www.fao.org/docs/
eims/upload//242253/EW_rvf_apr08.pdf].

RVFV is a prototype of emerging/re-emerging pathogens and is
classified as a Category A High Priority Pathogen by the National
Institute for Allergy and Infectious Diseases (NIAID) (http://www3.
niaid.nih.gov/topics/BiodefenseRelated/Biodefense/research/CatA.

http://www.fao.org/docs/eims/upload//242253/EW_rvf_apr08.pdf
http://www.fao.org/docs/eims/upload//242253/EW_rvf_apr08.pdf
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mailto:rflick@bpsys.net
http://dx.doi.org/10.1016/j.virol.2009.11.001
http://www.sciencedirect.com/science/journal/00426822


Fig. 1. Characterization of RVF VLPs. (A) Western blot analysis of chimeric RVF VLPs
(chimVLP): concentrated supernatants from 293-gag cells transfected with RVFV G and
N expression plasmids analyzed by Western blotting using antibodies specific for RVFV
GN, GC, N and Moloney murine leukemia virus (MoMLV) gag. (B) Western blot analysis
of RVF VLPs: Concentrated supernatants from 293 cells transfected with RVFV G and N
expression plasmids analyzed by Western blotting using antibodies specific for RVFV
GN, GC and N. (C) Negative staining of RVFV G and N transfected 293 cells fixed with
glutaraldehyde and stained with uranyl acetate and examined by transmission electron
microscopy. Scale bar represents 200 nm. Left panel: arrows point to budding VLPs;
right panel: arrows indicate RVFV G spikes protruding from the VLP membrane. (D)
Western blot analysis of RVF chimVLPs: Concentrated supernatants from 293-gag cells
transfected with RVFV N and wild type (WT) or codon-optimized (CO) RVFV G
sequences.
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htm), is on the Center for Disease Control (CDC) Bioterrorism Agents
(http://www.bt.cdc.gov/agent/agentlist-category.asp#a) and is also
classified as a Department of Health and Human Services (HHS),
United States Department of Agriculture (USDA) overlap select agent
(USDA, 2005).

The lack of prophylactic and therapeutic measures, the potential
for human-to-human transmission, and the significant threat to
livestock associated with RVFV make infection with this pathogen a
serious public health concern not only in endemic, developing
countries, but also in many non-endemic developed countries due
to recent bioterror threats, and clearly illustrates the need for more
RVFV vaccine research and development.

MP12, a highly attenuated (by 5-fluorouracil treatment in cell
culture) human virus isolate of RVFV (Caplen et al., 1985; Vialat et al.,
1997), has recently been tested in a phase II safety/efficacy clinical
trial (ClinicalTrials.gov identifier: NCT00415051) to determine if it is
safe to give to humans (results not yet published). MP-12 also has
potential veterinary applications (Hunter et al., 2002).

A formalin-inactivated RVFV vaccine, TSI-GSD-200, has been
developed; however, it is not licensed and not commercially available
(Pittman et al., 1999). TSI-GSD-200 is only provided to veterinarians
working in endemic areas, high containment laboratory workers and
others at high risk for contracting RVFV (Pittman et al., 1999).
Unfortunately, this vaccine is (i) expensive, (ii) difficult to produce,
(iii) in short supply, (iv) requires larger dose relative to an attenuated
vaccine and three initial inoculations followed by a 6-month booster
(v) and requires continued annual boosters to maintain protective
immunity (Frank-Peterside, 2000; Kark et al., 1982; Kark et al., 1985;
Niklasson et al., 1985).

The use of virus-like particles (VLPs) is a promising approach for
the development of a safe and efficient RVFV vaccine. Expression of
structural proteins of many non-enveloped and enveloped viruses
leads to the formation of VLPs (Garcea and Gissmann, 2004; Grgacic
and Anderson, 2006a, 2006b; Noad and Roy, 2003). Such VLPs
frequently exhibit a morphology very similar to that of wild-type (wt)
viruses (Johnson and Chiu, 2000). Since VLPs have a tropism similar to
that of the wt virus and show comparable cellular uptake and
intracellular trafficking, the formation of VLPs can be used to study
virus assembly and morphogenesis, budding processes, genome
packaging, receptor binding, and virus entry (Bos et al., 1997; Johnson
and Chiu, 2000; Li et al., 2003; Licata et al., 2004; Overby et al., 2006;
Schmitt et al., 2002; Ye et al., 2006). Especially for viruses classified as
high containment agents, e.g., RVFV and Ebolavirus, the development
of VLP systems are of practical use because subsequent work can be
performed under lower biosafety conditions (Habjan et al., 2009;
Naslund et al., 2009; Warfield et al., 2004; Watanabe et al., 2004).
VLPs present viral antigens in a native conformation and are
effectively recognized by the immune system (Grgacic, 2006; Grgacic
and Anderson, 2006; Noad and Roy, 2003).

Many promising vaccine candidates based on VLPs are at various
stages of development, including vaccine candidates for hepatitis B
virus (HBV), human papillomavirus (HPV), Norwalk virus, human
polyomavirus, Bluetongue virus, rotavirus, retroviruses, bunyaviruses
and filoviruses (Garcea and Gissmann, 2004; Grgacic, 2006; Habjan et
al., 2009; Naslund et al., 2009; Noad and Roy, 2003).

These promising attempts to generate VLP-based vaccines against
many different animal and human pathogens encouraged us to
evaluate RVF VLPs as vaccine candidates against RVFV. Here we
describe the generation of chimeric RVF VLPs, a novel concept for
bunyaviruses, the optimization of VLP production and their successful
use as vaccine candidates. Vaccine efficacy was analyzed through
immunological studies of vaccinated mice and in lethal challenge
studies in two different rodent models. High protection rates and
robust and long-lasting immune response of vaccinated animals
demonstrate that chimeric RVF VLPs are a promising approach to
generate safe and efficient RVFV vaccines.
Results

Generation and characterization of RVF VLPs

RVF VLPs were generated by transient transfection of HEK-293 or
293-gag cells (HEK-293 cells that constitutively express Moloney
murine leukemia virus (MoMLV) gag protein) with expression
plasmids encoding the RVFV glycoproteins and the nucleoprotein
(N). We initially focused upon the generation of chimeric (MoMLV
gag-containing VLPs, designated RVF chimVLPs) because it has been
previously shown that the inclusion of retroviral gag can increase the
uniformity and quantity (Gheysen et al., 1989; Haffar et al., 1990;
Haynes et al., 1991; Rovinski et al., 1992; Szecsi et al., 2006) and
stability (Hammonds et al., 2003) of VLPs. In addition, MoMLV gag
protein could have an adjuvant-like effect. RVF VLPs were harvested
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Fig. 2. Optimization of RVF VLP production. (A) Different plasmid ratios to determine
optimal chimeric RVF VLP production: 293-gag cells were transfected with 15, 9 or 3 μg
of the RVFV G expression plasmid, and co-transfected with 0, 3, 9 or 15 μg RVF N
expression plasmid as indicated. Concentrated supernatants of a 60 h post-transfection
harvest were analyzed by Western blot using antibodies specific for RVFV GN. (B) Time
course experiment to optimize RVF VLP yields: Western blot analysis was performed
using antibodies specific for RVFV GN and GC, as indicated at each blot of RVF chimVLPs
and VLPs harvested at select times post-transfection. Densitometric analysis of band
intensity, displayed as %maximum band intensity for a particular blot, is represented by
histograms above each Western blot. Harvest times are indicated.
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from tissue culture supernatants from 48 to 96 h post-transfection,
concentrated by tangential flow filtration and purified by ultracentri-
fugation through a 20% sucrose cushion. To analyze VLP components,
samples were fractionated by SDS-PAGE and analyzed by Western
blots using RVFV and MoMLV-specific antibodies.

Specific signals were detected confirming the presence of RVFV GN,
GC and N in 293 and 293-gag cell-derived VLP preparations (Fig. 1A,
first three panels and Fig. 1B), as well as MoMLV gag in the chimeric
VLP (chimVLP) preparation derived from 293-gag cells (Fig. 1A, right
panel). Note that the gag species are detected as both precursor (arrow
1) and mature, proteolytically processed species (arrows 2 and 3)
(Suomalainen et al., 1996; Yoshinaka et al., 1985).

Transmission electron microscopy was used to analyze the
structure of the generated VLP preparations, demonstrating their
uniform nature and size. Newly synthesized VLPs are formed at
intracellular membranes, presumably the Golgi apparatus (based on
studies of bunyavirus glycoproteins; Andersson et al., 1997; Gerrard
and Nichol, 2002; Haferkamp et al., 2005; Shi and Elliott, 2007), and
bud into vesicles analogous to RVF virions (Fig. 1C, left panel). RVFV
glycoprotein spikes embedded in the VLP membranes are visible (Fig.
1C, right panel, arrows).

We next attempted to optimize RVF VLP production by using
expression plasmids containing a codon-optimized RVFV G gene.
Suboptimal codon usage often leads to the inefficient expression of
viral protein genes in mammalian cells (Barrett et al., 2006; Haas et al.,
1996; Zhou et al., 1999). We therefore compared the amount of RVF
chimVLPs generated by 293-gag cells transfected with expression
plasmids encoding either native or codon-optimized (Babcock et al.,
2004) RVFV G genes. No significant difference in GN content of
concentrated and purified VLP preparations was observed when
separatedbySDS-PAGEandanalyzedbyWesternblot (Fig. 1D).However,
the use of the codon-optimized RVFV G appears to have a minimally
beneficial effect on VLP yield. Similar results were obtained when RVF
VLPs were generated in 293 cells (data not shown). Therefore, for all
subsequent experiments the codon-optimized sequence was utilized.

To further characterize the individual components of the RVF VLPs,
sucrose density gradient fractionation was employed. This technique
has been successfully used in other studies to elucidate the specific
components in VLP preparations (Haynes et al., 2009; Ye et al., 2006;
Young, Smith, and Ross, 2004). The basis for this approach is that
chimVLPs are of a different density than VLPs based on the different
protein composition. Results suggest that RVFV GN and MoMLV gag
are located within the same particle in the generated chimVLPs (data
not shown). Subsequent immunoprecipitation experiments with
RVFV GN antibodies and protein A/G-coated agarose beads confirm
these results (data not shown).
Fig. 3. Neutralizing antibody titer in RVF VLP-vaccinated mice determined by plaque
reduction neutralization tests. Mouse sera were collected after three immunizations
with RVF chimVLPs, RVF VLPs with or without RVFV N, Ebolavirus GP-pseudotyped
MoMLV (Control 1) and from unimmunized mice (Control 2). The neutralizing
antibody titer was determined as the reciprocal of the dilution of five two-fold serial
dilutions of sera, respectively. Neutralizing antibody titer is considered positive at the
lowest initial serum dilution that results in N80% (PRNT80) reduction of the number of
plaques as compared to the virus control.
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Optimization of RVF VLP generation

Generation of VLP-based vaccine candidates for RVFV from
mammalian cells is labor-intensive and costly in regard to both
time and reagents. Therefore it is critical to perform the necessary
process development to establish efficient manufacturing proce-
dures. Therefore, additional optimization experiments were per-
Fig. 4. Antigen-specific cytokine secretion by splenocytes of chimeric RVF VLP-vaccinated
harvested at 24, 96 or 168 hpost-antigen stimulation frommice immunizedwith RVF chimVLP
measure select cytokines. Time of harvest and the cytokine measured are described at the to
mouse are indicated by red bars, and data from RVF chimVLP-vaccinated mice are indicated b
results as the main graphs except with reduced scales (Y-axis, pg/ml) to show that secretio
cytokine signal.
formed to maximize RVF VLP production in adherent mammalian
cells.

Different amounts of expression plasmids were transfected in the
first step to optimize VLP production. Three different amounts (3, 9
and 15 μg) of the RVFV G expression plasmid were used and analyzed
with increasing amounts of RVFV N expression plasmid (from 0 to
15 μg). RVF chimVLPs were harvested at 12-h intervals post-
mice measured by multiplex analysis. Tissue culture supernatants from splenocytes
s, influenzaVLPs or an unvaccinatedmousewere subjected tomultiplex bead analysis to
p and left of the panels, respectively. Data from splenocytes harvested from the control
y blue bars. Stimulatory antigens are indicated below the graphs. Insets show the same
n is detected at many points but is masked by the scale required to illustrate maximal



Fig. 5. RVF VLP efficacy studies in mice. RVF VLP-vaccinated mice (n=16) were
challenged with 1×103 pfu of RVFV strain ZH501 under BSL-4 conditions. Mice
immunized with an Ebolavirus GP-pseudotyped MoMLV vaccine and unimmunized
mice served as controls 1 and 2, respectively. Data are shown in a Kaplan–Meier format.
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transfection, purified and concentrated as described above and
fractionated by SDS-PAGE. RVF chimVLP generation was measured
by Western blot analysis using antibodies specific for RVFV GN.

As shown in Fig. 2A, generation of RVF chimVLPs is strongly
affected by the amount of the RVFV G- and N-encoding expression
plasmids used for transfection of 293-gag cells. A high amount
(≥9 μg) of RVFV N expression plasmid combined with a lower
amount of RVFV G expression plasmid (3 μg) (molar ratio RVFV
N:G=4.3) resulted in the best VLP yields (as indicated by GN

signal). These conditions also resulted in the most detectable RVFV N
in the VLP preparations (data not shown). Interestingly, this analysis
also shows that RVF VLPs can be generated without inclusion of the N
expression plasmid by transfection of RVFV glycoprotein expression
plasmids into 293 cells (Fig. 2A, lanes 4, 8 and 12).

Previous studies demonstrate that the inclusion of a minigenome
encoding a reporter gene can be a useful tool for the determination of
VLP titer and to potentially increase the N content in VLPs (Habjan et
al., 2009; Overby et al., 2006). Therefore, an M segment-based
minigenome under the control of a RNA polymerase I promoter
(Billecocq et al., 2008) was co-transfected in concert with the RVFV G
and N expression plasmids to determine if encapsidation of this
minigenomewith RVFV N and subsequent packaging into the budding
VLPs could increase overall N content. However, no significant change
in either VLP yields or N content was observed (data not shown).

Next, the optimized transfection scheme (3 μg RVFV G and 9 μg
RVFV N expression plasmids) was used for the determination of the
optimal times to harvest RVF VLPs post-transfection to obtain the best
yields. Focusing the time of harvest to a shorter interval will clearly
save substantial time and reagents. Therefore, time course experi-
ments were performed in which RVF chimVLPs and VLPs, generated in
293-gag and 293 cells, respectively, were harvested at 12-h intervals
post-transfection, purified, concentrated and analyzed by Western
blots with antibodies specific for RVFV GN and GC. Maximum RVFV GN

and GC signals are observed at the 36 and 60 h time points, indicating
that generation of VLPs is optimal between 24 and 60 h post-
transfection (Fig. 2B). In addition, these results demonstrate that six
harvests, at 24, 36, 48, 60, 72 and 84 h post-transfection will recover
most of the RVF chimVLPs or RVFV VLPs produced. After optimizing
expression strategies, transfection conditions (data not shown),
plasmid amounts, plasmid ratios and harvest times, we are able to
generate sufficient VLP material for subsequent studies.

Immunogenicity of RVF VLPs

We next addressed the question of whether the generated RVF
VLPs can be used as a replication-incompetent vaccine candidate. We
first analyzed the immune response in mice (neutralizing antibody
titers, durability and cytokine expression levels) induced by RVF VLPs
and subsequently performed protection studies in two different
rodent models.

Viral vaccine efficacy often correlates with seroconversion —

specifically the generation of virus-neutralizing antibodies (Khanam
et al., 2006; Ye et al., 2006). Therefore, we first performed durability
studies to determine whether RVF VLPs induce long-lasting RVFV
neutralizing antibodies. Mice were immunized subcutaneously (s.c.)
three times with RVFV chimVLPs at 9-day intervals, and blood was
collected 161 days post 3rd vaccination (179 days post first
vaccination). Plaque reduction neutralization PRNT80 assays (Man-
giafico et al., 1988) using RVFV ZH501-infected VeroE6 cells were
performed by combining serum with 60 pfu ZH501 virus. The
neutralizing antibody titer is considered positive at the highest
serum dilution that inhibits 80% of the plaques compared with the
virus control titration. As shown in Fig. 3, neutralizing titers of N1:640
were obtained for all RVF chimVLP and RVF VLP - N (no nucleopro-
tein) vaccinated mice (n=4), while three of four RVF VLP + N-
vaccinated mice developed titers of N640 and one of 320. No
seroconversion was detected in a control group vaccinated with an
unrelated MoMLV-based vaccine (Ebolavirus GP-pseudotyped
MoMLV; Control 1) or non-vaccinated mice (Control 2). Such high
neutralizing titers observed more than 6 months post-vaccination
indicates a durable RVFV vaccine candidate and warrants further
evaluation of these RVF VLP-based vaccine candidates.

Next, we studied antigen-specific secretion of select cytokines by
splenocytes isolated from vaccinated mice to determine whether RVF
VLP-based vaccines elicit both humoral and cellular immunity. These
responses have been correlated with vaccine efficacy in live challenge
models (Wack et al., 2008). Importantly, anti-viral immunity often
correlates with the development of cellular immune response
(Warfield et al., 2005a). Splenocytes were harvested from mice
vaccinated three times with RVF chimVLPs (days 0, 9 and 18) 31 days
post final vaccination and cultured in 24-well dishes. Cells were
stimulated by the addition of heat-inactivated live attenuated RVFV
strainMP12 (Caplen et al., 1985) or a control antigen, heat-inactivated
influenza A virus strain A/HK/1/68. Supernatant samples were taken
at 24, 96, and 168 h and subjected to cytokine analysis using a bead-
based multiplex system (Bioplex, BioRad). Splenocytes from vacci-
nated mice secrete antigen-specific cytokines in response to MP12
stimulation, but not to the unspecific influenza antigen (Fig. 4, blue
bars). Splenocytes from the control (unvaccinated) mouse do not
respond to either stimulus (Fig. 4, red bars). IL-2, IL-4, IL-5 and IFN-γ
production is elicited by the RVFV-specific antigen, consistent with
both humoral (TH2) and cellular (TH1) responses (Chung et al., 2008;
Fromantin et al., 2001). Interestingly, cytokine levels peak at different
times post-stimulation, which suggests that antigen-dependent
expansion of T cells is occurring in vitro.

RVF VLP vaccine efficacy studies

While the immunological data (neutralizing antibody titers and
cytokine secretion levels) suggests the tested RVF VLP-based vaccine
candidates are immunogenic, these immune correlates alone are not
always predictive of efficacy in a live challenge model. Therefore,
groups of 20 mice were immunized on days 0, 9, and 18 with select
vaccine candidates: chimeric VLPs produced in 293-gag cells
(chimVLP), VLPs produced in 293 cells with RVFV G and N (VLP +
N) and VLPs produced in 293 cells without RVFV N (VLP - N). Forty-six
days after the third vaccination (64 days post first vaccination), 16 of
20 animals were challengedwith 103 pfu RVFV ZH501 under biosafety
level 4 (BSL-4) conditions and observed for signs of disease for 18 days
(Fig. 5). The remaining four mice per group were used for the PRNT80
experiments (Fig. 3). As expected, all animals vaccinated with PBS
only or a non-specific MoMLV-based vaccine (control 1 and 2,
respectively) succumbed to RVFV challenge within the first 4 to 6
days. This demonstrates that MoMLV-specific components of the
vaccines do not protect mice from RVFV challenge. Nine of 16 (56%) of
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the VLP + N vaccinated mice survived lethal challenge, while only
three of 16 (∼19%) survived if immunized with VLP - N vaccine. These
results show that protection from RVFV challenge is dependent upon
the presence of RVFV G proteins and is enhanced by the presence of
RVFV N. chimVLP-vaccinated mice showed the best survival rates, as
11 of 16 (68%) mice survived the lethal challenge dose. Significance
was determined using theMantel–Cox test, and significant differences
exist between groups including chimVLP and VLP - N (P=0.001),
VLP + N and VLP - N (P=0.0196), all three vaccinated groups and
controls 1 and 2 (P=0.0001 (chimVLP), P=0.0001 (VLP + N) and
P=0.0007 (VLP - N). There is no significant difference between the
chimVLP and VLP +N groups (P=0.393).

Rats present another important alternative animal model for RVFV
disease and are often considered more relevant than mice (Anderson
and Peters, 1988; Anderson et al., 1991b; Bird, Albarino, and Nichol,
2007). Therefore, after promising data were obtained in the mouse
model, RVF VLP-based vaccine efficacy (survival) was next analyzed
in a lethal rat challenge model. Our objective was to test only the best
vaccine candidate (based on the immunological andmouse protection
studies) with a minimum number of animals. Groups of six rats were
immunized three times at 2-week intervals with the chimeric RVF VLP
vaccine candidate or a sterile saline control. Sixty-seven days post
third vaccination (95 days post first vaccination), rats were chal-
lenged with a high dose of 105 pfu RVFV ZH501 and examined for
signs of disease for 16 days. Body weight was monitored daily as an
indication of the overall health of the rats. As shown in Fig. 6A, while
all control rats succumbed to disease by day 4 post-challenge, the RVF
chimVLP vaccine candidate protected 100% of the vaccinated rats.
Unvaccinated control rats showed rapid and substantial weight loss
before succumbing to challenge, whereas RVFV chimVLP-vaccinated
animals generally maintained their weight throughout the course of
the experiment (Fig. 6B).
Fig. 6. RVF VLP efficacy studies in rats. Results are shown as Kaplan–Meier survival
curves and weights of VLP-immunized rats after RVFV challenge. (A) Rats (n=6) were
inoculated with the RVF chimVLP vaccine candidate and then challenged with 1×105

pfu of RVFV strain ZH501. Control rats were immunized with sterile saline. (B) The
mean and standard deviation of the weight change for RVF chimVLP vaccinated
(circles) and control (squares) rats are shown for each time point.
Overall, immunological as well as lethal challenge studies in two
different rodent models clearly demonstrate that RVF VLP-based
vaccines are a promising concept for the development of a vaccine for
use in humans and livestock. Additional experiments to determine
minimum vaccine dose and vaccination schedule as well as safety and
efficacy studies in non-human primates are required to further
evaluate this promising vaccine platform.

Discussion

The structural proteins of many viruses can assemble into VLPs
(Grgacic and Anderson, 2006). VLPs are often described as being more
efficacious in the activation of immune responses than conventional
protein immunogens/subunit vaccines because their immunogenic
protein components are displayed in a high density, more authentic
conformation, often with intact biochemical functionality that is
effectively immunogenic (Garcea and Gissmann, 2004; Grgacic, 2006;
Noad and Roy, 2003). This is further enhanced by the particulate nature
of VLPs that appears to be optimal for uptake by dendritic cells (Fifis et
al., 2004). In addition, they are safer than inactivated and attenuated
virus vaccines because they are usually free of viral geneticmaterial and
therefore are not encumbered by the possible safety-related drawbacks
including reversion, recombination and re-assortment. At this stage,
the ability to developVLPs does not appear to be limited to anyone type
of virus or virus family, or by the complexity of the virus particle.

Mimicking the structure of virus particles allows the use of lower
doses of antigen to elicit a similar protective response when compared
to subunit vaccines (Noad and Roy, 2003). In addition to their ability to
stimulate B-cell-mediated immune responses, VLPs have been shown to
be highly effective at stimulating CD4 proliferative and cytotoxic T
lymphocyte responses (Murata et al., 2003; Paliard et al., 2000;
Schirmbeck et al., 1996). This feature of VLP-based vaccines likely
plays amajor role in their effectiveness as vaccines against viral diseases.
The well-documented immunogenicity of VLPs is likely facilitated by
their interaction with dendritic cells (Warfield et al., 2003).

Several VLP-based vaccines are in human clinical trials or are FDA-
approved, including those for hepatitis B virus (Andre and Safary,
1987; McAleer et al., 1984; Sitrin et al., 1993), trivalent influenza
H1N1, H3N2 and B vaccine (“FluBlok”) (Cox et al., 2008; Treanor et al.,
2007), H5N1 “bird flu” (Perrone et al., 2009), human papillomavirus
(2007; Giannini et al., 2006; Harper et al., 2004; Harro et al., 2001;
Joura et al., 2007), human immunodeficiency virus (Young et al.,
2006) and Norwalk virus (Tacket et al., 2003). Other VLP-based
vaccines with very promising pre-clinical results include VLPs for the
severe acute respiratory syndrome (SARS) coronavirus (Lokugamage
et al., 2008), human polyomavirus (Goldmann et al., 1999), rotavirus
(Ciarlet et al., 1998; El-Attar et al., 2009; Jiang et al., 1999), and Ebola
and Marburg viruses (Swenson et al., 2008; Swenson et al., 2005;
Warfield et al., 2003; Warfield et al., 2005b; Warfield et al., 2007).
Additionally, VLP vaccines also have important agricultural applica-
tions, including promising vaccines for livestock diseases including
bluetongue (Noad and Roy, 2003; Roy, 2000; Roy et al., 2009; Roy and
Noad, 2008) and foot-and-mouth (Li et al., 2008; Remond et al., 2009).

Few studies have been undertaken to develop VLPs for bunya-
viruses. Bunyamwera VLPs were generated by co-expression of GN, GC

and NSm, in addition to a minigenome system (bunyamwera L, N and
minigenome) in mammalian cells and were used to identify viral
protein components required for virus assembly (Shi et al., 2009; Shi
et al., 2006; Shi et al., 2007). Similarly, it has been shown that the
expression of recombinant GN and GC glycoproteins of Uukuniemi
(UUK) virus, a phlebovirus closely related to RVFV, leads to the
assembly and budding of VLPs from transfected mammalian cells
(Overby et al., 2007a; Overby et al., 2006; Overby et al., 2007a, 2007b).
These VLPs are similar in structure to wt virus and are neutralized by
UUK-specific antibodies. However, no immunological in vivo studies
were performed to determine immunogenicity.
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Generation of RVFV VLPs in insect cells has been demonstrated by
Liu et al. (2008) using a single recombinant baculovirus that
expresses the RVFV glycoproteins (GN/GC) and the N protein (Liu et
al., 2008). Efficient generation of RVF VLPs in mammalian cells has
been recently demonstrated by Habjan et al. (2009) using transfected
DNA encoding the complete RVFV M segment as well as the RNA
polymerase L, the nucleoprotein N and a GFP-expressing minigenome
(Habjan et al., 2009; Naslund et al., 2009). Näslund et al. (2009)
showed that these RVF VLPs can be used for vaccine studies. Three
intraperitoneal injections of 1×106 RVF VLPs in mice induces
antibody titers from 1:300 to 1:900 against GN and GC proteins but
does not result in the development of detectable N-specific
antibodies. Importantly, these VLPs protect 11 of 12 vaccinated
mice from lethal virus challenge (2.4×104 pfu), whereas only 1 of 12
survived in the unvaccinated control group (Naslund et al., 2009).

The generation of chimeric RVF VLPs and its successful use as a
vaccine candidate is unique to the field of bunyaviruses. We have
established an efficient system to generate RVFV chimVLPs and VLPs
from 293-gag and 293 cells (Figs. 1 and 2). These VLPs are
immunogenic as indicated by the generation of neutralizing anti-
bodies in vivo by immunized mice (Fig. 3) and antigen-specific
secretion of immune-related cytokines by splenocytes from vaccinat-
ed mice (Fig. 4). Furthermore, these VLP-based vaccine candidates are
partially protective in mice and 100% protective in rats against lethal
challenge (Figs. 5 and 6). Interestingly, RVF VLP production requires
only the expression of the two glycoproteins GN and GC, and therefore
RVFVN is not required.While consistent with findings by Overby et al.
(2006) who were able to generate UUK and bunyamwera VLPs
without N, this contradicts recent findings that suggest RVF VLPs
could only be generated through expression of RVFV glycoproteins
together with RVFV N (as part of the minireplicon system) (Habjan
et al., 2009). A possible explanation for this discrepancy is that the use
of different expression systems (e.g., chicken β-actin vs. immediate-
early cytomegalovirus promoter) leads to substantially different
amount of RVFV G being produced, and RVF VLPs derived only from
the expression of RVFV G requires high levels of expression.

The generation of RVF VLPs lacking the N protein facilitates the
rational vaccine design for the generation of a safe and highly efficient
RVFV vaccine following the DIVA (Differentiating Infected from
Vaccinated Animals) concept to differentiate vaccinated from infected
individuals (see Bird et al., 2008; Capua et al., 2004). Because RVFV-
specific antibodies against the N proteins are easily detected in
infected individuals, a vaccine candidate lacking the N antigens
facilitates DIVA. However, further studies have to be performed (e.g.,
increased vaccine dose, different adjuvants) to increase N-lacking VLP
vaccine efficiency (see Fig. 5).

chimVLPs containing a retroviral gag protein (either MoMLV or
simian immunodeficiency virus (SIV) gag) and the antigen of interest
(e.g., influenza hemagglutinin and neuraminidase) have been recently
described (Guo et al., 2003; Haynes et al., 2009). Unfortunately, the
generation of RVF chimVLPs is more complicated because RVFV G and
MoMLV gag localize to the Golgi (Gerrard and Nichol, 2002;
Schmaljohn and Hooper, 2001; Wasmoen et al., 1988) and plasma
membranes (Soneoka et al., 1997), respectively, in mammalian cells.
However, over-expression of RVFV G leads to some GN/GC localization
at the cell surface (Filone et al., 2006; Gerrard and Nichol, 2002;
Gerrard and Nichol, 2007; Liu et al., 2008), which allows the
generation of RVF chimVLPs. Further attempts to increase RVFV G
surface localization by generating chimeric RVFV G proteins contain-
ing the ectodomain of RVFV G and the transmembrane domain and
cytoplasmic tail of the MoMLV Env (C-terminal 56aa of the envelope
polyprotein, accession number GI:331936), which removes a putative
Golgi retention signal of RVFV GN, did not significantly increase RVFV
G content on cell surfaces as demonstrated by immunofluorescence
studies and did not result in increased chimVLP yields (data not
shown).
Optimization of VLP production is important for the ability to
scale-up for the generation of material required for non-human
primate and livestock studies and ultimately clinical grade vaccine
production. First, as seen in Fig. 2A, the ratio of transfected expression
plasmid for the RVFV G and N proteins influences VLP yields. Second,
optimal generation of VLPs is clearly observed when the N plasmid is
included, and increasing amounts of N expression plasmid enhances
the generation of RVFV VLPs. Similar findings were also reported for
the generation of UUK VLPs (Overby et al., 2006). The addition of a
RVFV-specific minigenome did not significantly increase the N
content of generated VLPs despite the fact that VLPs were able to
package minigenome and transfer reporter gene activity into VLP-
infected cells (M. Bouloy and R. Flick, unpublished data). This
contradicts previous findings by Overby et al. (2006) who showed
that omission of a minigenome leads to almost no nucleoprotein
incorporation into UUK VLPs. Generation of VLPs is optimal between
24 and 60 h post-transfection (Fig. 2B) as determined via time course
experiments. Furthermore, multiple harvests during a 120-h time
period post-transfection results in higher VLP yields compared to less
frequent harvests. This is consistent with our previous studies which
show that multiple harvests of Ebolavirus and Lassa virus chimVLPs
yields substantially more VLPs compared to a single harvest or
collections at intervals longer than 12 h (data not shown). This might
reflect VLP stability or binding to the producing cells.

While inactivated viral vaccines are often ineffective at eliciting
neutralizing antibodies (Green et al., 2001), robust vaccines can elicit
the development of neutralizing antibodies that are maintained for
prolonged times (Kan et al., 2007). A PRNT80 of 1:40 is generally
accepted as protective against RVF disease inmice (Peters et al., 1986),
rats (Anderson et al., 1991a; Anderson, Slone, and Peters, 1987),
hamsters (Niklasson et al., 1984) and Rhesus macaques (Peters et al.,
1988). Pittman et al. (1999) examined the neutralizing antibody
responses in 598 human subjects vaccinated with the TSI-GSD-200
inactivated RVFV vaccine. 540 (90.3%) had serum neutralizing
antibody titers N1:40 after their primary series of three injections
while 58 individuals (9.7%) had titers of b1:40. PRNT80 N1:40 was
maintained for 183 days in 85% of recipients but decreased to only 35%
at 1 year indicating that durability might be an issue with this par-
ticular vaccine.

Correlation between the development of neutralizing antibodies
and protective efficacy for RVFV vaccines has also been shown more
recently in several systems. Naslund et al. (2009) showed that five of
six mice vaccinated with 1×106 RVF VLPs developed neutralizing
antibody titers (PRNT80) from 250 to 1250. Eleven of 12 vaccinated
mice were protected from lethal challenge. Bird et al. (2008) showed
in a rat model that neutralizing antibody titers (PRNT50) of 1:640–
1:7040 were obtained with a highly attenuated RVFV strain lacking
the NSs and NSm genes that is 100% protective from lethal challenge.

Here we demonstrate that RVF VLPs induce neutralizing antibody
titers of ≥1:640 detectable 6 months post-immunization (Fig. 3),
indicating the robustness and durability of the VLP-based RVFV
vaccine candidates. Interestingly, as seen in Fig. 3, while similar
neutralizing antibody titers are generated by RVF VLPs with or
without N, these results do not correlate with vaccine efficacy in the
mouse model, as seen in Fig. 5, where N-containing RVF VLPs are
substantially more efficacious compared to VLPs lacking RVFV N. As
demonstrated with DNA vaccines expressing only the RVFV M ORF,
while it is likely that immunity to RVFV is determined by the response
to the RVFV G (Lagerqvist et al., 2009; Spik et al., 2006; Wallace et al.,
2006), the results described above suggest that N might represent an
important component of an efficacious RVFV vaccine. It has been
demonstrated that both RVFV N (Lagerqvist et al., 2009;Wallace et al.,
2006) and Toscana virus (a related bunyavirus) N (Gori Savellini et al.,
2008) are partly protective against lethal challenge in mice.
Interestingly, while previous passive transfer studies would suggest
that the generation of neutralizing antibodies to RVFV GN and GC is
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predictive of vaccine efficacy (Besselaar and Blackburn, 1991;
Schmaljohn et al., 1989), our RVF VLP without N, while sufficient for
the generation of neutralizing antibodies (see Fig. 3), is not efficacious
in the mouse challenge model (see Fig. 5).

Furthermore, we were able to demonstrate that RVF VLPs clearly
induce antigen-specific cytokine secretion by isolated splenocytes
from vaccinated animals (Fig. 4). Consistent with these results,
Ebolavirus VLPs produced in mammalian and insect cells have been
shown to stimulate secretion of cytokines such as IL-6, IL-10, IL-12,
and TNF-α from dendritic cells (Bosio et al., 2004; Ye et al., 2006).
Taken together, measurement of immune correlates clearly demon-
strate that VLPs are immunogenic; however, only vaccine efficacy
studies can clearly demonstrates the potency of vaccine candidates.

We therefore employed two different rodent models to determine
RVF VLP-based vaccine efficacy. The results shown in Figs. 5 and 6
clearly demonstrate that our RVF VLP vaccine candidates are partially
protective in mice and fully protective in rats. Importantly, RVFV
ZH501 challenge in rats was performed with a 2 log10 higher dose
than is often reported in the literature (see Bird et al., 2008) to ensure
100% lethality in the model and to demonstrate vaccine potency.

Overall, this novel approach of using chimeric RVF VLPs as vaccine
candidates yielded promising immunological and efficacy data in two
different rodentmodels and sets a strong precedent for the generation
of an efficacious vaccine against RVFV that is urgently needed for the
high containment laboratory worker, indigenous people in endemic
areas, and for the Strategic National Stockpile and National Veterinary
Stockpile as protection against the emergence of this disease and for a
potential bioterror event.

Materials and methods

RVFV expression vectors

RVFV glycoprotein (G) expression plasmids
RNA was purified from MP12-infected Vero cells using a QIAamp

Viral RNA Mini Kit (QIAGEN). MP12 sequences were chosen as the
source of the glycoprotein gene because it allowed us to perform initial
challenge studies with MP12 under lower containment conditions
(data not shown). cDNAwas prepared using RT PCR (Thermoscript RT-
PCR Kit) with oligo dT primers. A 3.3 kb 5′-truncated fragment of the
RVFV M segment was amplified from cDNA using Phusion HF
polymerase (Phusion High Fidelity PCR Mastermix, Finnzymes) and
RVFVMsegment-specific primers: 5′GCAATCGATGCAGGGATTGCAAT-
GACAGTC and 5′GCACTCGAGCTATGAGGCCTTCTTAGTGGCAG. This
results in translation of the RVFV glycoprotein precursor from the
4th available start codon to facilitate optimal glycoprotein expression
(Collett et al., 1985; Gerrard and Nichol, 2007; Suzich et al., 1990).
Next, a Kozak sequence (Kozak, 1984a; Kozak, 1984b; Kozak, 1987;
Kozak, 2002) was added immediately 5′ to the ATG start codon by PCR
amplification using PhusionHF polymerasewith the following RVFVM
segment specific oligos: 5′TTAATGAATTCGCCACCATGGCAGGGATTG-
CAATGACAGTCCTTCC and 5′GCACTCGAGCTATGAGGCCTTCTTAGTGG-
CAG. This PCR product was cloned downstream of the chicken β-actin
promoter into the pCAGGS expression vector (Kobasa et al., 1997;
Niwa, Yamamura, and Miyazaki, 1991) (kindly provided by Yoshihiro
Kawaoka, University of Wisconsin-Madison, USA) via EcoRI/XhoI
restriction endonuclease sites. Plasmid DNA used for transfections was
prepared (0.323 mg/ml, cesium chloride (CsCl)-purified) by the
University of Texas Medical Branch (UTMB) Recombinant DNA
Laboratory (Galveston, TX, USA). A codon-optimized (codon usage as
described in Babcock et al., 2004) version of the truncated RVFV
glycoprotein precursor genewas synthesized byGenScript (Piscataway,
NJ, USA; GenBank accession number GQ148915) that contains a Kozak
sequence immediately 5′ to the ATG start codon and 5′ and 3′ EcoRI and
XhoI restriction sites for subsequent cloning steps. This genewas cloned
into pCAGGS expression vector via the EcoRI/XhoI restriction endonu-
clease sites. The plasmid preparations used for transfections was
prepared (0.5 mg/ml, NucleoBond column-purified (Machery-Nagel)
by the Nature Technology Corporation (Lincoln, NE, USA).

RVFV N expression plasmid
RVFV N cDNA was amplified fromMP12 RNA by RT-PCR (Thermo-

script RT-PCR Kit) with primers specific for the S segment: 5′
ATTATGGTACCGCCACCATGGACAACTATCAAGAGCTTGCGATC and 5′
ATTATCTCGAGTTAGGCTGCTGTCTTGTAAGCCTGAGC. This generates a
product with a Kozak sequence (Kozak, 1984a; Kozak, 1984b; Kozak,
1987; Kozak, 2002) immediately 5′ to the start codon and 5′ and 3′
KpnI and XhoI restriction sites, respectively. This product was cloned
into pCAGGS expression vector via KpnI/XhoI restriction endonucle-
ase sites. Plasmid DNA used for transfections was prepared
(3.024 mg/ml, CsCl-purified) by the Recombinant DNA Laboratory,
Sealy Center for Molecular Medicine, UTMB (Galveston, TX, USA).

RVF VLP preparation

293-gag cells (HEK-293 cells (CRL-1573, ATCC) that constitutively
express MoMLV gag and pol) were cultured in poly-d-lysine coated
150 mm tissue culture dishes (Falcon) at 1.2×107 cells per plate in
DMEM (Gibco) with 10% FBS (Hyclone) with 1% penicillin/strepto-
mycin (pen/strep, 1000 U/ml and 1000 μg/ml, Gibco), and 2 mM L-
glutamine (Gibco) at 37°C, 5% CO2 overnight. Media was removed and
transfection of RVFV G and N expression plasmids was performed
using Lipofectamine 2000 reagent (Invitrogen) with Opti-MEM I
media (Gibco). Transfection media was removed at 4 h post-
transfection and replaced with 30 ml DMEM media plus 10% FBS, 1%
pen/strep and 1% L-glutamine. Supernatants were harvested at 24, 36,
48, 72, 96 and 120 h post-transfection, and each time the cells were
cultured with 30 ml of fresh medium. Supernatants were pooled and
clarified by centrifugation at 2700×g at 4°C for 10 min. Samples were
concentrated to 150ml via tangential flow filtration through Pellicon®
2 “Mini” Filter (0.1m2 Biomax® 300K polyethersulfone, screen type C,
Millipore). Purification of RVF chimVLPs was performed by centrifu-
gation of concentrated VLP preparations through a 20% sucrose
cushion in PBS using Beckman Ultraclear ultracentrifuge tubes in a
SW28 rotor at 26,000 rpm at 4°C for 2 h with a Beckman L-80
ultracentrifuge. Samples were then resuspended in 5ml of sterile 0.9%
NaCl (Baxter). RVF VLPs from 293 cells were prepared using the same
methodology.

Western blot analysis

RVFV chimVLPs were combined with 4×LDS buffer (Invitrogen)
and 50 mM Dithiothreitol (DTT, Sigma), heated to 95°C for 10 min,
then fractionated by NuPAGE 4-12% bis-Tris Gels (Invitrogen); for
protein size comparison a pre-stained protein molecular weight
marker (SeeBlue Plus 2, Invitrogen) was used. Proteins were then
transferred to methanol-activated PVDF membrane (Invitrogen)
which was subsequently incubated 16 h in 1% nonfat dry milk in
PBS. Membranes were washed 3×for 10min in 0.05% Tween20 in PBS
and probed with primary antibodies for 1 h at room temperature
(RT): monoclonal RVFV GN antibodies at 1:8,000 (ProSci Inc., Poway,
CA, USA, 4F8C8, developed against the GN-specific peptide
AEDPHLRNRPGKGH), monoclonal RVFV GC antibodies 1:5,000 (ProSci
Inc., 14G1B11, developed against the GC-specific peptide
QTRNDKTFAASKGN), RVFV N ascites 1:2,000 (kindly provided by Dr.
Robert B. Tesh, University of Texas Medical Branch, USA) and rabbit
polyclonal MoMLV gag antibodies 1:5,000 (kindly provided by Dr.
ChinglaiWang, Emory University, USA) for 1 h at RT. Membraneswere
washed 3× as above, then incubated with either AP-conjugated goat
anti-mouse antibodies at 1:5000 (for GN, GC, and N; Jackson
ImmunoResearch, West Grove, PA, USA ) or AP-conjugated rabbit
anti-goat (for MoMLV gag; Southern Biotech, Birmingham, Alabama,
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USA). Membranes were then washed 3× as described above. Protein
bands were visualized using 1-Step NBT/BCIP solution (Pierce). For
quantitative analysis, Western blots were analyzed using ImageJ
software (Burger and Burge, 2008). Image colors were inverted and
background subtracted. The average of three integrated density
readings per band was determined. Maximum value was set to
equal 100% and the remaining values were converted to percentages
relative to the highest reading.

Transmission electron microscopy (TEM)

TEM was performed at the University of Iowa Central Microscopy
Research Facility (University of Iowa, USA). 293 cells were fixed 12 h
with glutaraldehyde (Acros Organics, Geel, Belgium; final concentra-
tion of 2.5%) 60 h post-transfection of RVFV G and N expression
plasmids. Cells were washed with PBS pH 7.2 and then 3×with 0.1 M
sodium cacodylate buffer. Cells were then fixed 1 h with 1% osmium
tetroxide and washed 3×with 0.1 M sodium cacodylate buffer.
Subsequently, cells were rinsed in distilled water for 1 min and then
treated with 2.5% uranyl acetate in distilled water for 20 min. Cells
were then equilibrated into ethanol in three 15-min steps (50%, 75%
and 95%) and then equilibrated in 2:1 ethanol/epon resin (Epon 12,
Ted Pella) and then 1:2 ethanol/epon for 1 h and finally 100% epon for
2 h. Samples were then placed in fresh epon at 65 °C for 12 h. Blocks
were then subjected to microtomy to generate 70-nm thin sections.
Sections were counterstained with 5% uranyl acetate for 12 min and
lead citrate (Reynold's) for 7 min. Sections were imaged with a JEOL
1230 transmission electron microscope and Gatan UltraScan 1000
CCD camera.

Sucrose density gradient fractionation

RVF VLPs purified from 293 and 293-gag cells were fractionated by
centrifugation at 30,000 rpm for 1 h through a discontinuous sucrose
gradient (10–60%) using a Beckman SW 40 Ti rotor. 2-ml fractions
were collected and dilutedwith 12ml of cold PBS. Fractionswere then
collected by centrifugation at 30,000 rpm for 1 h in a Beckman SW 40
Ti rotor, and pellets were resuspended in 0.1 ml cold PBS. 16 μl of each
sample was combined with 2.5 μl 50 mMDTT (Sigma) and 6.25 μl LDS
sample buffer (Invitrogen) and fractionated by SDS-PAGE and
analyzed by Western blot. MoMLV gag proteins were detected with
the MoMLV gag antibodies used at 1:500 dilution and visualized with
a alkaline phosphatase-conjugated rabbit anti-goat IgG (Southern
Biotech) at 1:5000 dilution.

Immunoprecipitation

100 μl of RVF chimVLPs and MoMLV gag VLPs were combined with
3 μl of RVFV GN antibodies and 5 μl of protein A/G PLUS Agarose beads
(Santa Cruz Biotechnology, Santa Cruz, CA) and incubated at 4 °C for
14 h on a Labquake shaker (Barnstead, Thermo Scientific). Superna-
tant and beads were then separated by centrifugation at 1000×g for
5 min at 4 °C. The beads were washed 3×by resuspension in 1 ml of
1×PBS and centrifugation at 1000×g for 5 min at 4 °C. After final
wash beads were resuspended in 100 μl PBS. 37 μl of SDS lysis buffer
(Invitrogen) and 15 μl of DTT were added to 100 μl of beads or the
100 μl of supernatant and heated to 90 °C for 10 min. Samples were
analyzed by Western blot using RVFV GN antibodies and MoMLV gag
antibodies. Immunoprecipitation results were analyzed by measuring
the integrated densities of the specific bands visualized by Western
analysis using ImageJ software.

Plaque reduction neutralization titer assays (PRNT80)

Mouse serum samples were separated from whole blood by
centrifugation in a microcentrifuge for 5 min and were stored at
−80 °C until use. Sera were diluted 1:10 in maintenance medium
(DMEM, 2% FBS, 1% pen/strep) and titrated in two-fold serial dilution
steps. Equal volumes (60 μl) of RVFV ZH501 dilution containing
approximately 60 plaque-forming units (pfu)/100 μl, and serum
dilutions were mixed and incubated for 1 h at 37°C and 5% CO2.
Confluent monolayers of VeroE6 cells (seeded in 12-well plates) were
infected with 100 μl of the virus–serummixtures. After 1 h incubation
at 37°C and 5% CO2, the inocula were removed andwells overlaid with
a mixture of one part 1.6% Gum Tragacanth (Sigma) and one part
2xMEM (Gibco, Invitrogen) supplemented with 4% FBS (Sigma) and
2% penicillin/streptomycin (Sigma). The plates were incubated at
37°C and 5% CO2 for 3 days and then stained with 0.25% crystal violet
in 10% buffered formalin. Plates were then washed and the plaques
enumerated. Dilutions of RVFV ZH501 with maintenance medium
were used as a positive control. The neutralizing antibody titer of a
serum was considered “positive” at the lowest initial serum dilution
that resulted in N80% (PRNT80) reduction of the number of plaques as
compared to the virus control.

Cytokine secretion from cultured splenocytes

BALB/c, H2d haplotype, α1,3 galactosyltransferase-KO transgenic
mice (Thall et al., 1995), kindly provided by NewLink Genetics
Corporation, were immunized on days 0, 9, and 20 with RVFV
chimVLPs. Spleens were harvested from three mice and one PBS-
vaccinated control mouse (31 days post final vaccination) and each
placed in separate petri dishes with sterile Gey's Balanced Salt
Solution (Sigma). Each spleen was slightly minced and pressed
through a Cellector™ Tissue Sieve (Bellco). Cells were filtered through
a 40 μm filter (BD Falcon 40 μm strainer) and centrifuged at 800×g for
10 min. Cells were harvested by resuspension in Gey's solution and
centrifugation through underlayed Lympholyte-M (Cedarlane Labs,
Burlington, NC, USA) at 1500×g for 20 min (with no brake).
Splenocytes were harvested from the interface and washed 3× in
Gey's solution. Viable cells were plated to 24-well dishes (Corning,
Corning, NY, USA) at 8×106 cells/ml. 1×107 TCID50/ml heat-
inactivated flu virus (mouse-adapted A/HK/1/68 strain; Abdel-
Motal et al., 2007) or 5.6×105 pfu/ml heat-inactivated RVFV MP-12
(Caplen, Peters, and Bishop, 1985) was added to test wells. Cells were
maintained at 37°C, 5% CO2, and 90% humidity. Supernatants were
harvested for analysis at 24, 96, and 168 h post-stimulation. Cytokines
in cell culture supernatant were analyzed by a bead-based multiplex
system (Bioplex, BioRad) according to manufacturer's instructions.
Secretion of the following was assessed: IL-2, IL-4, IL-5, and IFN-γ.

Mouse challenge experiments

BALB/c mice (as described above) were immunized subcutane-
ously (s.c.) 3× with ∼6 μg (total protein) of RVF VLP-based vaccine
candidates combined with 100 μl of Sigma Adjuvant System (Sigma;
prepared according to manufacturers recommendations) at 9-day
intervals. For challenge, mice were transferred to the Robert E. Shope
Biosafety Level 4 (BSL-4) facility at the University of Texas Medical
Branch at Galveston for intraperitoneal (i.p.) challenge with 1000 pfu
of RVFV ZH501. Mice weremonitored daily for signs of disease for a 2-
to 3-week period. All animal experiments were approved by Iowa
State University and the University of Texas Medical Branch Internal
Animal Care and Use Committees (IACUC).

Rat challenge experiments

Eight-week-old female Wistar–Furth rats (Harlan Laboratories,
Indianapolis, IN) were immunized 3× at 2-week intervals i.p. with
1 ml of RVF chimVLP vaccine candidate or 1 ml sterile saline (Baxter,
Deerfield, IL) combined with 250 μl of Sigma Adjuvant System
(prepared according to manufacturer's recommendations). Rats were
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transferred to the Robert E. Shope BSL-4 facility at the University of
Texas Medical Branch at Galveston for subcutaneous (s.c.) challenge
with 105 pfu of RVFV ZH501 60 days post final booster. Rats were
monitored daily for weight change and signs of disease. All animal
experiments were approved by Iowa State University and the
University of Texas Medical Branch IACUC committees.
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